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Abstract. In this paper we present two new methods for computing the
subresultant polynomial remainder sequence (prs) of two polynomials f, g ∈
Z [x]. We are now able to also correctly compute the Euclidean and modified
Euclidean prs1 of f, g by using either of the functions employed by our
methods to compute the remainder polynomials.

Another innovation is that we are able to obtain subresultant prs’s in
Z [x] by employing the function rem(f, g, x) to compute the remainder
polynomials inQ [x]. This is achieved by our method subresultants_amv_q
(f, g, x), which is somewhat slow due to the inherent higher cost of com-
putations in the field of rationals.
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To improve in speed, our second method, subresultants_amv(f, g,
x), computes the remainder polynomials in the ring Z [x] by employing the
function rem_z(f, g, x);2 the time complexity and performance of this
method are very competitive.

Our methods are two different implementations of Theorem 1 (Section 3),
which establishes a one-to-one correspondence between the Euclidean and
modified Euclidean prs of f, g, on one hand, and the subresultant prs of f, g,
on the other.

By contrast, if – as is currently the practice – the remainder polynomi-
als are obtained by the pseudo-remainders function prem(f, g, x)3, then
only subresultant prs’s are correctly computed. Euclidean and modified Eu-
clidean prs’s generated by this function may cause confusion with the signs
and conflict with Theorem 1.

1. Introduction. We assume Euclidean and modified Euclidean (or
Sturmian) prs’s well known and we informally define subresultant prs’s.

Consider the polynomials f, g ∈ Z [x] of degrees deg(f) = n and deg(g) =
m with n ≥ m. The subresultant prs of f, g is a sequence of polynomials in Z [x]
analogous to the Euclidean prs, the sequence obtained by applying on f, g Euclid’s
algorithm for polynomial greatest common divisors (gcd) in Q [x].

The subresultant prs differs from the Euclidean prs in that the coeffi-
cients of each polynomial in the former are the determinants – also referred to as
subresultants – of appropriately selected sub-matrices of sylvester1(f, g, x)4,
Sylvester’s matrix of 1840 of dimensions (n+m)× (n+m) [14].

Recall that the determinant of sylvester1(f, g, x) itself is called the
resultant of f, g and serves as a criterion of whether the two polynomials have
common roots or not.

In the sequel we will be talking about Euclidean, modified Euclidean and
subresultant prs’s [5]. Statements about a prs – unless specifically identified –
apply to all three sequences.

To compute a prs in Z [x], the current practice is to use pseudo-remainders
[7], [8], [9], [10], [11], [12], which are defined by

(1) LC(Ri−1)
δ ·Ri−2 = qi−2 ·Ri−1 +Ri,

2Defined by equation (4) in Section 1.
3Defined by equation (1) in Section 1.
4To distinguish it from sylvester2(f, g, x), Sylvester’s matrix of 1853 of dimensions (2 ·

n)× (2 · n) [15].
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whereRi is the pseudo-remainder, LC(Ri−1) is the leading coefficient of the divisor
Ri−1, and

(2) δ = degree(Ri−2, x)− degree(Ri−1, x) + 1.

It is of importance to note that equation (1) employs the leading coefficient
of the divisor Ri−1 and not its absolute value. In sympy – one of the freely
available Computer Algebra Systems (CAS’s) – pseudo-remainders are computed
by the function prem(f, g, x).

As long as
LC(Ri−1) > 0

or
LC(Ri−1) < 0 and δ is even,

any prs is correctly computed with the above definition of pseudo-remainders.
Of interest is the fact that only subresultant prs’s are correctly computed with
prem(f, g, x), [12], when

(3) LC(Ri−1) < 0 and δ is odd.

By contrast, when the two conditions in (3) hold, there may be confusion regarding
the signs in the Euclidean and modified Euclidean prs’s computed with prem(f,
g, x); moreover, conflict may arise with Theorem 1.

Theorem 1 establishes a one-to-one correspondence between the Euclidean
and modified Euclidean prs of f, g, on one hand, and the subresultant prs of f, g,
on the other.

As detailed in Example 1 of Section 17, a conflict with Theorem 1 may
arise when the sign sequences (see Definition 2) of the Euclidean or modified
Euclidean prs of f, g computed in Z [x] with prem(f, g, x) are not identical
with the corresponding ones computed in Q [x]. In such a case, the Euclidean
and modified Euclidean prs of f, g computed in Z [x] – unlike their counterparts
computed in Q [x] – are not in a one-to-one correspondence with the subresultant
prs of f, g.

To facilitate our further discussion we introduce the following definition:

Definition 1. A polynomial remainder sequence of two polynomials f, g is called
complete if the degree difference between any two consecutive polynomials is 1;
otherwise, it is called incomplete.5

5It is understood that f, g are included in the prs.
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By (2) it becomes clear that δ may be odd only when the prs is incomplete.
Therefore, it is incomplete Euclidean and modified Euclidean prs’s that may create
confusion with signs and conflict with Theorem 1 [2], [3].

The confusion with the signs was first noted in http://planetmath.org/
sturmstheorem, from where we quote:

“Be aware that some computer algebra systems may normalize re-
mainders from the Euclidean Algorithm which messes up the sign.”

and was later reiterated in the Wikipedia article on polynomial gcd’s,6 from where
we quote:

“The pseudo-division has been introduced to allow a variant7 of
Euclid’s algorithm for which all remainders belong to Z [x].”

The last statement raises the question:

“Why introduce a variant of Euclid’s algorithm, when the Eu-
clidean algorithm itself can be used for the same purpose?”

This is exactly what we did. We first introduced the new sympy function
rem_z(f, g, x), defined by

(4) |LC(Ri−1)|δ ·Ri−2 = qi−2 ·Ri−1 +Ri.

The difference from prem(f, g, x) is that we now use the absolute value of the
leading coefficient of the divisor.8

Then, based on the Pell-Gordon theorem [13] and on Theorem 1 of Sec-
tion 3, we developed for sympy the module subresultants_qq_zz.py,9 which in-
cludes various functions for computing Euclidean, modified Euclidean and (mod-
ified) subresultant prs’s [3].10 All sequences are computed either in Q [x], using
the function rem(f, g, x) or in Z [x] using the function rem_z(f, g, x).

Our module includes – among others – the functions

euclid_q(f, g, x), euclid_amv(f, g, x),
subresultants_amv_q(f, g, x) and subresultants_amv(f, g, x),

6see https://en.wikipedia.org/wiki/Polynomial_greatest_common_divisor#Pseudo-
remainder_sequences

7Our emphasis.
8We understand that many consider rem_z(f, g, x) a pseudo-remainders function as well.
9 https://github.com/sympy/sympy/blob/master/sympy/polys/subresultants_qq_zz.py.

10Additional details on our module can be found in the Historical Note in Section 6.
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which will be used in the sequel. Caveat : Module functions ending in “_amv”
employ the function rem_z(f, g, x).

The last two functions mentioned above are examined in detail in Sections
4 and 5, respectively. The subresultant prs’s computed by subresultants_amv_q
(f, g, x) and by subresultants_amv(f, g, x) are identical to those obtained
by the sympy-core function subresultants(f, g, x), which computes the re-
mainder polynomials by employing the function prem(f, g, x).

1.1. Outline of the paper. In Section 2 we examine in some detail the
pseudo-remainders function prem(f, g, x), which has been both a boon and a
bane.

In Section 3 we present without proof Theorem 1, which is the theoretical
basis of our two new methods for computing subresultant prs’s.

In Section 4 we present subresultants_amv_q(f, g, x), the method
that computes remainder polynomials in Q [x] using the function rem(f, g, x).
This method is an implementation of equation (16) of Theorem 1 and, as expected,
is somewhat slow given the inherently higher cost of rational operations.

In Section 5 we present subresultants_amv(f, g, x), the method that
computes remainder polynomials in Z [x] using the function rem_z(f, g, x).
This method is also an implementation of equation (16) of Theorem 1 but its
performance is very competitive.

Finally, in Section 6 we present some empirical results and conclusions
as well as a Historical Note.

2. On the pseudo-remainders function prem(f, g, x). The
pseudo-remainders function prem(f, g, x) has been, and still is, used to compute
in Z [x] the remainder polynomials of subresultant prs’s. Its application has been
both a boon and a bane.

A boon because – as detailed in Section – by employing prem(f, g, x)
to compute in Z [x] the remainder polynomials it became possible, about 50 years
ago, to develop subresultants_cbt(f, g, x) ([9], pp. 277–283). See also the
Historical Note in Section 6.

A bane because – as detailed in Section 17 – employing prem(f, g, x) to
compute in Z [x] the remainder polynomials of Euclidean and modified Euclidean
prs’s may lead to confusion with the signs and to conflict with Theorem 1 of
Section 3.11

We examine both these cases separately.
11For the past forty years we have been trying, off and on, to straighten out this problem.

Success came after our discovery of the Pell-Gordon theorem of 1917 [13].
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2.1. prem(f, g, x): the boon!
In this section we present subresultants_cbt(f, g, x), the subresul-

tant prs method developed by Collins, Brown and Traub, who introduced the
currently used definition of pseudo-remainders [7], [8], [10], [11]. The function
subresultants_cbt(f, g, x), as presented in Algorithm 1, is equivalent to the
sympy-core function subresultants(f, g, x).

According to this method, the remainder polynomials are computed in
Z [x] by first premultiplying the dividend times the leading coefficient of the di-
visor, according to formula (1).

However, repeated applications of (1) renders the coefficients of the re-
mainder polynomials much bigger than the corresponding subresultants.

To reduce this coefficient growth, the algorithm cleverly reduces the re-
sulting coefficients to subresultants by exactly dividing out a certain quantity
βi, defined by (6). We call this βi the Collins-Brown-Traub coefficients-reduction
factor, or simply (cbt) coefficients-reduction factor.

Therefore, to obtain the subresultant prs of f, g with subresultants_cbt
(f, g, x) involves the following remainder sequence, [9]:

R−1 = f,

R0 = g,

R1 =
prem(R−1, R0, x)

β1
,

...

Ri =
prem(Ri−2, Ri−1, x)

βi
, etc,(5)

where Ri is exactly divided by the cbt coefficients-reduction factor βi given by12

ψ1 = −1, β1 = (−1)δ1 , i = 1,

ψi =
(−LC(Ri−2, x))

δi−1−1

ψ
δi−1−2
i−1

, i > 1,(6)

βi = −LC(Ri−2, x) · ψδi−1i , i > 1,

and
δi = degree(Ri−2, x)− degree(Ri−1, x) + 1, i > 1.

An algorithmic description of the above is presented in Algorithm 1.
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Input: Two univariate polynomials f, g ∈ Z[x], with degree(f, x)≥ degree(g, x), and the
variable x.

Output: A list of polynomials ∈ Z[x], including f, g, constituting the subresultant prs of
f, g. The polynomials in the sequence are computed by employing the
pseudo-remainder function prem(f, g, x).

// make sure degrees are in order
1 [d0, d1] ← [degree(f, x), degree(g, x)];
2 if d0 = 0 and d1 = 0 then return [f, g];
3 if d1 > d0 then {[d0, d1] ← [d1, d0]; [f, g] ← [g, f ]};
4 if d0 > 0 and d1 = 0 then return [f, g];

// initialize variables
5 [a0, a1, ψ, degdifP1] ← [f, g,−1, d0 − d1 + 1];
6 a2 ← prem(a0, a1, x)/(−1)degdifP1; /* operations in Z[x] */
7 subrList← [a0, a1, a2];

// main loop
8 while d2 > 0 do
9 [a0, a1] ← [a1, a2];

10 σ0 ← -LC(a0, x); /* leading coefficient of a0 */
11 ψ ← σdegdifP1−1

0 /ψdegdifP1−2;
12 degdifP1← degree(a0, x)− d2 + 1;
13 a2 ← prem(a0, a1, x)/(ψ

degdifP1−1 · σ0); /* operations in Z[x] */
14 subrList← append(subrList, a2);
15 d2 ← degree(a2, x);
16 end
17 return subrList

Algorithm 1. The subresultants_cbt(f, g, x) algorithm. Computes re-
mainder polynomials in Z [x] using the function prem(f, g, x) and imple-
ments equations (5) and (6)

2.2. prem(f, g, x): the bane! In this section we present an example,
showing the confusion with the signs and the conflict with Theorem 1 that may
be caused when the function prem(f, g, x) is employed to compute in Z [x] the
remainder polynomials of the Euclidean prs.

The following definition is needed:

Definition 2. The sign sequence of a polynomial remainder sequence is the
sequence of signs of the leading coefficients of its polynomials.

12An explanation of the derivation of the formula for the factor βi can be found elsewhere
[12].
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Example 1. Consider the storied Knuth polynomials f = x8 + x6 − 3x4 − 3x3 +
8x2 + 2x − 5 and g = 3x6 + 5x4 − 4x2 − 9x + 21, whose incomplete prs has
degrees 8, 6, 4, 2, 1, 0. These are the same polynomials used in the Wikipedia article
on polynomial gcd https: // en. wikipedia. org/ wiki/ Polynomial_ greatest_
common_ divisor .

For incomplete prs’s it is well known that the sign sequence of the Eu-
clidean prs of f, g may differ from the sign sequence of the subresultant prs
of f, g [1].

Indeed, in our case, the two sign sequences differ. To wit, the sign sequence
of the Euclidean prs of f, g is

(7) +,+,−,−,+,−

because, in Q [x], application of the sympy function euclid_q(f, g, x) yields

(8) x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5, 3x6 + 5x4 − 4x2 − 9x+ 21,

− 5x4/9 + x2/9− 1/3,−117x2/25− 9x+ 441/25,

233150x/19773− 102500/6591,−1288744821/543589225,

or, in Z [x], application of the sympy function euclid_amv(f, g, x) yields

(9) x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5, 3x6 + 5x4 − 4x2 − 9x+ 21,

− 15x4 + 3x2 − 9,−65x2 − 125x+ 245, 9326x− 12300,−260708.

Recall that the function euclid_amv(f, g, x) employs the function rem_z(f, g,
x) to compute the remainder polynomials.

On the other hand, the sign sequence of the subresultant prs of f, g is

(10) +,+,+,+,+,+

because application of the sympy function subresultants(f, g, x)13 yields

(11) x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5, 3x6 + 5x4 − 4x2 − 9x+ 21,

15x4 − 3x2 + 9, 65x2 + 125x− 245, 9326x− 12300, 260708.

Recall that subresultants(f, g, x) employs the function prem(f, g, x) and
correctly computes the subresultant prs of f, g.

13Or any one of the various subresultants functions found in the module https://github.
com/sympy/sympy/blob/master/sympy/polys/subresultants_qq_zz.py. See also the Histori-
cal Note in Section 6.
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As already stated, according to Theorem 1 in Section 3, there is a one-to-
one correspondence between the coefficients in (11), on one hand, and those in
either (8) or (9), on the other. Stated another way, the sign sequence (10) of the
subresultant prs is in one-to-one correspondence with – or, uniquely related to –
the sign sequence (7), of the Euclidean prs.

Let us now employ the pseudo-remainders function prem(f, g, x) to
compute the remainder polynomials of the Euclidean prs of f, g. In this case
we obtain a variant14 of the Euclidean prs of f, g,15 with sign sequence

(12) +,+,−,+,+,+,

which is obviously different from (7). Therefore, confusion with the signs arises;
moreover, we have a conflict with Theorem 1 since the sign sequence (12) does
not correspond to the one in (10).

Obviously, by Theorem 1, the variant of the Euclidean prs of f, g with sign
sequence (12) uniquely corresponds to a variant of the subresultant prs of f, g with
a sign sequence different than (10).

As demonstrated in the above example, with the help of the function
euclid_amv(f, g, x) – which employs the function rem_z(f, g, x) – we were
able to correctly compute the Euclidean prs (9) in Z [x].

However, the situation now gets more complicated because rem_z(f, g,
x) cannot be used in place of prem(f, g, x) in the function subresultants_cbt
(f, g, x) to correctly compute the subresultant prs of two polynomials.

The theorem in the next section is our “Deus ex Machina.”

3. Theoretical background of our subresultant prs methods.
In this section we present Theorem 1, which is the theoretical basis of our new
methods for computing subresultant prs’s either in Q [x] or in Z [x].

Our theorem is an extension and generalization of the Pell-Gordon theo-
rem of 1917 [13]. Due to technical details, its proof is a difficult read, and, since
it can be found elsewhere [6], it is omitted here.

Theorem 1. Let

f = a0x
n + a1x

n−1 + · · ·+ an,

g = b0x
n + b1x

n−1 + · · ·+ bn(13)

14Same coefficients in absolute value, but different signs.
15See also https://en.wikipedia.org/wiki/Polynomial_greatest_common_divisor.
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be two polynomials of degree n and n − p0, respectively, with b0 = b1 = . . . =
bp0−1 = 0, bp0 6= 0, p0 ≥ 0. Moreover, for i = 1, 2, . . ., let

R(i) = r
(i)
0 xmi + r

(i)
1 xmi−1 + · · ·+ r(i)mi ,

RE(i) = r
E(i)
0 xmi + r

E(i)
1 xmi−1 + · · ·+ rE(i)

mi ,(14)

be the i-th modified Euclidean and Euclidean remainders, respectively, of f, g,
with R(i) and RE(i) both of degree mi− pi+1, where (mi+1) is the degree of the
preceding remainder and

r
(i)
0 = r

E(i)
0 = ... = r

(i)
pi−2 = r

E(i)
pi−2 = 0, %i = r

(i)
pi−1 6= 0, σi = r

E(i)
pi−1 6= 0.

Then for k = 0, 1, . . . ,mi the coefficients r(i)k and rE(i)
k in (14) are given

by

r
(i)
k =

(−1)ϕi

%
pi−1+1
i−1 %

pi−2+pi−1

i−2 · · · %p0+p10

×
Deti,k (f, g)

ap00
,(15)

r
E(i)
k =

(−1)ψi

σ
pi−1+1
i−1 σ

pi−2+pi−1

i−2 · · ·σp0+p10

×
Deti,k (f, g)

ap00
,(16)

where %0 = σ0 = bp0,

(17) ϕi = b(si−1 + 1)/2c,

(18) si−1 = the number of odd integers in the list {p0, p1, . . . , pi−1},

(19) ψi = i+ ϕi + p1 + p3 + p5 + ..+ p2bi/2c−1, with p−1 = 0,

(20) Deti,k (f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 · · · · · · · · a2vi−1 a2vi−1+k+1

0 a0 a1 · · · · · · · · a2vi−1−1 a2vi−1+k
...

. . . . . .
...

0 0 0 · · · a0 a1 · · · avi−1 avi−1+k+1

b0 b1 b2 · · · · · · · · b2vi−1 b2vi−1+k+1

0 b0 b1 · · · · · · · · b2vi−1−1 b2vi−1+k
...

. . . . . .
...

0 0 0 · · · b0 b1 · · · bvi−1 bvi−1+k+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

and

(21) vi−1 = p0 + p1 + · · ·+ pi−1.
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As mentioned in Section 2, if the Euclidean prs of f, g ∈ Z [x] is incom-
plete, then its sign sequence is not necessarily identical to the sign sequence of
the subresultant prs of f, g because, in general, from (16) we have

sgn
(
r
E(i)
k

)
6= sgn (Deti,k (f, g)) .

Based on our earlier work on modified subresultants [3], we use equa-
tion (16) to compute subresultant prs’s; that is, we use (16) to compute the sign
of the determinant given the sign of the corresponding coefficient of the Euclidean
prs; and vice-versa.

We compute, for each remainder, the exact sign of the first fraction in (16),
by multiplying times the absolute value of its denominator both sides of equa-
tion (16). That is we have

(22)
∣∣∣σpi−1+1
i−1 σ

pi−2+pi−1

i−2 · · ·σp0+p10

∣∣∣ · rE(i)
k = πi ·Deti,k (f, g) .

where

(23) πi = (−1)ψi ·
(
sgn(σ

pi−1+1
i−1 ) sgn(σ

pi−2+pi−1

i−2 ) · · · sgn(σp0+p10 )
)
.

Obviously, from equation (22) it follows that

(24) sgn
(
r
E(i)
k

)
= πi · sgn (Deti,k (f, g)) ,

and from equation (24) we obtain

(25) sgn (Deti,k (f, g)) =

{
sgn(r

E(i)
k ) if πi > 0,

− sgn
(
r
E(i)
k

)
if πi < 0.

The above procedure is easily programmed. The only critical point is to
effectively compute the absolute value in (22). This value is not computed anew
for each remainder RE(i); instead, a multiplication factor, µ, is being updated
as new leading coefficients are included in (22). So, if the current multiplication
factor is

µi =
∣∣∣σpi−1+1
i−1 σ

pi−2+pi−1

i−2 · · ·σp1+p21 σp0+p10

∣∣∣ ,
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then the updated factor for the next remainder RE(i+1) is

µi+1 =
∣∣∣σpi+1
i σpi−1i−1 · µi

∣∣∣ ,
which means that

µi+1 =
∣∣∣σpi+1
i σ

pi−1+pi
i−1 · · ·σp1+p21 σp0+p10

∣∣∣ .
4. Subresultant prs obtained by polynomial divisions inQ [x].

In Algorithm 2 we present subresultants_amv_q(f, g, x), our first method,
which is an implementation of equation (16) of Theorem 1. Our method com-
putes remainder polynomials in Q [x] using the function rem(f, g, x). Because
the cost of performing rational operations is greater that the cost of performing
integer operations, as can be seen from Fig. 1 in Section 6, our method is too slow
to be of practical use; it is mainly of theoretical interest.

Example 2. Consider the same polynomials f = x8+x6−3x4−3x3+8x2+2x−5
and g = 3x6+5x4−4x2−9x+21, used in Example 1, whose incomplete polynomial
remainder sequence (prs) has degrees 8, 6, 4, 2, 1, 0.

We know that the subresultant prs of f, g in Z [x] is

(26) x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5, 3x6 + 5x4 − 4x2 − 9x+ 21,

15x4 − 3x2 + 9, 65x2 + 125x− 245, 9326x− 12300, 260708,

where the coefficients of the polynomials in the second row of (26) are all deter-
minants (subresultants) of appropriately selected sub-matrices of sylvester1(f,
g, x), of dimensions 14× 14.

Below we use Algorithm 2 to compute the polynomials in the second row
of (26).

Before entering the main loop of the algorithm, the variables i, s, pOdd-
IndexSum are set to zero, whereas µ is set to 1; the rest of the variables are
initialized as follows:

a0 = x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5, a1 = 3x6 + 5x4 − 4x2 − 9x+ 2,

σ1 = 3, d0 = 8, d1 = 6, d2 = 6, p0 = 2, s = 0, ϕ = 0,

subresL = [x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5, 3x6 + 5x4 − 4x2 − 9x+ 21].

Inside the main loop the variables are updated as shown below.
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Input: Two univariate polynomials f, g ∈ Z[x], with degree(f, x)≥ degree(g, x), and the
variable x.

Output: A list of polynomials ∈ Z[x], including f, g, constituting the subresultant prs of
f, g.

// make sure degrees are in order; insert lines 1-4 from Algorithm 1.
1 [d0, d1] ← [degree(f, x), degree(g, x)];

// initialize variables
2 subrList←[f, g]; /* subresultant prs list, to be returned at the end */
3 [i, s] ← [0, 0]; /* counters for remainders and odd elements */
4 pOddIndexSum← 0; /* holds the sum p1 + p3 + · · · */
5 [a0, a1] ← [f, g];
6 σ1 ← LC(a1, x); /* leading coefficient of a1 */
7 p0 ← d0 − d1;
8 if mod(p0, 2) = 1 then s← s+ 1;
9 ϕ = b(s+ 1)/2c;

10 [µ, d2] ← [1, d1]
// main loop

11 while d2 > 0 do
12 i← i+ 1;
13 a2 ← rem(a0, a1, x); /* operations in Q[x] */
14 if i = 1 then
15 σ2 ← LC(a2, x)
16 else
17 σ3 ← LC(a2, x);
18 [σ1, σ2] ← [σ2, σ3]
19 end
20 d2 ← degree(a2, x);
21 p1 ← d1 − d2;
22 ψ ← i+ ϕ+ pOddIndexSum;

// initial value of µ

23 µ← σp0+1
1 × µ;

// evaluate the sign of the first fraction in (16)
24 num← (−1)ψ ; /* sign of the numerator */
25 den← sgn(µ); /* sign of the denominator */

// the sign of the determinant in (16) depends on sgn(num · den) 6= 0
26 if sgn(num · den) > 0 then
27 subrList← append(subrList, a2 × |µ|); /* a2 × |µ| ∈ Z[x] */
28 else
29 subrList← append(subrList,−a2 × |µ|); /* −a2 × |µ| ∈ Z[x] */
30 end

// bring into µ the missing power σp1−1
1 if there was degree gap

31 if p1 − 1 > 0 then µ← σp1−1
1 × µ;

// update variables
32 [a0, a1, d0, d1, p0] ← [a1, a2, d1, d2, p1];
33 if mod(p0, 2) = 1 then s← s+ 1;
34 ϕ← b(s+ 1)/2c;
35 if mod(i, 2) = 1 then
36 pOddIndexSum← pOddIndexSum+ p0; /* pi has odd index */
37 end
38 return subrList

Algorithm 2. The subresultants_amv_q(f, g, x) algorithm. Computes
remainder polynomials in Q [x] using the function rem(f, g, x) and imple-
ments equation (16)
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• for the first remainder (i = 1) we have:

a2 = −5x4/9 + x2/9− 1/3, σ1 = 3, σ2 = −5/9, d2 = 4, p1 = 2, ψ = 1,

µ = 27, sgn(num · den) = −1,−a2 × |µ| = 15x4 − 3x2 + 9,

where the last entry above is appended to subresL. Then, since there was a
degree gap, we “correct” the value of µ to µ = 81. For the next iteration the
other updated variables are:

a0 = 3x6 + 5x4 − 4x2 − 9x+ 21, a1 = −5x4/9 + x2/9− 1/3,

d0 = 6, d1 = 4, p0 = 2, s = 0, ϕ = 0, pOddIndexSum = 2.

• for the second remainder (i = 2) we have:

a2 = −117x2/25− 9x+ 441/25, σ1 = −5/9, σ2 = −117/25,
d2 = 2, p1 = 2, ψ = 4, µ = −125/9,

sgn(num · den) = −1,−a2 × |µ| = 65x2 + 125x− 245,

where the last entry above is appended to subresL. Then, since there was a
degree gap, we “correct” the value of µ to µ = 625/81. For the next iteration
the other updated variables are:

a0 = −5x4/9 + x2/9− 1/3, a1 = −117x2/25− 9x+ 441/25,

d0 = 4, d1 = 2, p0 = 2, s = 0, ϕ = 0, pOddIndexSum = 2.

• for the third remainder (i = 3) we have:

a2 = 233150x/19773− 102500/6591, σ1 = −117/25, σ2 = 233150/19773,

d2 = 1, p1 = 1, ψ = 5, µ = −19773/25,
sgn(num · den) = 1, a2 × |µ| = 9326x− 12300,

where the last entry above is appended to subresL. Since there was no degree
gap the value of µ stays the same, whereas for the next iteration the other
updated variables are:

a0 = −117x2/25− 9x+ 441/25, a1 = 233150x/19773− 102500/6591,

d0 = 2, d1 = 1, p0 = 1, s = 1, ϕ = 1, pOddIndexSum = 3.
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• for the fourth remainder (i = 4) we have:

a2 = −1288744821/543589225,
σ1 = 233150/19773, σ2 = −1288744821/543589225,
d2 = 0, p1 = 1, ψ = 8, µ = −2174356900/19773,

sgn(num · den) = −1,−a2 × |µ| = 260708,

where the last entry above is appended to subresL. Since there was no degree
gap the value of µ stays the same, whereas for the next iteration the other
updated variables are:

a0 = 233150x/19773− 102500/6591, a1 = −1288744821/543589225,
d0 = 1, d1 = 0, p0 = 1, s = 2, ϕ = 1, pOddIndexSum = 3.

Since d2 = 0, the algorithm terminates, having computed the subresultant
prs of f, g as shown in (26).

5. Subresultant prs obtained by polynomial divisions in Z [x].
In Algorithm 3 we present subresultants_amv(f, g, x), our second method,
which is also an implementation of equation (16) of Theorem 1 and its performance
is quite competitive.

Here is how subresultants_amv(f, g, x) works:

• To perform polynomial divisions in Z [x] it uses the function rem_z(f, g,
x), defined by equation (4).

• To reduce the size of the coefficients of the polynomial obtained by rem_z(f,
g, x) it exactly divides the ith remainder by the absolute value of the cbt
coefficients-reduction factor βi defined by (6). After this operation, the
correct absolute value of the determinant has been computed.

• To compute the correct sign of the determinant it implements equation (16),
as discussed in Section 3.

The above are incorporated into Algorithm 3.

6. Empirical results and conclusions. This paper continues and
brings to a successful ending earlier efforts, [4], to develop subresultant prs algo-
rithms, where the remainder polynomials are computed in such a way that it can
be “safely” employed for computing Euclidean and modified Euclidean prs’s.
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Input: Two univariate polynomials f, g ∈ Z[x], with degree(f, x)≥ degree(g, x), and the
variable x.

Output: A list of polynomials ∈ Z[x], including f, g, constituting the subresultant prs of
f, g.

// make sure degrees are in order; insert lines 1-4 from Algorithm 1.
1 [d0, d1] ← [degree(f, x), degree(g, x)] ;

// initialize variables
2 [a0, a1, c, degdifP1] ← [f, g,−1, d0 − d1 + 1];
3 subrList←[f, g]; /* the subresultant prs list, to be returned at the end */
4 σ1 ← LC(a1, x); /* leading coefficient of a1 */
5 [i, s] ← [0, 0]; /* counters for remainders and odd elements */
6 pOddIndexSum← 0; /* holds the sum p1 + p3 + · · · */
7 p0 ← degdifP1− 1;
8 if mod(p0, 2) = 1 then s← s+ 1;
9 ϕ = b(s+ 1)/2c;

10 i← i+ 1;
11 a2 ← rem_z(a0, a1, x)/|cdegdifP1|; /* 1st remainder in Z[x] */
12 σ2 ← LC(a2, x);
13 d2 ← degree(a2, x);
14 p1 ← d1 − d2;
15 sgnDen← sgn(σp0+1

1 ); /* sign of the denominator */
16 ψ ← i+ ϕ+ pOddIndexSum;

// evaluate the sign of the first fraction in (16) and the sign of the
determinant

17 [num, den] ← [(−1)ψ , sgnDen];
18 if sgn(num · den) > 0 then
19 subrList← append(subrList, a2); /* a2 ∈ Z[x] */
20 else
21 subrList← append(subrList,−a2); /* −a2 ∈ Z[x] */
22 end

// bring into sgnDen the missing sign sgn(σp1−1
1 ) if there was a degree gap

23 if p1 − 1 > 0 then sgnDen← sgnDen · sgn(σp1−1
1 );

Algorithm 3. The subresultants_amv(f, g, x) algorithm. Computes re-
mainder polynomials in Z [x] using the function rem_z(f, g, x) and imple-
ments equations (6) and (16)

We presented subresultants_amv_q(f, g, x) and subresultants_amv
(f, g, x), two new methods for computing the subresultant prs of two polyno-
mials f, g ∈ Z [x]. The two methods constitute two different implementations of
Theorem 1, whereby the remainder polynomials are computed either inQ [x] or in
Z [x] by employing respectively the function rem(f, g, x) or rem_z(f, g, x).

Moreover, Euclidean and modified Euclidean prs’s are obtained in full
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// main loop
24 while d2 > 0 do
25 ϕ← b(s+ 1)/2c;
26 if mod(i, 2) = 1 then pOddIndexSum← pOddIndexSum+ p1;

; /* pi has odd index */
27 [a0, a1, d0, d1, i, p0] ← [a1, a2, d1, d2, i+ 1, p1];
28 σ0 ← -LC(a0);
29 c← σdegdifP1−1

0 /cdegdifP1−2;
30 degdifP1← degree(a0, x)− d2 + 1;
31 a2 ← rem_z(a0, a1, x)/|cdegdifP1−1 · σ0|; /* operations in Z[x] */
32 σ3 ← LC(a2, x);
33 d2 ← degree(a2, x);
34 p1 ← d1 − d2;
35 ψ ← i+ ϕ+ pOddIndexSum;
36 [σ1, σ2] ← [σ2, σ3];
37 sgnDen← sgnDen · sgn(σp0+1

1 ); /* sign of the denominator */

// evaluate the sign of the first fraction in (16) and the sign of the
determinant

38 [num, den] ← [(−1)ψ , sgnDen];
39 if sgn(num · den) > 0 then
40 subrList← append(subrList, a2); /* a2 ∈ Z[x] */
41 else
42 subrList← append(subrList,−a2); /* −a2 ∈ Z[x] */
43 end

44 if mod(p1, 2) = 1 then s← s+ 1;

// bring into sgnDen the missing sign sgn(σp1−1
1 ) if there was degree gap

45 if p1 − 1 > 0 then sgnDen← sgnDen · sgn(σp1−1
1 );

46 end
47 return subrList

Algorithm 3. The subresultants_amv(f, g, x) algorithm (continued)

agreement with Theorem 1, when the remainder polynomials are computed either
by the function rem(f, g, x) or by the function rem_z(f, g, x).

As indicated by graph (1a) of Fig. 1, the first method is inherently slow
due to rational arithmetic. However, graph (1b) of Fig. 1 indicates that the
performance of our second method is quite competitive.

All methods were implemented in sympy and run through Spyder. The
computer was a mac-mini with 2 GHz Intel Core 2 Duo and with 2 GB 667 MHz
DDR2 SDRAM running Version 10.7.5 Mac OS X. They were tested on pairs of
random, dense polynomials with single digit coefficients of degrees d, d− 2, where
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Fig. 1. The time is in minutes in graph (1a) and in seconds in graph (1b). In graph (1a)
the time for the pair of polynomials of degrees 100 and 98 was more than half an hour.

The function subresultants(f, g, x) belongs to the sympy-core functions.

d = 10, 20, . . . , 100.
As was expected, subresultants_amv(f, g, x) is somewhat slower than

subresultants_cbt(f, g, x) because of the extra work it does to compute the
correct signs of the coefficients. However, timing considerations were not our
concern.

Historical Note: In the statement of the Pell-Gordon theorem of 1917
[13] we encounter the first algorithm in the History of Mathematics for the com-
putation of (modified) subresultant prs’s without determinant evaluations!

The Pell-Gordon algorithm, which employs the function rem(f, g, x)
for the computation of the remainder polynomials, had been dormant for almost
a century, but is now included as function modified_subresultants_pg(f, g,
x) in our sympy module subresultants_qq_zz.py9.

Included in our module are also the functions subresultants_pg(f, g,
x), euclid_pg(f, g, x) and sturm_pg(f, g, x), all based on the Pell-Gordon
theorem and using the function rem(f, g, x), as well as the functions

subresultants_amv(f, g, x),
modified_subresultants_amv(f, g, x),
euclid_amv(f, g, x) and sturm_amv(f, g, x),

all based on Theorem 1 and using the function rem_z(f, g, x).
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An exception is the function subresultants_amv_q(f, g, x), which em-
ploys the function rem(f, g, x), despite the fact that it implements Theorem 1.
We decided to include the function subresultants_amv_q(f, g, x) in our mod-
ule in order to show that both theorems mentioned above can be implemented
using either the function rem(f, g, x) or the function rem_z(f, g, x). For
clearly historical reasons – since the cbt coefficients-reduction factor βi was not
available in 1917 – we have implemented the Pell-Gordon theorem with the func-
tion rem(f, g, x) and Theorem 1 with the function rem_z(f, g, x).

Three functions in our module are independent of both theorems men-
tioned above; namely, subresultants_rem(f, g, x), subresultants_vv(f, g,
x) and subresultants_vv_2(f, g, x). All three functions evaluate one deter-
minant per remainder polynomial; this is the determinant of an appropriately
selected sub-matrix of sylvester1(f, g, x), Sylvester’s matrix of 1840.16

To compute the remainder polynomials the function subresultants_rem
(f, g, x) employs rem(f, g, x).17 By contrast, subresultants_vv(f, g, x)
and subresultants_vv_2(f, g, x) implement Van Vleck’s ideas of 1900, [2],
and compute the remainder polynomials by triangularizing sylvester2(f, g, x),
Sylvester’s matrix of 1853.

It goes without saying that our module includes the function sylvester(f,
g, x, method=0) to compute either Sylvester matrix.
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