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Abstract

This research paper presents a linear programming model for network
flow optimization, addressing the challenge of freshwater management in
Bangalore. The model highlights the practicality of linear programming in
real-world scenarios. Specifically, the efficient allocation and distribution of
freshwater resources from various sources, including reservoirs, rivers, and
groundwater, to meet the growing demands of domestic, industrial, and
agricultural sectors, while adhering to sustainable practices.
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1 Introduction

Bangalore, a city currently ranked No. 1 in water scarcity among urban areas
and India’s, faces a water crisis due to rapid urbanisation, population growth, and
erratic monsoon patterns over the last couple years. Efficient water management
in Bangalore should therefore be enhanced to help reduce the current situation
and provide comfort to those who are suffering from the shortage.

This paper proposes a linear programming model, to model the water distri-
bution network in Bangalore, using publicly available data to project and plan
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various scenarios until complete water depletion: No rainfall, incorporating rain-
fall, bore water + reservoir water reliance.

By utilising real-world data, open to the general public, the model simu-
lates month-by-month variations in supply and distribution constraints across
key areas of Bangalore: Yelahanka, White Field, Electronic City, Peenya, Ba-
nashankari, JP Nagar, KR Puram, Marathahalli, Sarjapur, Nandi Hills, Chan-
dapura, and other regions. The model aims to showcase the feasibility of Linear
Programming Models for large urban areas.

The findings of this research, hope to illustrate the feasibility of large scale
linear-programming models in real world scenarios. Potentially aiding in miti-
gating future and current water crises, such as Bangalore, if further explored and
developed to incorporate more real world data and external variables.

1.1 Literature Review

1.1.1 Introduction to Network Flow

In understanding linear programming for network flow, [1] offers a compre-
hensive guide on the application of linear programming to network flow problems.
The paper highlights how linear programming can be used to optimise network
flows, alongside examples for managing water distribution networks in urban en-
vironments.

For more complex integration of linear programming and advanced concepts,
Henry Adams’ [2] collection of video series offers a comprehensive understanding
of the topic, including understanding Simplex Algorithms and how they function.

1.1.2 Network Flow Models and Linear Programming Approaches

Network flow models are tools used for optimising distribution of resources
in systems. These models have been used in optimization research and com-
puter science to solve various real-world problems, including water distribution
networks.

Iancheva and Kelevedzhiev (2001) [3] provide a foundational approach to man-
aging water resource systems using linear programming. Their paper is based on
the upper basin of the Iskar River and serves as an introduction to mapping net-
work flows over larger geographic areas. This approach demonstrates the poten-
tial for similar methodologies to be applied in more complex urban environments,
such as Bangalore, as explored in this paper.



Linear Programming Model for Optimizing Freshwater Distribution 29

1.1.3 Bangalore’s Water Supply Challenges

Bangalore’s water crisis is due to the disparity between water supply and
demand, affected by the changes in seasonal rainfall patterns (over the last few
years) and the city’s growing population. The Bangalore Water Supply and
Sewerage Board (BWSSB) [4] and the Central Ground Water Board (CGWB)
[5] have published reports detailing the city’s water supply infrastructure and
groundwater status. These reports have provided data for modelling and under-
standing Bangalore’s water distribution system, which has served as the backbone
to develop the Bangalore Model used in this study.

1.1.4 Reservoirs

The Central Ground Water Board’s Ground Water Year Book 2021-2022:
Karnataka and Goa [5] and BWSSB’s [4] annual reports offer data on the cur-
rent state of Bangalore’s reservoirs. These reports examine the importance of
maintaining optimal reservoir levels to prevent shortages during dry periods and
overflows during the monsoon season.

1.1.5 Historical Rainfall Patterns

The Indian Meteorological Department (IMD) [6] and the Central Water
Commission (CWC) [7] provide data on historical rainfall patterns for predicting
water availability. If integrated correctly into a linear programming model, it
would allow for more accurate water resource management.

1.1.6 Gaps in Literature

There is extensive literature on the understanding of linear programming.
However, there are very few resources that apply linear programming in a real-
world scenario, specifically network flow. Additionally, there are gaps in accessing
real-time data for such studies, hence maximising assumptions. This is furthered
by the lack of resources available for accurately mapping out a network flow model
for a larger urban area such as Bangalore.

2 Objectives

1. Model the Water Supply Network: Represent the city’s water distri-
bution system as a flow network with nodes – representing water sources /
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reservoirs, treatment plants, and consumers; and edges – representing pipes
with specific capacities.

2. Ensure Necessary Water Distribution: Ensure that all necessary con-
straints for agriculture, industry, and residential water usage are met.

3. Scenario Analysis: Model possible scenarios for the next 5 years for the
supply of freshwater in Bangalore, considering changes in receiver demands
and rainfall values.

4. Maintain Longevity of Water Supply: Ensure freshwater is distributed
to all necessary locations while minimising usage, providing only the bare
minimum to meet requirements.

3 Preliminaries

3.1 Terminology and Definitions

Graph: A graph consists of a set of vertices and a set of edges. Each edge
connects two vertices and can have an associated weight/min-max-capacity.

Vertex (Node): A vertex of the graph represents an entity: water source,
treatment plant, or consumer endpoint in a water supply network.

Edge (Link): An edge is a connection between two vertices in the graph,
representing a pipeline in the water supply network. It can have an associated
capacity indicating the maximum and minimum flow it can handle.

Capacity: The capacity of an edge is the maximum amount of flow that can
pass through the edge. In a water supply network, it represents the maximum
volume of water that can flow through a pipeline.

Flow Network: A flow network is a directed graph where each edge has a
capacity and each edge receives a flow. The amount of flow on an edge cannot
exceed the capacity of the edge.

Source: The source in a flow network is the starting node from which flow
originates. In a water supply network, it represents the water sources or treatment
plants.

Sink: The sink in a flow network is the terminal node where flow is absorbed.
In a water supply network, it represents the consumer endpoints.

Linear Program (LP): A mathematical model representing a problem that
seeks to maximize or minimize a linear objective function, subject to a set of
linear constraints, excluding multiplication and division.

Decision Variables: Variables that represent the decisions to be made in
the problem, which will optimize the objective function.
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Objective Function: A linear function that needs to be maximized or min-
imized. It is expressed in terms of decision variables.

Constraints: A set of linear inequalities or equalities that represent the
restrictions or limitations on the decision variables.

Feasible Region: The set of all possible points (combinations of the values
of the decision variables) that satisfy the constraints of the linear program. It is
often visualized as a convex polytope.

Vertex (Corner Point): A point in the feasible region where two or more
constraints intersect. In the context of the Simplex algorithm, the optimal solu-
tion is often found at one of these vertices.

Simplex Algorithm: An iterative method used to find the optimal solution
of a linear program by moving from one vertex of the feasible region to an adjacent
vertex with a better objective value, until the optimal solution is reached.

Optimal Solution: A feasible solution that maximizes or minimizes the
objective function value. In the Simplex algorithm, it is the final solution where
no further improvements can be made.

3.2 Assumptions

Static Network: The capacities of the pipes and the water demands at each
node do not change over time. This simplifies the model but does not capture
real-world fluctuations, such as the age of pipes and pipe deterioration.

Single Commodity Flow: The model assumes a single type of flow rate
through the network. In reality, water quality and pressure might vary, but these
factors are not considered in the current model. However, such features may be
added.

Steady-State Conditions: The analysis assumes steady-state conditions,
meaning that the flow rate is constant over time. Transient states, such as those
during peak hours or maintenance periods, are not considered.

Perfect Infrastructure: The network infrastructure is assumed to be per-
fect, with no leaks, breaks, or maintenance issues. This may slightly limit accu-
racy, although it should not be considerable.

Linear Relationships: All relationships between the decision variables and
the objective function, as well as between the decision variables and the con-
straints, are linear. This means that each term in the objective function and the
constraint is either a constant or a constant multiplied by a decision variable.

Feasibility: The feasible region formed by the simultaneous fulfillment of all
constraints is a convex polytope, meaning that an optimal solution exists at one of
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the vertices of the polytope. This ensures there are no contradictory constraints
that would make the problem infeasible.

Non-Negativity: All decision variables are non-negative. This is an assump-
tion in linear programming to reflect realistic conditions, such as non-negative
quantities of goods or resources.

No Backflow: The model assumes that water is unable to flow in reverse
through pipes, implying that the system operates on either a downhill slope or
flat plane.

Boundedness: The feasible region is bounded, meaning there are limits on
the values that decision variables can take. This prevents the objective func-
tion from being unbounded, ensuring a finite optimal solution and improving
feasibility.

Single Objective Function: The problem has a single objective function
to be optimized (either maximized or minimized). This simplifies the analysis
and ensures clarity in the optimization direction.

4 Algorithms

The network flow model is based on the concept of Linear Programming, a
mathematical programming to achieve the most optimal outcome in a mathe-
matical model whose requirements are represented by linear relationships and
constraints. The concept of linear programming is further explored in the collec-
tion of videos by Henry Adams [2].

4.1 Implementation of the Simplex Algorithm

LP Solve: LP Solve [8] is an open-source solver for linear programming prob-
lems that uses the Simplex algorithm and its variations.

• Usage in Study:

– Initialization: LP Solve was initially used to develop and test the water
distribution model.

• Advantages:

– Its ability to handle large datasets and include complex constraints made it
ideal for the testing stages and practical problems.

• Disadvantages:

– Limits users to add variables as constraints, resulting in it being time-
consuming for larger iterations.
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– Since LP Solve is not an actual programming language, iterations must be
made manually when running through the terminal.

PuLP: PuLP is a Python library for linear programming, similar to LP Solve.

• Usage in Study:

– Modelling and Implementation: After the initial model validation with LP -
Solve, PuLP was used for further development, simulations, and experimen-
tation before shifting back to LP Solve due to issues in logic.

• Advantages:

– The integration with Python allowed for easier manipulation of data and
model parameters, including the use of Pandas and MathPlotLib.

5 Secondary Data

5.1 Population Data (External/Secondary)

• Current Population (2023):

– Total population: 13,300,000
– Growth rate: 5.13% per year

• Breakdown by area (with individual growth rates):

– Yelahanka: 320,000 (4.17%)
– Whitefield: 350,000 (7.376%)
– Electronic City: 250,000 (7.51%)
– Peenya: 270,000 (6.326%)
– Banashankari: 420,000 (4.076%)
– JP Nagar: 260,000 (6.87%)
– KR Puram: 340,000 (5.956%)
– Marathahalli: 240,000 (8.31%)
– Sarjapur: 230,000 (9.35%)
– Nandi Hills: 80,000 (8.29%)
– Chandapura: 120,000 (8.28%)
– Other areas: (Calculated based on remaining population and overall growth

rate)
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Area 2003 2008 2013 2018 2023

Yelahanka 150 180 220 270 320
Whitefield 100 140 200 270 350
Electronic City 70 100 140 190 250
Peenya 90 120 160 210 270
Banashankari 200 240 290 350 420
J.P. Nagar 80 110 150 200 260
K.R. Puram 120 160 210 270 340
Marathahalli 60 90 130 180 240
Sarjapur 50 80 120 170 230
Chandapura 30 43 60 86 120
Nandi Hills 20 29 40 57 80

Total 970 1292 1720 2253 2880

Bangalore 5100 6600 9100 10600 13300

Percentage 19.02% 19.58% 18.90% 21.25% 21.65%
of Total Population

Table 1: Population Data from 2003 to 2023.

Year Population Industrial Water Per Capita Industrial
(million) Use (MLD) Water Use (LPCD)

2003 5.1 200 39.22
2008 6.6 250 37.88
2013 9.1 325 35.71
2018 10.6 375 35.38
2023 13.3 437.5 32.89

Table 2: Industrial Water Use and Per Capita Industrial Water Use (2003-2023).
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5.2 Per Capita Industrial Water Use

5.3 Rainfall Analysis

Month Average Rainfall (mm)

Jan 3.1
Feb 1.78
Mar 6.3
Apr 21.975
May 14.325
Jun 18.9
Jul 16.925
Aug 49.975
Sep 6.7
Oct 46.5
Nov 6.475
Dec 14.675

Table 3: Average Monthly Rainfall (mm). Note: There is a 2% annual decrease in
rainfall, which was taken into account in the model.
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Reservoir Name Area (km2) Area (m2)

Thippagondanahalli Reservoir 1453 1,453,000,000
Hesaraghatta Lake 73.83 73,830,000
Meenkara Dam 90.65 90,650,000
Garajanar Dam 419.58 419,580,000
Vani Vilasa Dam 5.374 5,374,000
Mangalam Dam 48.85 48,850,000
Markonahalli Dam 4103 4,103,000,000
Kabbini Dam 2141.9 2,141,900,000
Basava Sagar Dam 47850 47,850,000,000
Tungabhadra Dam 28180 28,180,000,000
Harangi Dam 419.58 419,580,000

Table 4: Reservoir Areas. This data was used in conjunction with the total surface area
of each dam/lake, assuming that each dam in its entirety is outdoors and that each km2

receives an equal amount of rainfall.

5.4 Water Sources(External + Hypothetical Reasoning)

5.4.1 River Sources

River Average Inflow (MLD)

Cauvery River 1450
Arkavathi River 123

Table 5: Average Inflow from River Sources.

5.4.2 Reservoirs and Dams

See Table 6.

5.5 Treatment Plants (External + Hypothetical Reasoning)

• T.K. Halli Treatment Plant: 1450 MLD (However, this number is unreal-
istic and was changed later in the study).

• Vrishabhavathi Valley Treatment Plant: 180 MLD (However, this num-
ber is unrealistic and was changed later in the study).
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Reservoir / Dam Maximum Capacity Maximum
(MCM) Outflow

Thippagondanahalli Reservoir 74 7.4
Hesaraghatta Lake 125 12.5
Markonahalli Dam 68 6.8
Gajanur Dam 56 5.6
Harangi Dam 130 13.0
Mangalam Dam 70 7.0
Kabbini Dam 150 15.0
Tungabhadra Dam 200 20.0
Basava Sagar Dam 190 19.0
Meenkara Dam 80 8.0
Vani Vilasa Sagara 90 9.0

Table 6: Reservoir and Dam Capacities with Assumed Maximum Outflow (10% of Max-
imum Capacity) [9].

5.6 Water Data (External + Hypothetical Reasoning)

5.6.1 Residential Water Demand

• Per capita consumption: 135 liters per day (India’s recommended).
• Demand for specific areas calculated based on population and growth rates.

5.6.2 Agricultural Water Demand

• Current agricultural land: 59,049 acres.
• Daily water requirement: 20,000 liters per acre (Hypothetical: based on aver-

ages of water usage).
• Annual decrease in agricultural land: 2.41%.

5.6.3 Industrial Water Demand

• Current demand: 437.5 MLD
• Annual increase in demand: (to be specified).
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6 Formula

6.1 Total Population Water Usage

=
(Initial Population× (Rate of Increase)(Days/365))× Per Capita Water Usage

1000

Assumptions

• Initial Population (P) = Sum of populations in all areas
• Per Capita Water Usage (W) = Average water usage per person per day (liters)
• Rate of Increase (R) = Constant for all years

Values

• Rate of Increase (R) = 5.13%
• Per Capita Water Usage (W) = 0.000135 MLD
• Initial Population (P) = 13,300,000

6.2 Agriculture Water Usage

=

(
Initial Number of Acres× Rate of Decrease

365
Days

)
×
(
Per Acre per day usage

1,000,000

)
1, 000

Assumptions/Values:

• Rate of Decrease of Number of Acres due to Urbanization (R) = -2.41% per
year

• DAYS (D) = The period in days over which the calculation is made (i.e., one
year = 365 days)

• Per Acre per day usage (P) = 20,000 liters
• Initial Number of Acres (N) = 59,049 acres

6.3 Industrial Water Usage

=
Initial Population× Rate of Increase

Days
365 × Per Capita Industrial Water Usage

1000

Assumptions/Values:



Linear Programming Model for Optimizing Freshwater Distribution 39

• Initial Population (P) = Sum of populations in all areas
• Rate of Increase (R) = Constant for all years (5.13%)
• DAYS: The period in days over which the calculation is made (e.g., one year

= 365 days)
• Per Capita Industrial Water Usage (W) = Average water usage per person per

day (liters), W = 0.000036216 MLD
• Initial Population (P) = 13,300,000

6.4 Bore-Water Usage

Bore Water Usage (MCM) = Total Water Usage (MCM)× 0.3
Bore Water Usage is assumed to be 30% of any system’s water usage.

6.5 Calculating Yearly Rainfall Change

Rainfall (N) = Rainfall (L)×
(

1− y

100

)(N−2023)
Assumptions:

• Rainfall (L) = Rainfall for the base year (2023)
• Rate of Decrease (Y) = Percentage Decrease Per Year
• Rainfall (N) = Predicted rainfall for N years after 2023

6.6 Rainfall Volume Formula

Volume (MCM) =
Rainfall×

(
1− x

100

)(n−2023) × (A×1,000,000
1,000

)
1, 000, 000

Assumptions:

• A = Area of Reservoir/Water Body
• Rainfall = Initial Rainfall (2023)
• n = Years after 2023

7 Model

The model presented in the study was run for a total time span of 5 years.
The reason for running the model for only 5 years was to avoid a greater amount
of uncertainty that may be caused by irregular changes due to climate change
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or the intervention of laws that prohibited childbirth. Additionally, the rapid
movement of society into an age of not having children could have affected the
study. These various factors are not covered in this study. The main objective of
this study is to illustrate that linear programming models can be used for large
data sets, and thus the model was only run for 5 consecutive years.

The model shown here is based on purely assumptions lacking any physical
evidence,provided to the public, to justify the accuracy of the model. The model
was constructed by analysing various resources to ultimately design a model that
should be nearly-accurate to the Bangalore fresh-water network. The model has
2 main sources of freshwater:Cauvery River and the Arkavathi River. However,
there is an additional source of freshwater that, unlike the rivers, is replenished
through rainfall and surface run-off(the inflow of surface-run-off is not imple-
mented in this study due to the complexity and missing variables), bore water.
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The model in total has 14 distinct sinks, 11 reservoirs excluding the additional
3 bore water sources that are split from one main bore water source(unrealistic
due to there only being 3 main sources, however this was made due to complexity
of the model and lack of conclusive data, but should work similar to a real-life
example) and 2 treatment plants.

The model only includes big-landmarks/sinks of water due to the millions of
individual sources. However to increase the accuracy of the model an additional
sink was added, labelled ‘Remaining Population’, including the rest of Bangalore
total population but not including the water consumption of the 11 main areas:
Yelahanka, White Field, Electronic City, Peenya, Banashankari, JP Nagar, KR
Puram, Marathahalli, Sarjapur, Nandi Hills and Chandapura.

It is also important to note that originally the model included 3 additional
lakes (reservoirs): Bellandur Lake, Doddanekundi Lake and Madiwala Lake.
However, due to the lack of data regarding maximum capacity and maximum
output, the 3 lakes were removed from the study, limiting the accuracy.

Additionally, it is important to note that the study only covers inflow to the
reservoirs by rainfall and not through external lakes and rivers, due to the lack
of data, further limiting the accuracy.

The Treatment Plants indicated in the model by Circles do not affect the
results presented in this study, due to the lack of data to conclude the maximum
MLD however it is assumed for the T.K. Halli Treatment Plant to be 1.95 MCM
per day and 3.67 MCM per day.

7.1 Mathematical Model Description

The linear programming model is formulated as a system of equalities and
inequalities that ensure the water flow through the network obeys constraints due
to capacities, demands, and source availability. The following is its formulation:

Decision Variables

• xij : Volume of water flowing from node i to node j (in MCM).
• si: Supply available at node i (in MCM).
• dj : Demand at node j (in MCM).
• cij : Maximum capacity of the pipeline between i and j (in MCM).
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Objective Function

The goal is to minimize the total water flow while achieving the evolving
demands:

Maximize
∑

(i,j)∈E

xij − Penalty Terms (e.g., unmet demand, overflow).

Constraints

1. Flow Conservation: At every node i, the sum of inflows equals the sum of
outflows plus the net supply:∑

j∈N
xji −

∑
j∈N

xij = si − di, ∀i ∈ N.

2. Capacity Constraints: The flow between any two nodes cannot exceed the
pipeline capacity:

0 ≤ xij ≤ cij , ∀(i, j) ∈ E.

3. Reservoir Constraints: Each reservoir r must maintain a non-negative wa-
ter level, with the net inflow limited by its capacity:

0 ≤Water Levelr ≤ Max Capacityr, ∀r ∈ R.

4. Non-Negativity: The flow variables must be non-negative:

xij ≥ 0, ∀(i, j) ∈ E.

5. External Factors: Rainfall and other external inflows er into reservoirs are
added as external variables:

Water Levelr = Initial Levelr +
∑
i∈N

xir −
∑
j∈N

xrj + er.

6. Demand Satisfaction: The total water delivered to a demand node must
meet or exceed its demand:∑

i∈N
xij ≥ dj , ∀j ∈ D.
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7.2 Close ups of Model

7.2.1 Part A+B

Water Flow

• Cauvery River (SA) → Thippagondanahalli Reservoir (RA):

– Max Flow (MCM) = 1.45

• Thippagondanahalli Reservoir → T.K. Halli Treatment Plant:

– Max Flow (MCM) = 0.5

• Cauvery River → T.K. Halli Treatment Plant:

– Max Flow (MCM) = 1.45

• Arkavathi River → Hesaraghatta Lake:

– Max Flow (MCM) = 0.125

• Hesaraghatta Lake → T.K. Halli Treatment Plant:

– Max Flow (MCM) = (to be specified)

• Arkavathi River → T.K. Halli Treatment Plant:

– Max Flow (MCM) = 0.125
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7.2.2 Part C

Water Flow

• Basava Sagar Dam → Vrishabhavathi Valley Treatment Plant:

– Max Flow (MCM) = 0.19

• Tungabhadra Dam → Vrishabhavathi Valley Treatment Plant:

– Max Flow (MCM) = 0.2

• Mangalam Dam → Vrishabhavathi Valley Treatment Plant:

– Max Flow (MCM) = 0.07

• Markonahalli Dam → Vrishabhavathi Valley Treatment Plant:

– Max Flow (MCM) = 0.68

• Gajanur Dam → Vrishabhavathi Valley Treatment Plant:

– Max Flow (MCM) = 0.56

• Harangi Dam → Vrishabhavathi Valley Treatment Plant:

– Max Flow (MCM) = 0.13
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• Vani Vilasa Sagara → Vrishabhavathi Valley Treatment Plant:

– Max Flow (MCM) = 0.9

• Kabbini Dam → Vrishabhavathi Valley Treatment Plant:

– Max Flow (MCM) = 0.15

• Meenkara Dam → Vrishabhavathi Valley Treatment Plant:

– Max Flow (MCM) = 0.8

7.2.3 Part D

Water Flow

• Vrishabhavathi Valley Treatment Plant → BB:

– Max Flow (MCM) = 0.5

• BB → CC:

– (Max Flow not specified)

• T.K. Halli Treatment Plant → AA:

– Max Flow (MCM) = 1.95

7.2.4 Part E

Water Flow
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• Bore Water → Residential Bore Water:

– Max Flow (MCM) = Dependent on Continuous Variables

• Bore Water → Agricultural Bore Water:

– Max Flow (MCM) = Dependent on Continuous Variables

• Bore Water → Industrial Bore Water:

– Max Flow (MCM) = Dependent on Continuous Variables

7.2.5 Part F

Water Flow

• CC → Yelahanka:

– Max Flow (MCM) = Dependent on Continuous Variables

• CC → Whitefield:

– Max Flow (MCM) = Dependent on Continuous Variables

• CC → Electronic City:

– Max Flow (MCM) = Dependent on Continuous Variables

• CC → Peenya:

– Max Flow (MCM) = Dependent on Continuous Variables

• CC → Banashankari:

– Max Flow (MCM) = Dependent on Continuous Variables

• CC → JP Nagar:

– Max Flow (MCM) = Dependent on Continuous Variables

• CC → KR Puram:

– Max Flow (MCM) = Dependent on Continuous Variables
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• CC → Marathahalli:

– Max Flow (MCM) = Dependent on Continuous Variables

• CC → Sarjapur:

– Max Flow (MCM) = Dependent on Continuous Variables

• CC → Nandi Hills:

– Max Flow (MCM) = Dependent on Continuous Variables

• CC → Chandapura:

– Max Flow (MCM) = Dependent on Continuous Variables

• CC → Other Areas:

– Max Flow (MCM) = Dependent on Continuous Variables

• Agricultural Bore Water → Yelahanka:

– Max Flow (MCM) = Dependent on Continuous Variables

• Agricultural Bore Water → Whitefield:

– Max Flow (MCM) = Dependent on Continuous Variables

• Agricultural Bore Water → Electronic City:

– Max Flow (MCM) = Dependent on Continuous Variables

• Agricultural Bore Water → Peenya:

– Max Flow (MCM) = Dependent on Continuous Variables

• Agricultural Bore Water → Banashankari:

– Max Flow (MCM) = Dependent on Continuous Variables

• Agricultural Bore Water → JP Nagar:

– Max Flow (MCM) = Dependent on Continuous Variables

• Agricultural Bore Water → KR Puram:

– Max Flow (MCM) = Dependent on Continuous Variables

• Agricultural Bore Water → Marathahalli:

– Max Flow (MCM) = Dependent on Continuous Variables

• Agricultural Bore Water → Sarjapur:

– Max Flow (MCM) = Dependent on Continuous Variables

• Agricultural Bore Water → Nandi Hills:
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– Max Flow (MCM) = Dependent on Continuous Variables

• Agricultural Bore Water → Chandapura:

– Max Flow (MCM) = Dependent on Continuous Variables

• Agricultural Bore Water → Other Areas:

– Max Flow (MCM) = Dependent on Continuous Variables

7.2.6 Part G

Water Flow

• Agricultural Bore Water → Agriculture:

– Max Flow (MCM) = Dependent on Continuous Variables

• Industrial Bore Water → Industry:

– Max Flow (MCM) = Dependent on Continuous Variables

• CC → Agriculture:

– Max Flow (MCM) = Dependent on Continuous Variables

• CC → Industry:

– Max Flow (MCM) = Dependent on Continuous Variables

7.3 Linear Programming Model Structure and Notation

7.3.1 Key Notation

• If the first letter is capital ‘R’, the constraint is a reservoir.
• If the second letter following is ‘P’, the constraint is a treatment plant.
• If the first letter ‘U’ is followed by ‘R’, it represents water flowing into a

reservoir.
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• If the first letter ‘V’ is followed by ‘R’, it represents water flowing out of a
reservoir.

• ‘BR’ represents bore water for residential use.
• ‘BI’ represents bore water for industrial use.
• ‘BA’ represents bore water for agricultural use.
• ‘AA’ or ‘BB’ represents the collection point for more than one reservoir, dam,

or lake.
• ‘CC’ represents the collection point of both ‘AA’ and ‘BB’.
• The number after the letters represents the month: 1 = 1st month, etc.
• The ‘ ’ between two constraints/nodes represents that this constraint is for the

pipe/weight, not a node.

7.3.2 Additional Notation (Requirement for External Variables (i.e.
Rainfall))

• If the first letter is capital ‘E’, the constraint is an external variable.

Note: All the constraints below are not specific to this model and serve as an
explanation of how the LP model is structured. The explanations were added to
guide users who may want to recreate such a model.

Additionally, the names of the variables presented in the explanation do not
need to be identical or in capital letters and will work regardless. Any constraint
or variable declared must not include any arithmetic operators.

7.3.3 Reservoirs

Initial Values of Reservoir The initial reservoir values are modeled as fol-
lows:

RA = 30;

This needs to be written only once at the beginning of the LP Solve program.
In all the scenarios presented in this study, the reservoirs are at 100% capacity

initially. However, the values of the reservoirs can be changed accordingly by
modifying the initial values.

How to Declare a Reservoir in LP Solve In order to declare a constraint
to be a reservoir, the format in this model is as follows (this format was created
specifically for this study and does not take inspiration from external sources due
to limited resources):
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RA1 = RA + URA1− V RA1 + ERA1

Where:

• RA1 = Current volume of water in the reservoir.
• RA = Last month/week/day/year’s water in the reservoir.
• URA = Water entering the reservoir (internal, e.g., pipes).
• V RA = Water leaving the reservoir.
• ERA = Water entering the reservoir (external, e.g., rainfall) (optional).

7.3.4 Constraints

How to Declare a Constraint for a Pipe Basic constraints for pipes are
modeled as follows:

ParentNode ChildNode < 5;

The number ‘5’ can be replaced with any variable value as well.
The relational operator between the variables is limited to:

• <, >, =, ≤, ≥

How to Declare a Constraint for a Node Basic constraints for nodes are
modeled as follows:

NameOfTheNode > 5;

How to Declare a Variable Variables are modeled as follows:

NameOfTheVariable > 5;

7.3.5 How to Simulate the Passage of Time (Months/Days/Years)

In order to simulate the passage of time, it is necessary to copy and paste all
the constraints of the model (excluding the initial reservoir values) beneath the
existing model.

RA1 = RA + URA1− V RA1 + ERA1

RA1 = RA + URA1− V RA1 + ERA1

Accordingly, you must increment the end number values of each variable,
constraint, and reservoir:
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RA1 = RA + URA1− V RA1 + ERA1

RA2 = RA1 + URA2− V RA2 + ERA2

Additionally, you must increment the variables inside the Max or Min objec-
tive function as well.

8 Methodology

A linear programming model of the Bangalore Fresh-Water Network Flow was
designed, incorporating:

• Reservoirs/Dams
• Sources
• Treatment Plants

Note: Due to limited public availability of certain data, the model was con-
structed using the available data, supplemented by reasonable assumptions.

8.1 Objective

Construct the variable your model will be solving: Maximum Flow, Minimum
Flow.

8.2 Factors Considered

This data was paired in conjunction with factors such as:

• Reservoir Capacity (min-capacity not included in this study due to the lack of
available data)

• Reservoir Out-flow Min and Max Capacities (not included in this study due to
the lack of available data)

• Rainfall Data
• Maximum Flow
• Minimum Flow (not included in this study due to the lack of available data)
• Treatment Plants Capacity (not included in this study due to the lack of avail-

able data)

8.3 Constraints

Constraints in linear programming were designed for each section and com-
bined to complete the structure of the model.
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8.4 Reservoirs

Reservoirs are added based on the logic described in the previous section.

8.5 Data Input

Data is added to the model based on a 30-day cycle: each time the model
runs, it simulates 30 days.

8.6 Time Simulation

The initial model is repeated for X amount of time (30-day cycle * X), with
each step/repetition including new constraints (depending on the requirements)
and new data values for each constraint (depending on the requirements).

8.7 Execution

The model is run in the terminal (explored further on the website LP solve).

9 Results

9.1 Scenario 1 [10]: Evaluating Bore Water Sustainability During
Water-Scarcity

9.1.1 Bore Water Contribution

According to available data, 30% of Bangalore’s total water supply is sourced
from bore water. A test was conducted to evaluate the longevity of this water
supply distribution.

Initial Conditions: Reservoirs and bore water sources started at 100% capac-
ity. The system did not receive any additional water through rainfall or other
sources.

Distribution: Each sector – Residential, Industrial, and Agricultural – received
30% of their water from bore water sources.
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9.1.2 Findings

Duration: The system sustained water supply for 6 months before the bore
water sources were depleted.

The graph below illustrates the depletion of bore water over the 6-month
period. Although the graph appears linear, it represents a gradual change in
water usage, indicating non-linear consumption patterns due to increasing usage
for Residential and Industrial purposes, and decreasing usage for Agricultural
purposes.

This graph indicates the change in supply of water from the reservoirs for the
first 6 months, ultimately until the bore-water was depleted:

• RA : Thippagondanahalli Reservoir
• RB : Hesaraghatta Lake
• RC : Meenkara Dam
• RD : Gajanur Dam
• RE : Vani Vilasa Sagara
• RF : Mangalam Dam
• RG : Markonahalli Dam
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Figure 1: Water Supply from Reservoirs Over the First 6 Months.

• RH : Kabbini Dam
• RI : Basava Sagar Dam
• RJ : Tungabhadra Dam
• RK : Harangi Dam

9.2 Model Analysis

Upon running this model, it is important to note that the model is not fully
accurate, as there is no minimum and maximum outflow rate for each of the
reservoirs. Note: In this study, it is assumed that the maximum outflow is 10%
of the maximum capacity of the reservoir. This results in only one reservoir being
depleted before moving to the next reservoir.

A possible solution to prevent this would be to enforce a minimum amount
of water that must remain in the reservoir at any given time. Additionally, with
further data, the model can be optimized by adding constraints for both minimum
and maximum outflow rates of water.

Note: This would only be accurate if real-world data, which is not currently
available to the public, is used. Such data was not incorporated into this model.
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9.3 Test Scenario 2 [10]: Reservoir-Only Utilisation After Bore Water
Depletion - Worst Case Scenario

Scenario: Once the bore water was depleted, the system relied solely on
reservoirs until exhaustion.

Initial Conditions: Reservoirs started at 100% capacity, with no bore water
available after the initial 6 months, based on Test Scenario 1.

9.3.1 Findings

Figure 2: Reservoir Water Depletion Over the 34-Month Period.

Duration: The system sustained water supply for 34 months before the reser-
voir water was depleted.

Graph Analysis: The graph above illustrates the depletion of reservoir water
over the 34-month period. Although the graph appears linear, this is due to
the lack of available information mentioned in the previous scenario (min/max
outflow rates, min/max inflow rates, daily capacity of treatment plants, minimum
amount of water needed in a reservoir).
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9.4 Test Scenario 3 [10]: Incorporation of External Factors (Rainfall)

Initial Conditions: Reservoirs and bore water sources started at 100% ca-
pacity. The system – including bores, reservoirs, and dams – received additional
water through rainfall but no other external factors.

Distribution: Each sector – Residential, Industrial, and Agricultural – re-
ceived 30% of their water from bore water sources. The model was run for a total
of 6 months to mimic the initial test. However, in this scenario, the bore water
did not receive any external water due to the limited data on how to calculate
the water received by each bore.

Assumptions: In this scenario, it is assumed that each reservoir, dam, or
lake receives the same amount of rainfall (in mm) at a given time.

9.4.1 Findings

The model failed after the first month due to the limited capacity of the
reservoirs. In response, the initial value of each reservoir was set to zero. However,
around the third month and again after the fifth month, the model failed as the
LP software was unable to prioritize certain reservoirs over others.

Additionally, the failure was likely due to rainfall data not being entirely
accurate, as the limited data available to the general public and the likelihood
that the entirety of the reservoir, dam, or lake does not receive 100% of the
rainfall (if any) contributed to inaccuracies.

However, the results demonstrated the model’s ability to incorporate more
complex and external factors, such as rainfall, highlighting the feasibility of this
model design in real-world scenarios. By simulating the variability in rainfall
patterns and the impact of seasonal monsoons, the model could provide accurate
insights into how different sectors – residential, agricultural, and industrial – can
be managed to maintain a sustainable water supply.

10 Discussion

10.1 Analysis

10.1.1 Uncertainty and Limitations

Upon conducting the first and second scenarios mentioned above, a flaw was
quickly identified in the model. The LP model prioritized using reservoir one over
the rest of the reservoirs, irrespective of the amount of water in each reservoir at
the time of depletion.
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This issue could be mitigated by using an alternative programming library
such as PuLP, which is not limited to linear variables. Utilizing such a library
would also allow for automatic iteration through scenarios, eliminating the need
for manual adjustments during each iteration of the linear program.

Furthermore, the absence of key data – such as minimum and maximum flow
rates for each reservoir and pipes – hindered the model’s accuracy. It is important
to note that in this model, the maximum outflow for each reservoir was set at
10% of its maximum capacity. The general public’s limited access to such specific
data contributes to the lack of precision in real-world simulations, meaning the
model could only use assumptions to approximate reality.

10.1.2 Validation and Calibration

The model was run one year prior to the current day, 2024, due to the in-
complete availability of 2024 data at the time of analysis. Running the model for
2023 allows for validation of the results with historical data, providing a means
to compare the model’s output with actual data.

10.2 Future Iterations

In future iterations of this model, the implementation of more datasets and
real-world data would enhance accuracy. The current model operates with various
assumptions that highly limit its accuracy, such as exact reservoir capacities,
pipe flow rates, age of pipes, up-to-date rainfall projections, exact capacities
of treatment plants, real-world data for industrial, residential, and agricultural
water usage, and the amount of water collected through rainfall.

Additionally, the system failed to account for factors such as the age of pipes,
alternate water sources, alternate inflow sources (to lakes, dams, and reservoirs),
surface runoff, varying water pressure, and water traffic.

Moreover, the inclusion of more data on seasonal water usage trends, ground-
water replenishment rates, and maintenance requirements for the city’s infras-
tructure would allow for a more dynamic and adaptive model. These additional
data sources would enable the simulation of more complex scenarios, such as
drought periods, peak usage times, and infrastructure failure, making the model
a more robust tool for long-term water resource management in Bangalore.

An important insight was realized after the third and final scenario failed due
to the limiting capacity of the reservoirs. This highlighted the importance of
training the model with a large data set before incorporating external factors.
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By training the model, it will have an understanding of when to prioritize certain
reservoirs over others during high-demand hours, monsoon seasons, etc.

10.2.1 Incorporating Climate Change

The feasibility and real-world significance of this model would be greatly
enhanced by the incorporation of climate change factors. Climate change, with
its potential to alter precipitation patterns, increase temperature extremes, and
shift monsoon reliability, directly influences water availability and demand in
urban areas like Bangalore. Future iterations of the model must account for
these evolving environmental conditions to remain relevant and predictive.

Incorporating climate change into the model would require integrating data
on expected changes in rainfall intensity, frequency, and distribution, as well
as rising temperatures and their effects on evaporation rates and water supply.
By simulating different climate scenarios, such as reduced monsoon rainfall or
extended dry spells, the model can project how water resource allocation will
need to adapt to ensure sustainability.

The real-world implications of such a model would be profound. Policymakers
could use it to plan for potential future water shortages, implement preventive
measures like water rationing, and develop infrastructure to capture and store wa-
ter more efficiently. Additionally, by anticipating the impacts of climate change,
city planners could prioritize investments in alternative water sources, such as
desalination, wastewater treatment, and rainwater harvesting, to create a more
resilient water supply network. This would ultimately enhance Bangalore’s ability
to mitigate and adapt to the looming challenges posed by climate change.

Moreover, the model designed in this paper allows for the incorporation of
climate change (although due to the lack of relevant data, it was not further
explored in this study). Similar to the third scenario that incorporated rainfall
data, the model’s design allows for customization down to individual months,
weeks, or even days, enabling complex scenarios like climate change to be added
to the existing design.

10.2.2 Alternative Water Sources

Another constraint not taken into account in the scenarios presented in this
study was the incorporation of lakes and surface runoff. The lack of data to
justify the amount of water used, stored, or sourced from these areas was the
primary reason for this omission.

Including such sources could improve the accuracy of the model and provide
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additional supply to meet the city’s water demand. The absence of such data
likely affected the model’s overall accuracy.

10.2.3 Case Study Comparison with Other Cities

A model such as the one presented in this study is not limited to a city like
Bangalore and would likely perform better in a study where the government is
more transparent about water supply data. This model could be better suited
for small suburban areas due to the smaller number of constraints, which would
improve its accuracy.

11 Conclusion

The primary objective of this research was to develop and evaluate the feasi-
bility of a linear programming model to optimize fresh-water flow in Bangalore.
By simulating various test scenarios – bore water depletion, reservoir-only utiliza-
tion, and incorporation of rainfall – the model highlighted both the capabilities
and limitations of using a linear programming model for the optimization of large
data sets.

Throughout the study, the limitations of the linear programming model were
addressed, and solutions were proposed accordingly. The three scenarios allowed
us to conclude that such a model could be implemented in real-life scenarios.
However, it would require large amounts of accurate data on a multitude of
external factors to provide a reliable solution.

It was thus concluded that this type of model would be significantly more
feasible and reliable for smaller urban or suburban areas, where data constraints
are less and the number of variables is more manageable.

Acknowledgments

I would like to express my sincere gratitude to Mr. Emil Kelevedjiev for his
invaluable guidance throughout this project. I am also grateful to the organizers
and the participants of the 24th Annual Summer Research School in Mathematics
and Informatics, where this project was conducted, for providing an inspiring
and collaborative environment complete with many hardworking individuals and
mentors. Their support made this research paper possible.



60 Hemal Nayyar

References

[1] S. C. Dimri, M. Ram, Flow Maximization Problem as Linear Programming Prob-
lem with Capacity Constraints, Applications and Applied Mathematics: An Inter-
national Journal (AAM), 13:33, 2018.

[2] Henry Adams, Linear Programming Video Series, https://www.youtube.

com/watch?v=e313WNw1olk&list=PLDndWhwv4Ujo10_a2T4R4Uqng1nduvfu1,
[25/11/2024].

[3] S. Iancheva, E. Kelevedjiev, Linear Programming Approach to Management of Wa-
ter Resource Systems, Comptes Rendus de l’Academie Bulgare des Sciences, 54:25–
28, 2001.

[4] Bangalore Water Supply and Sewerage Board (BWSSB), Bangalore Water Supply
and Sewerage Board, https://bwssb.gov.in, [25/11/2024].

[5] Ministry of Water Resources, Government of India, Central Ground Water Board
(CGWB), https://cgwb.gov.in/en, [25/11/2024].

[6] Ministry of Earth Sciences, Government of India, Indian Meteorological Department
(IMD), https://mausam.imd.gov.in/, [25/11/2024].

[7] Ministry of Jal Shakti, Department of Water Resources, Central Water Commission
(CWC), http://www.cwc.gov.in/en, [25/11/2024].

[8] LP Solve, A Linear Programming Solver, [25/11/2024],
https://lpsolve.sourceforge.net/5.5/

[9] Wikipedia Contributors, Reservoirs and Dams in Karnataka, [25/11/2024],
https://en.wikipedia.org/wiki/List_of_dams_and_reservoirs_in_

Karnataka

[10] Git Repository, Linear Programming Model for Bangalore, https://github.com/
HemalWebsite/Linear-Programming-Model-For-Bangalore, [25/11/2024].

https://digitalcommons.pvamu.edu/aam/vol13/iss1/33/
https://digitalcommons.pvamu.edu/aam/vol13/iss1/33/
https://digitalcommons.pvamu.edu/aam/vol13/iss1/33/
https://www.youtube.com/watch?v=e313WNw1olk&list=PLDndWhwv4Ujo10_a2T4R4Uqng1nduvfu1
https://www.youtube.com/watch?v=e313WNw1olk&list=PLDndWhwv4Ujo10_a2T4R4Uqng1nduvfu1
https://adsabs.harvard.edu/full/2001CRABS..54a..25I
https://adsabs.harvard.edu/full/2001CRABS..54a..25I
https://adsabs.harvard.edu/full/2001CRABS..54a..25I
https://bwssb.gov.in
https://cgwb.gov.in/en
https://mausam.imd.gov.in/
http://www.cwc.gov.in/en
https://lpsolve.sourceforge.net/5.5/
https://en.wikipedia.org/wiki/List_of_dams_and_reservoirs_in_Karnataka
https://en.wikipedia.org/wiki/List_of_dams_and_reservoirs_in_Karnataka
https://github.com/HemalWebsite/Linear-Programming-Model-For-Bangalore
https://github.com/HemalWebsite/Linear-Programming-Model-For-Bangalore

	Introduction
	Literature Review
	Introduction to Network Flow
	Network Flow Models and Linear Programming Approaches
	Bangalore’s Water Supply Challenges
	Reservoirs
	Historical Rainfall Patterns
	Gaps in Literature


	Objectives
	Preliminaries
	Terminology and Definitions
	Assumptions

	Algorithms
	Implementation of the Simplex Algorithm

	Secondary Data
	Population Data (External/Secondary)
	Per Capita Industrial Water Use
	Rainfall Analysis
	Water Sources(External + Hypothetical Reasoning)
	River Sources
	Reservoirs and Dams

	Treatment Plants (External + Hypothetical Reasoning)
	Water Data (External + Hypothetical Reasoning)
	Residential Water Demand
	Agricultural Water Demand
	Industrial Water Demand


	Formula
	Total Population Water Usage
	Agriculture Water Usage
	Industrial Water Usage
	Bore-Water Usage
	Calculating Yearly Rainfall Change
	Rainfall Volume Formula

	Model
	Mathematical Model Description
	Close ups of Model
	Part A+B
	Part C
	Part D
	Part E
	Part F
	Part G

	Linear Programming Model Structure and Notation
	Key Notation
	Additional Notation (Requirement for External Variables (i.e. Rainfall))
	Reservoirs
	Constraints
	How to Simulate the Passage of Time (Months/Days/Years)


	Methodology
	Objective
	Factors Considered
	Constraints
	Reservoirs
	Data Input
	Time Simulation
	Execution

	Results
	Scenario 1 hemalwebsite2024: Evaluating Bore Water Sustainability During Water-Scarcity
	Bore Water Contribution
	Findings

	Model Analysis
	Test Scenario 2 hemalwebsite2024: Reservoir-Only Utilisation After Bore Water Depletion - Worst Case Scenario
	Findings

	Test Scenario 3 hemalwebsite2024: Incorporation of External Factors (Rainfall)
	Findings


	Discussion
	Analysis
	Uncertainty and Limitations
	Validation and Calibration

	Future Iterations
	Incorporating Climate Change
	Alternative Water Sources
	Case Study Comparison with Other Cities


	Conclusion

