
Serdica Journal of Computing 19(1), 2025, pp. 1-15, 10.55630/sjc.2025.19.1-15
Published by Institute of Mathematics and Informatics, Bulgarian Academy of Sciences

Methodology for Selecting Communication Protocols
in M2M Systems

Oleg Iliev

Laboratory of Telematics,
Institute of Mathematics and Informatics,
Bulgarian Academy of Sciences, Bulgaria

iliev.oleg@gmail.com

Abstract

This article presents a methodology for the analysis and classification
of communication protocols and data stream management systems used
in machine-to-machine (M2M) environments. The focus is placed on non-
functional characteristics such as latency, reliability, scalability, security, and
message ordering, and their relevance in protocol selection across different
functional domains. A comparative evaluation of established protocols – in-
cluding MQTT, HTTP/1.1-3, Kafka, Pulsar, RabbitMQ, AMQP, and CoAP
– is conducted based on objective criteria and existing literature. Building
on this foundation, hybrid architectures are proposed that combine multi-
ple technologies according to the criticality and technical requirements of
specific scenarios. The paper offers structured recommendations for com-
munication strategies in M2M contexts, with empirical validation planned
as the subject of future work.

Keywords: communication protocols, non-functional requirements, M2M, IoT,
hybrid architecture, latency, reliability, classification

ACM Computing Classification System 2012: Networks → Network architec-
tures → Network design principles → Layering, Computer systems organization
→ Architectures → Other architectures → Data flow architectures

Mathematics Subject Classification 2020: 68M10

Received: November 27, 2025, Accepted: December 23, 2025, Published: December 30, 2025
Citation: Oleg Iliev, Methodology for Selecting Communication Protocols in M2M Systems,
Serdica Journal of Computing 19(1), 2025, pp. 1-15, https://doi.org/10.55630/sjc.2025.19.1-15

https://serdica-comp.math.bas.bg/
https://doi.org/10.55630/sjc.2025.19.1-15
mailto:iliev.oleg@gmail.com
https://doi.org/10.55630/sjc.2025.19.1-15


2 Oleg Iliev

1 Introduction

In machine-to-machine (M2M) systems, the selection of a communication pro-
tocol is often driven by technological preferences or industry norms, without suffi-
cient consideration of the actual application context. This frequently leads to the
adoption of solutions that provide high levels of security, reliability, and message
ordering - at the cost of unnecessary overhead, latency, or operational complexity
in cases where such guarantees are not essential [1]. As M2M communication
becomes a fundamental building block of contemporary cyber-physical systems,
ensuring efficient data exchange across heterogeneous devices is critical [2].

Over the past decade, a diverse ecosystem of communication technologies has
emerged, ranging from traditional request-response protocols to publish-subscribe
and streaming platforms such as MQTT, RabbitMQ, Apache Kafka, and Apache
Pulsar [3, 4]. Each technology exhibits distinct characteristics regarding latency,
throughput, reliability, and operational complexity [5]. Despite the abundance
of solutions, the selection of an appropriate protocol remains a non-trivial engi-
neering problem, as existing studies predominantly focus on technology-centric
comparisons, often evaluating protocols in isolation or under narrowly defined
conditions [6].

The importance of the functional domain, defined by application semantics
and operational requirements, is recognized as a decisive factor in the selection
process. Many real-world M2M systems operate under constrained infrastructure
conditions, where the ideal communication substrate may not be available. Legacy
installations and industrial sites often rely on pre-existing automation-specific
networks, which motivates the adoption of hybrid communication architectures
that combine different protocols and transport technologies [7, 8].

The aim of this paper is to analyze the non-functional characteristics of com-
munication protocols and technologies in the context of specific functional do-
mains. The analysis is based on three realistic and diverse M2M scenarios, which
represent different sets of constraints and requirements:

1. Sensor data collection: This domain encompasses a wide range of telemetry
applications, from non-critical environmental monitoring (e.g., ambient tem-
perature) to high-priority healthcare systems. In the case of medical sensors,
the transmission of vital signs requires low latency and high reliability to en-
sure patient safety, while environmental sensors often operate on battery power
and prioritize energy efficiency and resource optimization over constant con-
nectivity [5, 9].

2. Ticket vending kiosk systems: These represent typical order-creation and trans-



Methodology for Selecting Communication Protocols in M2M Systems 3

actional environments. Such systems require strict message ordering to prevent
logical errors in the purchasing process, high data security for handling sen-
sitive user information, and robust delivery guarantees. In this context, fault
tolerance and the ability to recover from network disruptions are paramount
to maintain service availability and transactional integrity [2, 10].

3. Real-time data streaming (sports betting odds): This scenario involves the
ingestion and distribution of high-frequency data from multiple sources. The
primary requirements here are ultra-low latency and the capacity to handle
massive throughput. Unlike transactional systems, a degree of message loss
may be tolerable if subsequent updates refresh the data within milliseconds,
but the system must scale dynamically to accommodate peak loads during live
events [3, 8].

This paper defines and justifies the key non-functional metrics by which com-
munication protocols are evaluated across these scenarios. The analysis includes
indicators such as latency (including 99th percentile), message loss, system re-
source usage, security, reliability, and scalability. This methodological consolida-
tion serves as a necessary prerequisite for subsequent empirical validation [10].
Future research is planned to involve controlled measurements and simulations
across these domains to complement the analytical framework presented in this
study.

2 Non-functional characteristics: definition and significance in
the context of M2M functional domains

The selection of a communication protocol in machine-to-machine (M2M) sys-
tems cannot rely solely on functional requirements without considering the impact
of non-functional characteristics. These characteristics, although often overlooked
during design, significantly influence the performance, reliability, security, and re-
silience of the system, especially in scenarios where communication is a critical
component.

This paper identifies and systematizes eleven key non-functional characteris-
tics, including latency, delay tolerance, message loss tolerance, message ordering,
throughput and payload size, scalability, resource usage, security, reliability, in-
teroperability, and fault tolerance & recovery. These characteristics directly affect
the adequacy of protocol selection. They have been derived based on a compre-
hensive literature review and an analysis of real-world functional scenarios that
demonstrate different requirements and constraints. Particular attention is paid
to the interaction between these characteristics and functional domains, as well as



4 Oleg Iliev

Figure 1: Relative importance of non-functional characteristics by M2M domain.

the need to measure not only average values but also extreme deviations through
percentile evaluation (99p), enabling a more accurate assessment of system be-
havior under load or in critical situations.

The literature emphasizes the importance of non-functional characteristics for
the effective implementation of M2M communication, particularly in the context
of specific applications such as healthcare (e.g., vital sign monitoring), industrial
automation (e.g., machine and process control), and public information services
(e.g., ticket vending kiosks and terminals). [1] conduct a comparative analysis
of communication protocols such as MQTT, CoAP, HTTP, AMQP, and DDS,
using criteria like latency, throughput, reliability, security, and scalability. Their
conclusion is that no universal protocol exists and that selection should be domain-
specific. [2] investigate kiosk system design, emphasizing security, fault tolerance,
and message ordering. [3] empirically compare MQTT and HTTP in real-time
conditions, revealing significant differences in latency and resilience to message
loss in the context of data streaming.

The following characteristics are summarized and categorized according to
their relevance in three representative functional domains: 1) sensor data collec-
tion, 2) ticket vending kiosk systems, and 3) real-time collection of sports betting
odds. The evaluation scale ranges from 1 (low importance) to 5 (high importance).
Table 1 presents the numerical evaluation, and Figure 1 visualizes the comparison
across domains. The analysis of these characteristics is not intended as a purely
technical classification but emphasizes the need for contextual selection based on
actual application needs.



Methodology for Selecting Communication Protocols in M2M Systems 5

Characteristic Sensor Data Ticket Kiosk Real-Time
Collection Machine Betting Odds

Latency 5 4 5
Delay Tolerance 4 3 2
Message Loss Tolerance 3 2 4
Message Ordering 2 5 3
Throughput & Payload Size 2 2 5
Scalability 4 2 4
Resource Usage / Overhead 5 2 3
Security 2 5 3
Reliability 3 5 4
Interoperability 4 3 4
Fault Tolerance & Recovery 3 5 3

Table 1: Importance of non-functional characteristics by functional domain (scale: 1–5).

2.1 Latency

Latency is defined as the time between the sending and receiving of a message.
It is a key metric in applications requiring real-time responsiveness. Measuring
the 99th percentile allows for the detection of rare but critical cases that can
impact reliability. In sensor systems for health monitoring and in betting odds
streaming, latency is crucial. In kiosk systems, while important, some degree of
tolerance is allowed, especially when short performance drops are acceptable.

2.2 Delay tolerance

This characteristic describes the system’s ability to function correctly despite
communication delays. Non-critical sensor systems, such as temperature mon-
itoring, can tolerate high delay, while medical or financial applications require
minimal latency. In some IoT scenarios with energy-constrained devices, this
becomes a key trade-off between accuracy and endurance.

2.3 Message loss tolerance

Message loss is acceptable in applications that rely on frequent updates, such
as betting odds that refresh multiple times per second. In kiosk systems and
healthcare applications, message loss may lead to functional failure and is unac-



6 Oleg Iliev

ceptable. Protocols with acknowledgment or redelivery mechanisms are manda-
tory in such contexts.

2.4 Message ordering

Messages must be delivered in the correct sequence in systems relying on
sequential processing - for example, kiosks that handle requests step by step. In
sensor and streaming applications, this is less critical, unless the data represents
a time series where order matters.

2.5 Throughput and payload size

Protocols must support the required transmission frequency and data volume.
Betting systems require high throughput and minimal latency. Kiosk systems deal
with infrequent but possibly large and structured messages. Sensor data tends
to be small but frequent; optimization can be achieved through compression or
aggregation.

2.6 Scalability

Scalability refers to the system’s ability to support an increasing number of
devices. It is essential for large-scale sensor networks and data aggregation plat-
forms for bookmakers, where data sources are numerous and often asynchronous.
In kiosk systems, where the number of terminals is predictable, this is of lower
priority.

2.7 Resource usage / overhead

This is critical for devices with limited resources—such as battery-powered sen-
sors or IoT edge devices. Heavy protocols with encryption and acknowledgment
can further strain processing resources and reduce device lifetime. In server-based
systems (e.g., kiosks), this is less important, though still worth considering when
scaling to hundreds of devices.

2.8 Security

Includes authentication, encryption, and access control. It is critical for kiosk
systems and medical data. For non-critical sensor measurements, it is of lower
priority. Protocols like HTTPS, MQTT with TLS, and AMQP offer varying levels
of protection; the choice depends on the sensitivity of the transmitted data.



Methodology for Selecting Communication Protocols in M2M Systems 7

2.9 Reliability

The ability to deliver messages without loss or duplication. It is essential in
transactional environments. In streaming systems, compromises can be accepted
using QoS mechanisms. Reliability assessment should be based on both real
measurements and simulations under load and failure scenarios.

2.10 Interoperability

Systems must exchange data regardless of the platforms, network standards,
or operating systems used. This is especially important in heterogeneous data
aggregation environments, such as bookmaker platforms. Standards like REST,
JSON, and multi-transport protocol support facilitate interoperability.

2.11 Fault tolerance & recovery

The ability to continue operating after network or software disruptions. This
is a critical feature for reliable user-facing or automated systems. It includes
message redelivery, local buffering, and automatic reconnection mechanisms.

The summary of these characteristics provides a foundation for the system-
atic analysis of existing communication protocols in the following section. Their
features will be compared across the predefined metrics within each domain. The
objective is to formulate recommendations for selecting the most suitable protocol,
based on the specific non-functional requirements and constraints of the domain,
including trade-off analysis, hybrid solutions, and reference architectures.

2.12 Evaluation rationale and scoring methodology

The numerical evaluations presented in this study are derived through a quali-
tative synthesis of technical specifications, protocol standards, and existing empir-
ical research. A five-point scale (1 to 5) is utilized to reflect the relative capability
of each protocol to satisfy a specific non-functional requirement, where 5 repre-
sents optimal support or performance and 1 indicates significant limitations or
lack of inherent support.

To ensure objectivity and address the need for verifiable evidence, the scoring
is based on the following criteria:

• Latency and real-time performance: Protocols like MQTT and CoAP are as-
signed a score of 5 due to their minimal fixed-header overhead and efficient
binary encoding, which significantly reduce serialization and transmission de-
lays [1, 5]. HTTP/3 also receives a 5 for latency, as the underlying QUIC



8 Oleg Iliev

transport mechanism eliminates head-of-line blocking and accelerates connec-
tion establishment [2, 4].

• Resource efficiency: A score of 5 is granted to protocols designed for constrained
environments, such as CoAP and MQTT, which utilize UDP or lightweight
TCP connections to minimize CPU and battery consumption [1,6]. Conversely,
distributed streaming platforms like Apache Kafka receive lower scores (e.g., 3)
because they require a more robust infrastructure and higher memory overhead
to maintain distributed logs [4].

• Reliability and ordering: Protocols that implement mandatory acknowledgment
(ACK) and persistent queuing, such as AMQP (RabbitMQ), receive a score of
5 for message ordering and reliability. In contrast, CoAP’s reliance on UDP
and optional reliability mechanisms results in a lower score (3) for these specific
metrics [1, 6].

• Scalability and throughput: Distributed platforms like Apache Kafka and Pul-
sar are rated 5 because their architecture allows for horizontal scaling and
high-volume data ingestion, which is critical for large-scale M2M deployments
[3, 4].

• Interoperability: Traditional web protocols such as HTTP/1.1 and HTTP/2
are assigned a score of 5 due to their near-universal support across different
platforms and ease of integration with existing web infrastructures [2].

By grounding the evaluation in these technical distinctions and referencing
established studies [1,3,5], the methodology provides a transparent and verifiable
basis for the protocol-domain mapping and the subsequent proposal of hybrid
architectures [8, 10].

3 Comparative Analysis of Communication Protocols Based on
Non-Functional Characteristics

Selecting an appropriate communication protocol is essential for the effec-
tive implementation of M2M systems, particularly when considering the specific
non-functional requirements of different functional domains. Numerous factors
influence this choice—from message latency to scalability, reliability, and secu-
rity of transmission. This section offers a systematic approach to a comparative
analysis of leading modern protocols in the context of their applicability across
various M2M scenarios.

The following protocols have been selected based on their widespread use,
available documentation, and diversity in architectural and functional properties:

• MQTT – popular in IoT due to low latency and low power consumption [1,5].



Methodology for Selecting Communication Protocols in M2M Systems 9

Characteristic M
Q
T
T

H
T
T
P
/1

.1

H
T
T
P
/2

H
T
T
P
/3

K
af
ka

P
ul
sa
r

A
M
Q
P

C
oA

P

Latency 5 3 4 5 4 4 3 5
Delay Tolerance 5 3 3 3 2 3 3 5
Message Loss Tolerance 4 2 2 2 3 4 4 3
Message Ordering 3 4 4 4 4 4 5 2
Throughput & Payload Size 2 3 4 5 5 5 3 2
Scalability 4 3 3 3 5 5 4 3
Resource Usage / Overhead 5 3 3 3 3 3 3 5
Security 3 4 4 4 3 4 5 2
Reliability 4 3 3 3 5 5 5 3
Interoperability 4 5 5 5 4 4 4 3
Fault Tolerance & Recovery 5 3 4 5 4 4 4 3

Table 2: Evaluation of communication protocols across key non-functional characteristics
in M2M environments (scale: 1–5).

• HTTP/1.1, HTTP/2, HTTP/3 – classical web protocols that have evolved with
improved performance and security [2].

• Apache Kafka – a distributed streaming platform offering high resilience and
throughput [3].

• Apache Pulsar – a modern alternative to Kafka with a distributed architecture
and support for multi-threaded clients [4].

• RabbitMQ and AMQP – broker-based systems widely used in enterprise set-
tings for guaranteed message delivery.

• CoAP – a lightweight protocol designed for resource-constrained environments
[6].

The evaluation of protocols is performed against the following non-functional
characteristics: latency, delay tolerance, message loss and ordering, throughput
and payload size, scalability, resource usage, security, reliability, interoperability,
and fault tolerance. A five-point scale is used (1 = low performance/support, 5 =
high), based on synthesized literature data and comparative experimental studies
from both academic and industrial sources.

Figure 2 provides a visual representation of the comparative scores using a
heatmap. The color gradient helps identify the strengths and weaknesses of each



10 Oleg Iliev

Figure 2: Heatmap – comparison of communication protocols by non-functional charac-
teristics.

protocol at a glance. For instance, Apache Kafka and Pulsar stand out in terms
of scalability, reliability, and throughput, while MQTT and CoAP excel in low
resource usage and latency.

3.1 Summary analysis by protocol

• MQTT shows superior performance in low-power, low-latency applications and
is particularly suitable for constrained devices and critical sensor data [1].

• HTTP/1.1-3 offer strong interoperability and web integration, with HTTP/3
significantly reducing latency through QUIC [2].

• Apache Kafka provides excellent scalability and throughput for real-time stream-
ing but requires a stable and powerful infrastructure [3].

• Apache Pulsar builds on Kafka’s architecture and introduces more flexible stor-
age and delivery guarantees, including delayed messages [4].

• RabbitMQ and AMQP remain reliable choices for transactional scenarios, of-
fering guaranteed delivery, message ordering, and fault tolerance [5].

• CoAP offers minimal overhead and is designed for resource-constrained envi-
ronments where simplicity and low power consumption are essential [6].



Methodology for Selecting Communication Protocols in M2M Systems 11

The comparative scores and subsequent summary analysis are derived from the
systematization of technical characteristics and literature review. These findings
serve as a foundation for design-oriented recommendations and should be distin-
guished from empirical validation through physical measurements. The following
conclusions are intended to guide architectural decisions based on the identified
non-functional alignment.

3.2 Recommendations by functional domain

• Sensor networks: MQTT is considered well-aligned with the requirements of
critical applications, while CoAP is viewed as appropriate for non-critical sce-
narios. Apache Pulsar is identified as an effective candidate for message aggre-
gation.

• Kiosk systems: RabbitMQ or AMQP are regarded as suitable for ensuring
reliable message ordering. HTTP/2 is considered a viable option for front-end
interfaces due to its multiplexing capabilities.

• Real-time betting applications: Apache Kafka is seen as highly compatible with
high-frequency event streaming requirements. MQTT is considered applicable
for lightweight client systems where fast update cycles are prioritized.

3.3 Mapping functional requirements to protocol capabilities

The analysis of non-functional characteristics (Section 2) and the compara-
tive evaluation of protocols (Section 3) reveal significant differences in the needs of
specific functional domains and the extent to which current communication pro-
tocols can satisfy them. This subsection bridges those perspectives by mapping
real-world application needs to protocol capabilities.

• Sensor systems: In sensor-based environments (e.g., telemetry, environmental
monitoring, or health tracking), the key requirements include low latency, low
resource consumption, and resilience to unreliable network conditions. MQTT
stands out due to its lightweight nature and built-in Quality of Service (QoS)
features. CoAP is even more lightweight and well-suited for non-critical data
under constrained conditions, albeit with trade-offs in ordering and security.
In more complex deployments, Apache Pulsar can act as a central aggregation
hub with buffering and delivery management.

• Kiosk and transactional systems: For applications like ticketing or financial
kiosks, key non-functional needs include high reliability, security, strict message
ordering, and fault recovery. RabbitMQ and AMQP support broker-based
architectures with acknowledgments and redelivery queues. HTTP/2 provides



12 Oleg Iliev

a convenient channel for secure web communication, but additional logic is
needed for reliability guarantees. A hybrid deployment that separates interface
and backend processing is often preferred.

• Real-time odds streaming: Systems that ingest live betting odds require ultra-
low latency, high throughput, and interoperability with external providers.
Apache Kafka and Pulsar are strong candidates due to their support for large-
scale, real-time event handling. MQTT can be leveraged for lightweight edge
clients, where high delivery speed is more important than guaranteed ordering.
Protocols such as AMQP, although reliable, are generally too slow for real-time
requirements.

This mapping confirms that no single protocol universally satisfies all M2M
communication scenarios. Optimal implementations are usually the result of
trade-offs between latency, reliability, resource constraints, and scalability. These
findings justify the exploration of hybrid architectures where the communication
stack is tailored to specific functional requirements, allowing for a balance between
latency, reliability, and resource efficiency.

The presented analysis highlights that no protocol offers a one-size-fits-all
solution for M2M applications. Aligning non-functional characteristics with the
specific functional domain is essential. In future work, we will empirically validate
the performance of the leading protocols in real or simulated M2M environments.

4 Hybrid architecture: combining protocols according to domain
and non-functional requirements

Selecting a single communication protocol that satisfies the full spectrum of
non-functional requirements across all M2M application domains is rarely feasi-
ble. As demonstrated in the previous sections, protocols differ significantly in
their ability to support low latency, message ordering, scalability, reliability, and
minimal resource consumption. A practical and increasingly adopted strategy is
to design hybrid architectures that combine the strengths of different protocols
depending on the context. This section presents such architectures, supported by
contemporary scientific literature.

4.1 Scenario 1: Sensor network with varying criticality

An environmental monitoring system composed of both non-critical sensors
(e.g., temperature, humidity) and highly critical sensors (e.g., vital signs in med-
ical settings).



Methodology for Selecting Communication Protocols in M2M Systems 13

Hybrid architecture:

• CoAP for non-critical sensors: minimal overhead, low energy consumption,
multicast capabilities.

• MQTT with QoS 2 for critical sensors: guaranteed delivery and resilience to
connection loss.

• Apache Pulsar as a central broker for buffering and analytical integration.

This architecture aligns with the model proposed by [7], where hybrid MAC
protocols achieve higher efficiency through a combination of contention-based and
scheduled access. Similarly, separating traffic by criticality at the transport layer
improves reliability and resource utilization.

4.2 Scenario 2: Ticket kiosk with web interface and transactional
backend

A ticket vending kiosk that provides a web-based interface and requires secure
communication, message ordering, and durable transaction processing. Hybrid
architecture:

• HTTP/2 with TLS for the front-end interface: secure communication, multi-
plexing, and web compatibility.

• AMQP or RabbitMQ for backend logic: guaranteed delivery, ordered message
queues, and recovery mechanisms.

• Redis or Kafka as a buffer for temporary storage in case of failure.

This model reflects the approach advocated by [9], where hierarchical ac-
cess and prioritization enable effective handling of heterogeneous message traffic.
RabbitMQ is commonly used in systems requiring transactional reliability and
durability.

4.3 Scenario 3: Real-time sports betting odds aggregation

A system that aggregates betting odds from multiple external sources and
distributes them to user interfaces and analytics platforms. Hybrid architecture:

• MQTT or WebSocket for ingesting odds from external providers.
• Apache Kafka for streaming and high-throughput event consumption.
• Apache Pulsar for prioritization, delayed delivery, and long-term retention.

In latency-sensitive and high-frequency environments, streaming platforms
such as Kafka and Pulsar ensure scalability and reliability. Studies by [1] and
[3] support the application of such models in real-time IoT scenarios.



14 Oleg Iliev

4.4 Benefits and challenges of hybrid architectures

Benefits:

• Context-driven optimization of communication behavior.
• Increased architectural flexibility and modularity.
• Improved fault tolerance and latency management.

Challenges:

• Increased complexity in deployment and integration.
• Higher demand for advanced monitoring and orchestration.
• Potential interoperability risks across protocol layers.

Hybrid architectures represent a promising design paradigm for M2M systems
operating in heterogeneous environments. By tailoring the communication stack
to specific functional requirements, better alignment with latency, reliability, and
efficiency objectives can be achieved. Future research will involve empirical vali-
dation of the proposed models through simulations and real-world measurements,
following methodologies such as those of [7, 9] and aligned with industry best
practices.

5 Conclusion

This paper presented a systematic evaluation of communication protocols and
data stream management systems in M2M environments, with a focus on non-
functional characteristics and functional domains. Based on well-defined and
justified metrics, drawn from scientific and industrial sources, we compared widely
used protocols such as MQTT, HTTP/1.1-3, Kafka, Pulsar, RabbitMQ, AMQP,
and CoAP.

The comparative analysis clearly demonstrates that no single protocol can
meet all requirements on its own, especially in the context of heterogeneous func-
tional scenarios—from sensor networks and kiosk terminals to real-time streaming
applications. This underscores the need for developing hybrid architectures in
which different technologies are strategically combined to address specific non-
functional requirements, based on domain, environment, and data criticality.

Within the proposed methodology, we formulated hypothetical models for
communication architecture whose advantages and limitations were supported by
literature and logical analysis. This approach enables more flexible and efficient
M2M system design, particularly in contexts with dynamic or conflicting require-
ments.



Methodology for Selecting Communication Protocols in M2M Systems 15

Empirical validation of the proposed classification and hybrid architectural
models will be the subject of a follow-up publication, based on both simulation
and real-world measurements. That work will apply quantitative metrics such
as average values and 99th percentiles for latency, message loss, performance,
and resilience. Additionally, we plan to explore the possibility of constructing
an automated decision-support model for protocol selection, based on specified
functional requirements and constraints.

References

[1] D. Thangavel, X. Ma, A. Valera, H.-X. Tan, C. K.-Y. Tan, Performance evaluation
of MQTT and CoAP via a common middleware, 2014 IEEE Ninth International
Conference on Intelligent Sensors, Sensor Networks and Information Processing
(ISSNIP), Singapore, 2014.

[2] I. Lee, K. Lee, The Internet of Things (IoT): Applications, investments, and chal-
lenges for enterprises, Business Horizons, 58:431–440, 2015.

[3] K. Mekki, E. Bajic, F. Chaxel, F. Meyer, A comparative study of LPWAN tech-
nologies for large-scale IoT deployment, ICT Express, 5:1–7, 2019.

[4] S. Tallberg, A comparison of data ingestion platforms in real-time stream processing
pipelines, Master thesis, Mälardalen University, Sweden, 2020.

[5] P. Thota, Y. Kim, Implementation and Comparison of M2M Protocols for Internet
of Things, 2016 4th Intl Conf on Applied Computing and Information Technology
(ACIT-CSII-BCD), Las Vegas, USA, 2016.

[6] Z. Shelby, K. Hartke, C. Bormann, The Constrained Application Protocol (CoAP),
Internet Engineering Task Force (IETF), RFC 7252, 2014.

[7] Y. Liu, C. Yuen, J. Chen, X. Cao, A scalable Hybrid MAC protocol for massive
M2M networks, 2013 IEEE Wireless Communications and Networking Conference
(WCNC), Shanghai, China, 2013.

[8] B. Alojaiman, A Multi-Criteria Decision-Making Process for the Selection of an
Efficient and Reliable IoT Application, Processes, 11:1313, 2023.

[9] Y. Liu, C. Yuen, X. Cao, N. Ul Hassan, J. Chen, Design of a Scalable Hybrid MAC
Protocol for Heterogeneous M2M Networks, IEEE Internet of Things Journal, 1:99–
111, 2014.

[10] O. A. Khashan, N. M. Khafajah, Efficient hybrid centralized and blockchain-based
authentication architecture for heterogeneous IoT systems, Journal of King Saud
University – Computer and Information Sciences, 35:726–739, 2023.

https://doi.org/10.1109/ISSNIP.2014.6827678
https://doi.org/10.1109/ISSNIP.2014.6827678
https://doi.org/10.1109/ISSNIP.2014.6827678
https://doi.org/10.1109/ISSNIP.2014.6827678
https://doi.org/10.1016/j.bushor.2015.03.008
https://doi.org/10.1016/j.bushor.2015.03.008
https://doi.org/10.1016/j.icte.2017.12.005
https://doi.org/10.1016/j.icte.2017.12.005
https://www.doria.fi/handle/10024/177865
https://www.doria.fi/handle/10024/177865
https://doi.org/10.1109/ACIT-CSII-BCD.2016.021
https://doi.org/10.1109/ACIT-CSII-BCD.2016.021
https://doi.org/10.1109/ACIT-CSII-BCD.2016.021
https://www.rfc-editor.org/rfc/rfc7252
https://www.rfc-editor.org/rfc/rfc7252
https://doi.org/10.1109/WCNC.2013.6554572
https://doi.org/10.1109/WCNC.2013.6554572
https://doi.org/10.1109/WCNC.2013.6554572
https://doi.org/10.3390/pr11051313
https://doi.org/10.3390/pr11051313
https://doi.org/10.1109/JIOT.2014.2310425
https://doi.org/10.1109/JIOT.2014.2310425
https://doi.org/10.1109/JIOT.2014.2310425
https://doi.org/10.1016/j.jksuci.2023.01.011
https://doi.org/10.1016/j.jksuci.2023.01.011
https://doi.org/10.1016/j.jksuci.2023.01.011

	Introduction
	Non-functional characteristics: definition and significance in the context of M2M functional domains
	Latency
	Delay tolerance
	Message loss tolerance
	Message ordering
	Throughput and payload size
	Scalability
	Resource usage / overhead
	Security
	Reliability
	Interoperability
	Fault tolerance & recovery
	Evaluation rationale and scoring methodology

	Comparative Analysis of Communication Protocols Based on Non-Functional Characteristics
	Summary analysis by protocol
	Recommendations by functional domain
	Mapping functional requirements to protocol capabilities

	Hybrid architecture: combining protocols according to domain and non-functional requirements
	Scenario 1: Sensor network with varying criticality
	Scenario 2: Ticket kiosk with web interface and transactional backend
	Scenario 3: Real-time sports betting odds aggregation
	Benefits and challenges of hybrid architectures

	Conclusion

