Image Processing in Automatic License Plate Recognition Using Combined Methods

Authors

  • Nabila Hamdoun Department of Mathematics, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
  • Driss Mentagui Department of Mathematics, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco

DOI:

https://doi.org/10.55630/sjc.2022.16.1-23

Abstract

There are many existing studies released in the field of Computer Vision, especially the field of Automatic License Plate Recognition. However, most of them are focused on using one method at the time, such as Thresholding algorithms, Edge Detections or Morphological transformations. This research paper proposes to automate the License plate recognition process, by combining four algorithms from the three methods mentioned above: Adaptive Thresholding, Otsu's Thresholding, Canny Edge Detection and Morphological Gradient applied to Edge Detection. The Goal achieved is to obtain the best binary image from those methods, and the statistical technique used in, is the median of pixel's intensity of all output images obtained by the four methods. Additionally, this research offers a comparative study on thresholding techniques to choose the best method for binarizing an image, which is the first and crucial step of Automatic License Plate Recognition Process.

Downloads

Published

2022-07-04

Issue

Section

Articles