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Abstract

Consider a compact M ⊂ Rd and l > 0. A maximal distance minimizer
problem is to find a connected compact set Σ of the length (one-dimensional
Hausdorff measure H1) at most l that minimizes maxy∈M dist (y,Σ), where
dist stands for the Euclidean distance.

We give a survey on the results on the maximal distance minimizers and
related problems. Also we fill some natural gaps by showing NP-hardness of
the maximal distance minimizing problem, establishing its Γ-convergence,
considering the penalized form and discussing uniqueness of a solution. We
finish with open questions.
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1 Introduction

This work is devoted to solutions to the following maximal distance minimizer
problem.

Problem 1.1. For a given compact set M ⊂ Rd and l > 0 to find a connected
compact set Σ of length (one-dimensional Hausdorff measure H1) at most l that
minimizes

max
y∈M

dist (y,Σ),

where dist stands for the Euclidean distance.

Problem 1.1, along with the average distance minimization problem (which is
discussed later), was introduced in a very general form by Buttazzo, Oudet and
Stepanov in [1]. They were motivated by urban transportation planning. The
aim of an urban transportation network (for instance the set of metro or street
traffic routes) is to provide the easiest access for the people to their destinations,
the densities of which are supposed to be given finite Borel measures. Such a
transportation network will be modeled by a one-dimensional closed connected
set. It is reasonable to suppose that getting to a destination without using urban
traffic in general would cost a single citizen an effort (estimated in time required
and, at the end, also in terms of respective financial loss) proportional to the
actual walking distance while the cost of using the urban traffic (the price of
the ticket) is independent of the actual length of the traffic route used, and,
moreover, for simplicity can be assumed to be negligible with respect to the cost
of a transportation without using the urban traffic.

Later Problem 1.1 was stated in the current form by Miranda, Paolini and
Stepanov in [2,3]. Of course, we may encounter this problem (and its dual form)
in different life situations. For example, you are the mayor of a city completely
occupied by rats, and you need to prepare the site for the most important inter-
national sporting event. Then you want to lay cables of a minimum length that
will emit an ultrasonic rodent repeller in all areas of the city where athletes and
tourists will be.

A maximal distance minimizer is a solution to Problem 1.1.

1.1 Class of problems

Maximal distance minimization problem could be considered as a particular
example of shape optimization problems. A shape optimization problem is a
minimization problem where the unknown variable runs over a class of domains;
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then every shape optimization problem can be written in the form minF (Σ) :
Σ ∈ A where A is the class of admissible domains and F () is the cost function
that one has to minimize over A.

So for a given compact setM and positive number l ≥ 0 let the admissible set
A be a set of all closed connected set Σ′ with length constraint H1(Σ′) ≤ l; and
let cost function be the energy FM (Σ) = maxy∈M dist (y,Σ). Also FM (∅) :=∞.

1.2 Dual problem

Define the dual problem to Problem 1.1 as follows.

Problem 1.2. For a given compact set M ⊂ Rd and r > 0 to find a connected
compact set Σ of the minimal length (one-dimensional Hausdorff measure H1)
such that

max
y∈M

dist (y,Σ) ≤ r.

The dual problem also admits a natural interpretation. Namely, suppose that
we have to provide a gas supply pipeline to every house located in some area M
under the condition that the gas supply should reach each house at distance not
greater than a given r > 0. The company constructing the pipeline will naturally
try to minimize its length under the above restriction, which reduces to solving
the Problem 1.2.

In a nondegenerate case (i.e. for H1(Σ) > 0) the primal and dual problems
have the same sets of solutions for the corresponding r and l (see [3]) and hence
an equality FM (Σ) = r is reached for a solution Σ to Problem 1.2.

1.3 The first parallels with the average distance minimization problem

Maximal distance minimization problem is somehow similar to another shape
optimization problem: average distance minimization problem (see the survey of
Lemenant [4]) and it seems interesting to compare the known results and open
questions concerning these two problems. In the average distance minimization
problem’s statement the admissible set A is the same as in maximal distance
minimization problem, but the cost function is defined as

F (Σa) =

∫
M
A(dist (y,Σa))dφ(x),

where A : R+ → R+ is a nondecreasing function and φ() is a finite nonnegative
measure with compact nonempty support in Rd.



128 Danila Cherkashin, Yana Teplitskaya

Minimization problems for average distance and maximum distance function-
als are used in economics and urban planning with similar interpretations. If it
is required to find minimizers under the cardinality constraint ]Σ ≤ k, instead of
the length and the connectedness constraints, where k ∈ N is given and ] denotes
the cardinality, then the corresponding problems are referred to as optimal facility
location problems.

1.4 Notation

For a given set X ⊂ Rd we denote by X its closure, by Int (X) its interior and
by ∂X its topological boundary.

Let Bρ(x) stand for the open ball of radius ρ centered at a point x, and let
Bρ(T ) be the open ρ-neighborhood of a set T i.e.

Bρ(T ) :=
⋃
x∈T

Bρ(x)

(in other words Bρ(T ) is the Minkowski sum of a ball Bρ centered in the origin
and T ). Note that the condition

max
y∈M

dist (y,Σ) ≤ r

is equivalent to M ⊂ Br(Σ).
For given points b, c ∈ Rd we use the notation [bc], [bc) and (bc) for the

corresponding closed line segment, ray and line respectively.
A regular tripod is a union of three segments [ax] ∪ [bx] ∪ [cx] with ∠axb =

∠axc = ∠bxc = 2π/3. Note that a regular tripod is always coplanar.

1.5 Existence. Absence of loops. Ahlfors regularity and other simple
properties

For the both problems the existence of solutions can be obtained in a straight-
forward way: according to the classical Blaschke and Go ląb theorems, the class
of admissible sets is compact for the Hausdorff distance and both of the func-
tions (maximal distance and also the average distance) are continuous for this
convergence because of the uniform convergence of x→ dist (x,Σ).

Definition 1.3. A closed set Σ is said to be Ahlfors regular if there exists some
constants C1, C2 > 0 and a radius ε0 > 0 such that C1ε ≤ H1(Σ ∩Bε(x)) ≤ C2ε
for every x ∈ Σ and ε < ε0.
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For a modern study of the Ahlfors regularity of minimizers of a wide class
of planar functionals (including maximal and average distance functionals) see
Zucco [5]. In the work [3] Paolini and Stepanov proved that

• the absence of closed loops for maximum distance minimizers and, under
general conditions on φ, the absence of closed loops for average distance
minimizers;

• the Ahlfors regularity of maximum distance minimizers and, under the ad-
ditional summability condition on φ, the Ahlfors regularity of average dis-
tance minimizers (note that the constants for d > 2 may depend on M).
Gordeev and Teplitskaya [6] refine Ahlfors constants of planar maximum
distance minimizers to the best possible, i.e. show that H1(Σ ∩ Bε(x)) =
ord xΣ · ε + o(ε), where ord xΣ ∈ {1, 2, 3}. Also, Gordeev and Teplitskaya
proved a “local” analogue in Rd, namely the same result with ε depending
on x.

• Recall that maximal distance minimization problem and the dual prob-
lem have the same sets of solutions (the planar case was proved before by
Miranda, Paolini, Stepanov in [2]). It particularly implies that maximal
distance minimizers must have maximum available length l. Paolini and
Stepanov also proved that average distance minimizers (with additional as-
sumptions on φ) have maximum available length.

In the work [7] the following basic results were shown.

(i) Let Σ be an r-minimizer for some M . Then Σ is an r-minimizer for Br(Σ).
(ii) Let Σ be an r-minimizer for Br(Σ). Then Σ is an r′-minimizer for Br′(Σ),

where 0 < r′ < r.

1.6 Complexity of the problem

The corresponding discretization of Problem 1.1 is NP-complete (see Prob-
lem 5.3 and Section 5.3), this means that Problem 1.1 itself is NP-hard.

Even in the plane and for a general 3-point set M = {a, b, c} a solution to
Problem 1.1 cannot be constructed by a straightedge (ruler) and a compass. The
reason is that for a large enough ∠abc and a proper r Problem 1.1 coincides with
Alhazen’s billiard problem (a reflection from a spherical mirror), for which the
unconstructability was shown by Neumann [8]. This differs the situation from the
planar Steiner tree problem (Problem 3.1), see [9, 10].
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1.7 Local maximal distance minimizers

Definition 1.4. Let M ⊂ Rd be a compact set and let r > 0. A closed connected
set Σ ⊂ Rd with H1(Σ) < ∞ is called a local minimizer if FM (Σ) ≤ r and
there exists ε > 0 such that for any connected set Σ′ satisfying FM (Σ′) ≤ r and
diam (Σ4Σ′) ≤ ε the inequality H1(Σ) ≤ H1(Σ′) holds, where 4 is the symmetric
difference.

Any maximal distance minimizer is also a local minimizer. Usually the regu-
larity properties of maximal distance minimizers are also true for local maximal
distance minimizers (see [6]).

2 Regularity

2.1 Tangent rays. Blow up limits in Rd

Definition 2.1. We say that a ray (ax] is a tangent ray of a set Γ ⊂ Rd at the
point x ∈ Γ if there exists a sequence of points xk ∈ Γ \ {x} such that xk → x and
∠xkxa→ 0.

Then we have the following regularity theorem.

Theorem 2.2 (Gordeev–Teplitskaya [6]). Let Σ be a minimizer for a compact set
M ⊂ Rd and r > 0. Then there are at most three tangent rays at any point of Σ,
and the pairwise angles between the tangent rays are at least 2π/3. Furthermore,
tangent rays coincide with one-sided tangents, particularly the angles between one-
sided tangents cannot be equal to 0, i.e. there is one to one correspondence between
tangent rays at an arbitrary point x ∈ Σ and connected components of Σ \ {x}.
Moreover, if d = 2, then Σ is a finite union of simple curves with one-sided
tangents continuous from the corresponding side.

In works concerning average distance minimizers the notion of blow up limits
is used. Santambrogio and Tilli in [11] proved that for any average distance
minimizer blow up sequence Σε := ε−1(Σa∩Bε(x) – x) with x ∈ Σa, converges in
B1(0) (for the Hausdorff distance) to some limit Σ0(x) when ε→ 0, and the limit
is one of the following below (see Fig. 1 which is analogues to a picture from [4]),
up to a rotation.

It is clear that for maximal distance minimizers blow up limits also exists and
are more or less the same: Σ0 can be a radius, a diameter, a union of two segments
with the angle between the segments greater or equal to 2π/3 or a center of a
regular tripod. Thus a blow up limit always belongs to some 2-dimensional plane.
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x

a general x has tangent line
ψ(x) = 0

x

x is a leaf
ψ(x) > 0

x

x is a corner point
ψ(x) > 0

x

x is a branching point
ψ(x) = 0

Figure 1: All possible variants of tangent rays at any point of a maximal distance mini-
mizer or blow up limits of an average distance minimizer.

At the second and third cases (id est when ψ(x) > 0) the point x has to be
energetic; see the following definition.

Definition 2.3. A point x ∈ Σ is called energetic, if for all ρ > 0 one has

FM (Σ \Bρ(x)) > FM (Σ).

Herewith if a point x of a maximal distance minimizer Σ is energetic then
there exists such a point y ∈M (may be not unique) such that dist (x, y) = r and
Br(y) ∩ Σ = ∅; such y is called corresponding to x.

If a point x ∈ Σ is not energetic then in a sufficiently small neighborhood it is
a center of a regular tripod or a segment (and coincides there with its one-sided
tangents).
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A key object in all the study of the average distance problem is the pull-back
measure of µ with respect to the projection onto Σa, where Σa is a solution to
the average distance minimizer problem. More precisely, if µ does not charge
the Ridge set (which is defined as the set of all x ∈ Rd for which the minimum
distance to Σa is attained at more than one point) of Σa (this is the case for
instance when µ is absolutely continuous with respect to the Lebesgue measure),
then it is possible to choose a measurable selection of the projection multimap onto
Σ, i.e. a map πΣ : M → Σ such that d(x,Σ) = d(x, πΣa) (this map is uniquely
defined everywhere except the Ridge set). Then one can define the measure ψ as
being ψ(A) := µ(π−1

Σa
(A)), for any Borel set A ⊂M . In other words ψ = πΣa]µ.

For the maximal distance minimizers in Rd we can define measure ψ in the
similar way, but replace M by ∂Br(Σ) and with (n − 1)-dimensional Hausdorff
measure as µ (or accordingly Br(Σ) and n-dimensional Hausdorff measure). Thus
Fig. 1 works both for maximal and average distance minimizers.

2.2 Properties of branching points in R2

Recall that by Theorem 2.2 that for every planar compact setM and a positive
number r a maximal distance minimizer can have only a finite number of points
with 3 tangent rays.

In the plane it is also known (see [12]) that every average distance minimizer
is topologically a tree composed of a finite union of simple curves joining with a
number of 3.

Every branching point of a planar maximal distance minimizer should be the
center of a regular tripod. If x ∈ Σ ⊂ R2 has 3 tangent rays then there exists
such a neighborhood of x in which the minimizer coincides with its tangent rays.
Id est, there exists such ε > 0 that Σ∩Bε(x) = [ax]∪ [bx]∪ [cx] where {a, b, c} =
Σ ∩ ∂Bε(x) and ∠axb = ∠bxc = ∠cxa = 2π/3. For planar average distance
minimizers it is proved that any branching point admits such a neighborhood in
which three pieces of Σ are C1,1.

2.3 Continuity of one-sided tangents in R2

Definition 2.4. We say that the ray (ax] is a one-sided tangent of a set Γ ⊂ Rd at
a point x ∈ Γ if there exists a connected component Γ1 of Γ\{x} such that x ∈ Γ1

and any sequence of points xk ∈ Γ1 with the property xk → x satisfies ∠xkxa→ 0.
In this case we also say that (ax] is tangent to the connected component Γ1.

In the plane the continuity of one-sided tangents from the corresponding side
holds (see [6]):
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Lemma 2.5. Let Σ ⊂ R2 be a (local) maximal distance minimizer and let x ∈ Σ.
Let Σ1 be a connected component of Σ \ {x} with one-sided tangent (ax] (it has
to exist) and let x̄ ∈ Σ1.

1. For any one-sided tangent (āx̄] of Σ1 at x̄ the equality ∠((āx̄), (ax)) =
o|x̄x|(1) holds.

2. Let (āx̄] be a one-sided tangent at x̄ of any connected component of Σ1 \{x̄}
not containing x. Then ∠((āx̄], (ax]) = o|x̄x|(1).

For planar average distance minimizers it is proved (see [4]) that away from
branching points an average distance minimizer Σa is locally at least as regular
as the graph of a convex function, namely that the Right and Left tangent maps
admit some Right and Left limits at every point and are semicontinuous. More
precisely, for a given parametrization γ of an injective Lipschitz arc Γ ⊂ Σa, by
existence of blow up limits one can define the Left and Right tangent half-lines
at every point x ∈ Γ by

TR(x) := x+ R+. lim
h→0

γ(t0 + h)− γ(t0)

h

and
TL(x) := x+ R+. lim

h→0

γ(t0 − h)− γ(t0)

h
.

Then the following planar theorem for average distance minimizers holds.

Theorem 2.6 (Lemenant, 2011 [13]). Let Γ ⊂ Σa be an open injective Lipschitz
arc. Then the Right and Left tangent maps x → TR(x) and x → TL(x) are
semicontinuous, id est for every y0 ∈ Γ there holds limy→y0;y<γy0 TL(y) = TL(y0)
and limy→y0;y>γy0 TR(y) = TR(y0). In addition the limit from the other side exists
and we have limy→y0;y>γy0 TL(y) = TR(y0) and limy→y0;y<γy0 TR(y) = TL(y0).

An immediate consequence of the theorem is the following corollary:

Corollary 2.7. Assume that Γ ⊂ Σ is a relatively open subset of Σ that contains
no corner points nor branching points. Then Γ is locally a C1-regular curve.

2.4 Planar example of infinite number of corner points

Recall that each maximal distance minimizer in the plane is a finite union of
simple curves. These curves should have continuous one-sided tangents but do
not have to be C1: there exists a minimizer with an infinite number of points
without tangent lines. The following example is provided in [7].
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v2 v3
v4 v5

a1

a2 a3 a4 a5 a6

a∞

v6

v1

v∞

v∞+1

a∞+1

Figure 2: The example of a minimizer with infinite number of corner points.

Fix positive reals r, R and letN be a large enough integer. Consider a sequence
of points {ai}∞i=1 chosen from the circumference ∂BR(o) such that N · |a2a1| = r,

|ai+1ai+2| =
1

2
|aiai+1|

and ∠aiai+1ai+2 >
π
2 for every i ∈ N (see Fig. 2). Let a∞ be the limit point of

{ai}. Finally, let a∞+1 be the point in the tangent line to Br(o) at a∞, such that

|a∞a∞+1| = r/N.

We claim that polyline

Σ =
∞⋃
i=1

[aiai+1]

is a unique maximal distance minimizer for the following M .
Let v1 ∈ (a1a2] be such point that |v1a1| = r. For i ∈ N ∪ {∞} \ {1} define

vi as the point satisfying |viai| = r and ∠ai−1aivi = ∠ai+1aivi > π/2. Define v∞
as the limit point of {vi}. Finally, let v∞+1 be such point that v∞+1a∞ ⊥ v∞a∞
and |v∞+1a∞| = r. Clearly M := {vi}∞+1

i=1 is a compact set.

Theorem 2.8 (Basok–Cherkashin–Teplitskaya, 2022 [7]). Let Σ andM be defined
above. Then Σ is a unique maximal distance minimizer for M .

2.5 Every C1,1-smooth simple curve is a minimizer

For planar average distance minimizers Tilli proved in [14] that any simple
C1,1-curve is a minimizer for a proper input. Paper [7] generalizes Tilli’s result
on d-dimensional space. The same statement with a similar but much simpler
explanation is true for maximal distance minimizers.

Theorem 2.9 (Basok–Cherkashin–Teplitskaya, 2022 [7]). Let γ ⊂ Rd be a simple
C1,1-curve. Then γ is a maximal distance minimizer for a small enough r and
M = Br(γ).
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3 Explicit examples of maximal distance minimizers

Recall that Theorems 2.8 and 2.9 provide explicit examples; however they are
obtained by “reverse engineering”: the input M is constructed in a way to give
the minimizer property to a desired Σ. This section is devoted to known explicit
results.

3.1 Simple examples. Finite number of points and r-neighborhood.
Inverse minimizers

Here we consider Problem 1.2 in a case when M is a finite set. Then it is
closely related with the following Steiner tree problem.

Problem 3.1. For a given finite set P = {x1, . . . , xn} ⊂ Rd to find a connected set
St(P ) with the minimal length (one-dimensional Hausdorff measure) containing
P .

A solution St to Problem 3.1 is called a Steiner tree. It can be represented
as a plane graph, such that its set of vertices contains P , and all its edges are
line segments. This graph is connected and does not contain cycles, i.e. is a tree,
which explains the naming of St. It is known that the maximum vertex degree of
this graph is 3. Only vertices xi can have degree 1 or 2, all the other vertices have
degree 3 and are called Steiner points while the vertices xi are called terminals.
Vertices of the degree 3 are called branching points. Every angle between two
adjacent edges of St is at least 2π/3. That means that for a branching point the
angle between any two segments incident to it is exactly 2π/3, and these three
segments belong to the same 2-dimensional plane. The number of Steiner points
in St does not exceed n− 2. A Steiner tree with exactly 2n− 2 vertices is called
full. Every terminal point of a full Steiner tree has degree one. Full trees are
indecomposable in the sense that a full tree cannot be represented as a union of
Steiner trees for non-empty P1 and P2 such that P1 ∪ P2 = P .

We define a locally minimal tree for P as a connected compact acyclic set
S, which contains P , and such that for any x ∈ S \ P there is a neighborhood
U 3 x such that S ∩ U coincides with the Steiner tree on the set of points
(S ∩ ∂U) ∪ (P ∩ U). A locally minimal tree retains the following properties of a
Steiner tree: it is the union of a finite set of segments; the angle between any two
adjacent segments is at least 2π/3.

Proofs of the listed properties and more information on Steiner trees could be
found in [15,16].
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a

b

c

Figure 3: A unique maximal distance minimizer for a certain 3-point set M = {a, b, c}.

Any maximal distance minimizer for any finite set M ⊂ Rd is a finite union of
at most 2]M − 3 segments. In this case maximal distance minimization problem
comes down to connecting r-neighborhoods of all the points from M . If Br(a)
are disjoint for every a ∈M then a maximal distance minimizer is a Steiner tree
connecting some points from ∂Br(a), a ∈M .

A topology T of a labelled Steiner tree (or a labelled locally minimal tree) St is
the corresponding abstract graph with labelled terminals and unlabelled Steiner
points.

Theorem 3.2 (Basok–Cherkashin–Teplitskaya, 2022 [7]). Let St be a Steiner tree
for a labelled set of terminals A = (a1, . . . , an), ai ∈ Rd such that every Steiner
tree for an n-tuple in the closed 2r-neighborhood of A (with respect to ρ) has the
same topology as St for some positive r. Then St is an r-minimizer for an n-tuple
M .

In the plane a Steiner tree for a random input is unique with unit probability,
see [17]. Also in the plane we have a part of the reverse statement to Theorem 3.2.

Proposition 3.3 (Basok–Cherkashin–Teplitskaya, 2022 [7]). Suppose that St is
a full Steiner tree for terminals a1, . . . , an ∈ R2, which is not unique. Then St
can not be a minimizer for M being an n-tuple of points.

To illustrate Proposition 3.3 consider a square a1a2a3a4. There are two Steiner
trees for a1, a2, a3, a4 (see the left-hand side of Fig. 4), let us pick the solid one.
The right-hand side of Fig. 4 shows that an r-minimizer for every positive r has
the topology of the dotted Steiner tree.
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1 2

34

1 2

34

Figure 4: An example to Proposition 3.3.

In all known examples a Steiner tree St with n terminals is an r-minimizer
for a set M consisting of n points and a small enough positive r if and only if
St in unique Steiner tree for its terminals. So the planar case of several non-full
solutions is open, and also it is interesting to derive any analogue of Proposition 3.3
for d > 2.

3.2 Circle. Curves with big radius of curvature

We say that a convex closed planar curve M has radius of curvature at least
R at every point if for every y ∈M there is cy ∈ R2 such that the inclusion

BR(cy) ⊂ convM,

holds and cy lies at the distance R from y. For a convex closed curve M with
radius of curvature at least R > r denote byMr be the inner part of the boundary
of Br(M). The curveMr is often called a parallel curve. ObviouslyMr is a convex
closed curve with a radius of curvature of at least R− r at every point.

Theorem 3.4 (Cherkashin–Teplitskaya, 2018 [18]). Let r be a positive real, M
be a convex closed curve with the radius of curvature at least 5r at every point,
Σ be an arbitrary minimizer for M . Then Σ is a union of an arc of Mr and two
segments that are tangent to Mr at the ends of the arc (so-called horseshoe, see
Fig. 5). In the case when M is a circumference with the radius R, the condition
R > 4.98r is enough.
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M
Σ

x
M

Σ

Figure 5: A minimizer for a convex closed planar curveM with the radius of curvature at
least 5r at every point, so-called horseshoe (left). A minimizer for M = ∂BR(x), where
R > 4.98r (right).

Also Theorem 3.4 admits a corollary on local minimizers in the sense of Defi-
nition 1.4.

Corollary 3.5 (Cherkashin–Teplitskaya, 2018 [18]). Let Σ̂ be a local minimizer
for some closed convex curve M with minimal radius of curvature R > 5r. Then
if Σ̂ is not a horseshoe, one has H1(Σ̂) − H1(Σ) ≥ (R − 5r)/2, where Σ is an
arbitrary (global) minimizer.

Miranda, Paolini and Stepanov [2] conjectured that all the minimizers for a
circumference of radius R > r are horseshoes. Theorem 3.4 solves this conjecture
with the assumption R > 4.98r; for 4.98r ≥ R > r the conjecture remains open.

3.3 Rectangle

Theorem 3.6 (Cherkashin–Gordeev–Strukov–Teplitskaya, 2021 [19]). Let M =
a1a2a3a4 be a rectangle. Then there is a positive number r0(M) such that for any
positive r < r0(M) every minimizer of the maximum distance functional consists
of 21 segments, as shown on the leftmost side of Fig. 7. The middle part of the
figure shows an enlarged fragment of the minimizer in the vicinity of point a1; the
marked angles are equal to 2π

3 . The rightmost side of the figure shows an even
more enlarged fragment of the minimizer in the vicinity of a1.
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M

Σ

M

Σ

Figure 6: M is r-neighborhood for a sufficiently smooth curve Σ and small enough r > 0.

Any minimizer of the maximum distance functional has length Per(M)− cr+
o(r), where Per(M) is the perimeter of the rectangle M , and c is a constant
approximately equal to 8.473981.

In fact, every maximal distance minimizer is very close (in the sense of Haus-
dorff distance) to the one depicted in the picture.

4 Tools

4.1 Energetic points and related structural definitions

For the planar problem the notion of energetic points (which is also defined
in Rd) is very useful.

Recall that a point x ∈ Σ is called energetic, if for all ρ > 0 one has FM (Σ \
Bρ(x)) > FM (Σ). The set of all energetic points of Σ is denoted by GΣ. Each
minimizer Σ can be split into three disjoint subsets:

Σ = EΣ tXΣ t §Σ,

where XΣ ⊂ GΣ is the set of isolated energetic points (i.e. every x ∈ XΣ is
energetic and there is a ρ > 0 possibly depending on x such that Bρ(x) ∩ GΣ =
{x}), EΣ := GΣ \XΣ is the set of non-isolated energetic points and SΣ := Σ \GΣ

is the set of non-energetic points also called the Steiner part. Every connected
component of SΣ is a locally minimal tree for its limit points.
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Figure 7: The minimizer for a rectangle M with r < r0(M).

Note that it is possible for a (local) minimizer in Rd, d > 2 to have no non-
energetic points at all. Moreover, in some sense, any (local) minimizer does not
have non-energetic points in an embedding into a larger dimension:

Example 4.1. Let Σ be a (local) minimizer for a compact set M ⊂ Rd and r > 0.
Then Σ̄ := Σ×{0} ⊂ Rd+1 is a (local) minimizer for M̄ = (M×{0})∪(Σ×{r}) ⊂
Rd+1 and EΣ̄ = Σ̄.

Recall that for every point x ∈ GΣ there exists a point y ∈ M (may be not
unique) such that dist (x, y) = r and Br(y)∩Σ = ∅. Thus all points of Σ\Br(M)

can not be energetic and thus Σ \Br(M) is so-called Steiner forest id est each
connected component of it is a Steiner tree with terminal points on the ∂Br(M).

In the plane it makes sense to define energetic rays.

Definition 4.2. We say that a ray (ax] is the energetic ray of the set Σ with a
vertex at the point x ∈ Σ if there exists a sequence of energetic points xk ∈ GΣ

such that xk → x and ∠xkxa→ 0.
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Remark 4.3. Let {xk} ⊂ GΣ and let x ∈ EΣ be the limit point of {xk}: xk → x.
By basic property of energetic points for every point xk ∈ GΣ there exists a point
yk ∈ M (may be not unique) such that dist (xk, yk) = r and Br(yk) ∩ Σ = ∅.
Recall that it is called that yk corresponds to xk.

Let y be an arbitrary limit point of the set {yk}. Then the set Σ does not
intersect r-neighborhood of y: Br(y) ∩ Σ = ∅ and the point y belongs to M and
corresponds to x.

Let ˘[sx] ⊂ Σ be a simple curve. Let us define turn ( ˘[sx]) as the upper limit
(supremum) over all sequences of points of the curve:

turn ( ˘[sx]) = sup
n∈N,s�t1≺···≺tn≺x

n∑
i=2

t̂i, ti−1,

where ti denotes the ray of the one-sided tangent to the curve ˘[sti] ⊂ ˘[sx[ at point
ti, and t1, . . . , tn is the partition of the curve ˘[sx[ in the order corresponding to
the parameterization, for which s is the beginning of the curve and x is the end.
In this case, the angle ̂(ti, ti+1) ∈ [−π, π[ between two rays is counted from ray ti

to ray ti+1; positive direction is counterclockwise.
Note that the Steiner part of a minimizer may change the turn only by ±π/3.
Let s̆x lay in the sufficiently small neighborhood of x. Then if Br(y(x))∩ ˘[sx] =

∅, it is true that
|turn ([sx])| < 2π.

This property is the first one which is true for the plane and false in Rd with
d > 2, so this is the main difference between planar and non-planar cases. In the
plane the turn is a very useful tool, see for example the proof of Theorem 3.4 [18].

The second main differ between plane and other Euclidean spaces is also con-
cerning angles: in the plane if you know the angles t̂i, ti−1 for i = 2, . . . k then
you know the angle t̂1, tk which is not true for Rd with d > 2.

4.2 Derivation in the picture

During this subsection M is a planar convex closed smooth curve with the
radius of curvature greater than r; we follow paper [20]. Assume that the left
and right neighborhoods of y ∈ M are contained in r-neighborhoods of different
energetic points x1, x2 ∈ Σ. We write conditions on the behavior of Σ in the
neighborhoods of x1 and x2 under the assumption by moving y along M , which
follow from the optimality of Σ.

We start with a preliminary lemma.
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Lemma 4.4. (i) Assume that x is an isolated energetic point of degree 1 (i.e.
x is the end of the segment [xz] ⊂ Σ) with a unique corresponding point
y(x) ∈M . Then x, z and y(x) lie on the same line.

(ii) Assume that x is an isolated energetic point of degree 2 (i.e. x is the end
of distinct segments [xz1] and [xz2] ⊂ Σ) with a unique corresponding y(x).
Then ∠z1xy(x) = ∠y(x)xz2.

Recall thatMr denotes the inner part of the boundary of Br(M). Let S be the
closure of a connected component of Σ \ convMr. For a connected σ ⊂ Σ define
the part of M which is covered by σ as Q(x) = Br(x) ∩M ; by the restrictions
on M the set Q(x) is always an arc of M . We denote one of the ends of the arc
Q(S) := Br(S) ∩M by y1. Let x ∈ (∂Br(y1) \ convMr) ∩ S be the energetic
point for which y1 is corresponding. Clearly S is a locally minimal tree for its
energetic points and points from S ∩Mr. Also it is clear that x cannot have more
than two corresponding points. If there are two corresponding points, we denote
the second by y2. Let us denote the degree of x by d ∈ {1, 2}, and the number of
points corresponding to x by k ∈ {1, 2}. Thus, there are 4 possible cases, each of
which we will consider in detail below.

Let us fix a l > 0 such thatBl(x)∩Σ is the union of d segments of the form [zix],
zi ∈ ∂Bl(x), 1 ≤ i ≤ d. For a sufficiently small 0 ≤ ε < ε0(l, r, {yj}kj=1, {zi}di=1, x)
denote by yε1 the point obtained by shifting the point y1 along M by ε (that is,
such that the arc M with ends at y1 and yε1 has length ε) in such a direction that
yε1 6∈ Q(S). For a sufficiently small in modulus 0 > ε > −ε0(l, r, {yj}kj=1{zi}di=1, x)
we denote by yε1 the point obtained by shifting y1 along M by −ε in the opposite
direction (that is, in such a way that yε1 ∈ Q(S)). Let us denote y0

1 = y1. In the
case of k = 2, we denote yε2 = y2 for any ε. Put

Γ(ε) = min
x′

d∑
i=1

|zix′|,

where the minimum is taken over all points x′ such that |yεjx′| = r for every
1 ≤ j ≤ k. Let us denote by xε a point at which the value Γ(ε) is reached.

Note that x0 = x, since Σ is a minimizer. The derivative Γ(ε) at the origin
Γ′(0) will be called the derivative of the length Σ in the neighborhood of the point
x as yε1 moves along M . We calculate this derivative in each of the four cases.

The following proposition describes the possible situation to apply some cal-
culus of variation.

Proposition 4.5. Let y ∈ M be a point such that Br(y) ∩ Σ = ∅, and ∂Br(y)
contains energetic points x1 and x2. Define ny = ∂Br(y) ∩Mr. Then
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(i) points x1 and x2 lie on opposite sides of the line (yny);
(ii) derivatives of the length of Σ in neighborhoods of x1 and x2 when moving y

along M are equal.

All the angles defined in the following cases are assumed to belong to [0, π/2].

Case 1: d = 1, k = 1. Let the angle between (xy1] and M be equal to α. Then
Γ′(0) = cosα.

Case 2: d = 2, k = 1. Let the angle between (xy1] and M be equal to α and
let β = 1

2∠z1xz2. Then Γ′(0) = 2 cosα cosβ.
For the next two cases we need more notation. Triangle xy1y2 is isosceles,

denote ∠xy1y2 = ∠xy2y1 =: α. Let us introduce the following coordinates: mid-
point o of the segment [y1y2] is the origin of coordinates; X axis is aligned with
the beam [y2y1); the Y axis is codirected with the ray [ox). In particular, we have

o = (0, 0), x = (0, r sinα), y1 = (r cosα, 0), y2 = (−r cosα, 0).

Let the angle between straight line (y1y2) and M at point y1 be equal to δ.

Case 3: d = 1, k = 2. Let us denote by β the angle between [z1x] and the X
axis. Then

Γ′(0) =
cos(α+ δ) sin(α+ β)

sin(2α)
.

Case 4: d = 2, k = 2. As in case 3, let β denote the angle between [z1x] and
the X axis; similarly, we denote by γ the angle between [z2x] and the X axis.
Then

Γ′(0) =
cos(α+ δ)

sin(2α)
(sin(α+ β) + sin(α+ γ)).

If M is piecewise smooth one can also apply such a type of derivation, in
particular it is heavily used in the proof of Theorem 3.6.

4.3 Convexity of length

Suppose that we fix some M0 ⊂ M ⊂ Rd and consider a (possibly infinite)
abstract tree T some of whose vertices are encoded by points of M0. Let us pick
an arbitrary point from Br(m) for every m ∈ M0 and any point for V (T ) \M0

and connect such points by segments with respect to T . Consider the length L of
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such a representation of T ; note that we allow the representation to contain loops
(when the images of edges intersect) or edges of zero length.

Then L is a convex function from
(
Br(m)

)M0

× (Rd)V (T )\M0 to R. Also if

v, u ∈ Br(m), then αv + (1 − α)u also lies in Br(m). It implies that the sets of
local and global minimums of L coincide and form a convex set. It usually means
that L is a unique local minimum.

This approach allows us to show that if one fixes a topology of a solution,
then the corresponding Steiner-type problem has a unique solution; here M0 is
a proper subset of the set of energetic points GΣ. The proofs of Theorems 2.8
and 3.2 heavily use it.

4.4 Lower bounds on the length of a minimizer

The proof of the following folklore inequality can be found, for instance in [21].

Lemma 4.6. Let γ be a compact connected subset of Rd with H1(γ) <∞. Then

Hd({x ∈ Rd : dist (x, γ) ≤ t}) ≤ H1(γ)ωd−1t
d−1 + ωdt

d,

where ωk denotes the volume of the unit ball in Rk.

The following corollary is very close to a theorem of Tilli on average distance
minimizers [14].

Corollary 4.7. Let V and r be positive numbers. Then for every set M with
Hd(M) = V a maximal distance r-minimizer has the length at least

max

(
0,
V − ωdrd

ωd−1rd−1

)
.

Theorem 2.9 follows from the fact that for a C1,1-curve and small enough r
the inequality in Corollary 4.7 is sharp. Let us provide a lower bound from [7] on
the length of a minimizer in the planar case.

Proposition 4.8. Let M be a planar convex set and Σ is an r-minimizer for M .
Then

H1(Σ) ≥ H
1(∂M)− 2πr

2
.
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4.5 Results on Steiner trees

Recall that the Steiner tree problem is defined in Subsection 3.1.
We call a topology T realizable for a set P ⊂ Rd if there exists such a locally

minimal tree S(P ) with topology T ; we will denote this tree by ST (P ); by the
following proposition the notation is correct.

Proposition 4.9 (Melzak, [9]). If a topology T is realizable for P then the real-
ization ST (P ) is unique.

It is well-known that the length of a Steiner tree depends only on the directions
at the terminals (see Maxwell formula in [15]). So the following theorem is a
crucial part of the proof of Proposition 3.3.

Theorem 4.10 (Oblakov [22]). There are no two distinct topologies T1 and T2

and a planar configuration P such that locally minimal trees ST1(P ) and ST2(P )
are codirected at terminals.

5 New results

5.1 Γ-convergence

Γ-convergence is an important tool in studying minimizers based on approx-
imation of energy. For Euclidean space the following definition of Γ-convergence
can be used. Let X be a first-countable space (every Euclidean space is first-
countable) and Fn: X → R be a sequence of functionals on X. Then Fn are said
to Γ-converge to a Γ-limit F : X → R if the following two conditions hold.

• Lower bound inequality. For every sequence xn ∈ X such that xn → x as
n→ +∞,

F (x) ≤ lim inf
n→∞

Fn(xn).

• Upper bound inequality. For every x ∈ X, there is a sequence xn converging
to x such that

F (x) ≥ lim sup
n→∞

Fn(xn).

In the case of maximal distance minimizers for a given compact set M and a
number l > 0 we can consider the space Xl of connected compact sets with one-
dimensional Hausdorff measure at most l, equipped with the Hausdorff distance.
Note that the Hausdorff distance dH can be defined as

dH(A,C) = max(FA(C), FC(A)),

where A,C ∈ Xl.
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Proposition 5.1. If a sequence of compacts Mi ∈ Xl converges to M then FMi

Γ-converges to FM .

Proof. By the definition of FM and the triangle inequality we have

|FMi(Si)− FM (S)| ≤ |FMi(Si)− FM (Si)|+ |FM (Si)− FM (S)|
≤ dH(Mi,M) + dH(Si, S)

(1)

for every connected Si and S. So by (1) for every sequence of Si with limit
S we have the first condition of Γ-convergence holds. For the second condition
consider Si being a Steiner tree for a finite 1/i-net Ni ⊂ S. By the definition
H(Si) ≤ H(S) ≤ l. Again, by (1) FMi(Si) converges to FM (S).

5.2 Approximation by Steiner trees

A crucial property of Γ-convergence is that in the notation of Proposition 5.1
every limit point of the sequence of r-minimizers of FMi is a minimizer of FM .
Now let Mn be a finite 1/n-net for M , so that every minimizer for Mn is a finite
Steiner tree.

Unfortunately, in the case of several minimizers for M we cannot be sure that
every minimizer is approximated. On the other hand it can be approximated a
posteriori. Let Σ be a minimizer for M and let Ek ⊂ Σ be a finite 1/k-net for Σ
and Σk be an arbitrary solution to the Steiner problem for Ek. By the definition
we have

H1(Σk) ≤ H1(Σ).

On the other hand, for any subsequential limit (with respect to the Hausdorff
distance) Σ′ of the sequence Σk we have Σ ⊂ Σ′ and so

H1(Σ) ≤ H1(Σ′) ≤ lim inf
k→∞

H1(Σk)

by Go ląb’s theorem. It follows that Σk converges to Σ and H1(Σk) converges to
H1(Σ).

Summing up, every maximal distance minimizer is a limit of finite Steiner
trees. Similar results are also proved in [23]. Recall that more detailed and
structural relations of finite Steiner trees and maximal distance minimizers are
considered in Section 3.1.
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5.3 NP-hardness

It is well-known that Euclidean Steiner problem is NP-hard [24] even if we
restrict the terminals to two lines in the plane [25]. If we fix a topology in planar
Steiner tree problem, then one can write the length in the explicit form. The first
source of hardness is that this expression for n terminals may have Ω(n) square
roots. The problem to decide whether the inequality

n∑
i=1

√
mi < L

holds for given integer numbers {mi} and L, is of unknown complexity [26].
To avoid it Garey, Graham and Johnson [24] introduce a discrete version

of the Steiner problem: all terminals and branching points are forced to have
integer coordinates and the length of every segment is replaced with its ceiling
function. Of course a minimizer of a new problem does not inherit any geometric
properties, in particular we have no 2π/3-condition at a branching point. Such
a discretization appears to be NP-complete (and so the initial one is NP-hard),
namely, Garey, Graham and Johnson used a reduction of the X3C problem to
this version of the Steiner problem. The X3C problem is to decide whether a
family of 3-sets F ⊂ 2[3n] has a subfamily of n sets which covers [3n] (as usual,
[3n] = {1, 2, . . . , 3n}). It is well-known that X3C is NP-complete.

First we need the following reduction to the classical Steiner problem.

Theorem 5.2 (Garey–Graham–Johnson [24]). For a given F ⊂ 2[3n] one can
construct in a polynomial time in n an input X(F) ⊂ R2 whose size is also
polynomial in n such that

(i) if F has an n-set covering then a solution to the Steiner problem for X(F)
has the length at most L;

(ii) if F does not have an n-set covering then a solution to the Steiner problem
for X(F) has the length at least L+ 12|X(F)|.

Moreover L = L(F) can be extracted from the construction of X(F) in an explicit
form.

Now let us repeat Garey–Graham–Johnson rounding in the case of maximal
distance minimizers. The following problem is a discrete approximation of Prob-
lem 1.2 analogous to the discrete version of Steiner problem used in [24]. Follow-
ing [24] we replace the length function with its ceiling.
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Problem 5.3. Let M be a finite set of points in the plane with integer coordinates
and r, ` ∈ N. Is there a connected graph, whose vertices have integer coordinates
and edges are segments, with the sum of the ceiling function of the length over
edges at most ` such that every point of M lies at a distance at most r from some
vertex of the graph?

Now we are ready to obtain the following corollary of Garey–Graham–Johnson
results and the approximation.

Proposition 5.4. Problem 5.3 is NP-complete.

Proof. Let F ⊂ 2[3n] be an arbitrary family. Consider the set X(F) from Theo-
rem 5.2. Fix any r ∈ N and let k > 10r|X(F)| be a large integer number. Define
kX(F) as a set homothetic to X(F) with the scale factor k. Let M be the set of
points closest to kX(F) in the integer grid Z2. Put also ` = kL(F) + k.

Then if F has an n-set covering, then a solution St of the Steiner problem for
kX(F) has the length at most kL(F). Now we replace in St every vertex with
the closest point from Z2; denote the resulting set by StD. By the definition StD
is a graph whose vertices have integer coordinates and it connects M ; also it has
at most 2|X(F)| − 3 segments. After the rounding the length of every segment
of St grows by at most

√
2. Hence the ceiling function of the length of an edge

in StD is at most the length of the corresponding edge of St plus 3. Thus sum of
the ceiling function of the length over edges StD is at most

kL+ 6|X(F)| < `

and the answer to Problem 5.3 is positive.
On the other hand let us show that in the case when F has no n-set covering,

the answer to Problem 5.3 is negative. Consider a solution ΣD of Problem 5.3 for
X(F). Assume the contrary, so that the sum of the ceiling function of length over
the edges of ΣD is at most `. It implies H1(ΣD) ≤ `. Consider the homothety
ΣD

1/k of ΣD with the scale factor 1/k, one has

H1(ΣD
1/k) =

H1(ΣD)

k
≤ `

k
.

By definition for every x ∈ M there is a point σ ∈ ΣD at a distance at most r
from x. Hence for every x ∈ X(F) there is a point σ ∈ ΣD

1/k at a distance at most
(r + 1)/k < 1 from x. Thus the length of a Steiner tree for X(F) is at most

H1(ΣD)

k
+ |X(F)| · r + 1

k
≤ `+ (r + 1) · |X(F)|

k
≤ L+ |X(F)|.
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We got a contradiction with Theorem 5.2 and thus finished the reduction of the
X3C problem to Problem 5.3 with the input M, r, `.

Finally one can easily compute the sum of the ceiling function of length over
edges of a competitor for Problem 5.3 in polynomial time.

5.4 Penalized form

Let M be a given compact set. Let us consider a problem of minimization
FM (S) + λH1(S) for some λ > 0, where FM (S) = maxy∈M dist (y, S) among all
connected compact sets S. We will call this problem λ-penalized.

Clearly every set T which minimizes λ-penalized problem for some λ is a
maximal distance minimizer for a given input M and the restriction of energy
r := FM (T ). Hence the solutions to this problem inherit all regularity properties
of maximal distance minimizers.

As usual in variational calculus on a restricted class, it may happen for a
small variation Φε(Σ) of Σ, that the length constraint H1(Φε(Σ)) ≤ l is violated.
Hence to compute Euler–Lagrange equation associated to the maximal distance
minimization problem a possible way is to consider first the penalized functional
FM (S) + λH1(S) for some constant λ, for which any competitor Σ is admissible
without length constraint.

Hence it is also make sense to consider local penalized problem: the problem
of searching a connected compact set S of a finite length, such that H1(S) +
λFM (S) ≤ H1(T )+λFM (T ) for every connected compact T with diam (S4T ) < ε
for sufficiently small ε > 0. The solutions to these problems also inherit properties
of local maximal distance minimizers.

Proposition 5.5. Consider

min
Σ compact and connected

FM (Σ) + λ(H1(Σ)− l)+

for any constant λ > 1. Then this problem is equivalent to the maximal distance
minimization problem.

Proof. The same as for average distance minimizers (see Proposition 23 in [4]).
The only difference is that we use an obvious inequality FM (S \ Tε)−FM (S) ≤ ε
for connected sets S and S \ Tε such that H1(Tε) = ε.

5.5 Uniqueness

Let us start with the following simple observation. The set of minimizers for
M being a circle ∂BR(o) is uncountable for r < R. Indeed, any minimizer has no
loops and does not reduce to a point, so its rotations rarely coincide.
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Note that for every compactM ⊂ Rd and r equal to the radius of the smallest
ball containing M , there is a unique point o such that M ⊂ Br(o), id est the
solution to Problem 1.2 is unique. For a larger r one has an uncountable number
of solutions. This motivate us to consider only small enough r. Let us call a finite
point configuration M ambiguous if Problem 1.2 has several solutions for M and
r < r0(M). The following statement is a straightforward corollary from the main
theorem of [17].

Proposition 5.6. For n ≥ 4 the set of planar n-point ambiguous configurations
M has Hausdorff dimension 2n− 1 (as a subset of R2n).

Proof. Fix n ≥ 4. The main result of [17] states that the Hausdorff dimension of
planar n-point configurations with multiple Steiner trees is 2n− 1.

Recall that a topology T of a labelled Steiner tree is the corresponding abstract
graph; a topology is full if every terminal has degree 1. We call a topology generic
if it has no terminals of degree 3. For a not full generic topology R one can replace
vertex A of degree 2 with a Steiner point b and add edge bA; the resulting topology
T (R) is full.

By Proposition 4.9 the set of all configurations for which there is a realization
of any degenerate topology has Hausdorff dimension 2n− 2.

Let us show that if a Steiner tree for a finite M is unique then M is not
ambiguous. Consider any n-point planar configuration M with a unique Steiner
tree St whose topology is generic. Let the length of the second locally minimal
tree be H1(St) + a and choose r < a/(2n).

Then a maximal distance minimizer for a given M and r is obtained by a
convexity argument for a topology T . Thus the Hausdorff dimension of planar
n-point ambiguous configuration is at most 2n− 1.

To show that the Hausdorff dimension 2n − 1 of the set of planar n-point
ambiguous configurations is at least M we word-by-word repeat the argument of
Lemma 8 in [17].

Note that we need n ≥ 4 in the proof since there is only one full topology for
each n ≤ 3.

6 Open questions

6.1 Regularity

The first question, especially if the answer is negative, might be difficult.
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Question 6.1. Does there exist a nonplanar maximal distance minimizer with an
infinite number of branching points?

The next question concerns the Ahlfors regularity in the following strong form
for d > 2.

Question 6.2. Do there exist constants C1, C2 depending only on d such that for
every M and r > 0 there is a ε0 > 0 for which

C1ε ≤ H1(Σ ∩Bε(x)) ≤ C2ε

holds for every x ∈ Σ and ε < ε0?

An easier question should be to construct an example of a minimizer with a
branching point, whose neighborhood does not coincide with a regular tripod:

Question 6.3. To construct a (nonplanar) maximal distance minimizer Σ con-
taining a locally nonplanar branching point x, i.e. for every ε > 0 the set Bε(x)∩Σ
does not belong to a plane.

Thus the question if there exists a nonplanar maximal distance minimizer with
an infinite number of points with three tangent rays also makes sense.

The following question asks if one-sided tangents should have continuity from
the corresponding side.

Question 6.4. Does Lemma 2.5 hold for a d-dimensional maximal distance min-
imizer?

All the questions in this subsection can be also asked for local minimizers.

6.2 Explicit solutions

Recall that the horseshoe conjecture (partly solved by Theorem 3.4) is still
open in general.

Question 6.5. Find maximal distance minimizers for a circumference of radius
4.98r > R > r.

It is worth noting that the statement of Theorem 3.4 does not hold for a
general M if the assumption on the minimal radius of curvature is omitted as we
show below. This means that a positive resolution of the horseshoe conjecture
requires new ideas.
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Σ0

a b

Figure 8: Horseshoe is not a minimizer for long enough stadium with R < 1.75r.

Define a stadium to be the boundary of the R-neighborhood of a line segment.
By the definition, a stadium has the minimal radius of curvature R. Let us show
that if R < 1.75r and a stadium S is long enough, then there is a connected set Σ′

such that S ⊂ Br(Σ′) and Σ′ has the length smaller than an arbitrary horseshoe.
Hence a maximal distance r-minimizer for S can not be a horseshoe.

Define Σ0 to be the locally minimal tree depicted in Fig. 8. Let Σ′ consist of
copies of Σ0, glued at points a and b along the stadium. Note that FM (Σ′) ≤ r
by the construction. In the case R < 1.75r the length of Σ0 is strictly smaller
than 2|ab|. Thus for a long enough stadium Σ′ has length αL+O(1), where L is
the length of the stadium and α < 2 is a constant depending on Σ0 and R. On
the other hand, any horseshoe has length 2L+O(1).

This example leads to the following problems.

Question 6.6. Find the minimal α such that Theorem 3.4 holds with the replace-
ment of 5r with αr.

Question 6.7. Describe the set of r-minimizers for a given stadium.

Analogously to the stadium case one can easily show that for a narrow rectan-
gle (i.e. with a sufficiently small |a1a2||a2a3|) and some r > 0 a minimizer should have
another topology than depicted at Fig. 7.

Also one may consider the following relaxation of Problem 6.7.

Question 6.8. Fix a real a > 2r. Let M(l) be the union of two sides of length l
of a rectangle a× l and Σ(l) be a minimizer for M(l). Find

s(a) := lim
l→∞

H1(Σ(l))

l
.
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If a > 10r one may add two semicircles to M(l) and apply Theorem 3.4 to a
resulting stadium. Then a triangle inequality type argument gives s(a) = 2.

6.3 Uniqueness

Recall that if Σ be an r-minimizer for some M , then it is a minimizer for
Br(Σ). This motivates the following question.

Question 6.9. Let Σ be an r-minimizer for someM . Is Σ the unique r-minimizer
for Br(Σ)?

A weaker form of this question is if we replace r with some positive r0 < r in
the hypothesis.

Again we are interested whether Proposition 5.6 holds in larger dimensions.

Question 6.10. Fix d ≥ 3 and n ≥ 4. Find the Hausdorff dimension of d-
dimensional n-point ambiguous configurations M (as a subset of Rdn).

A weaker question is to determine whether the set of d-dimensional n-point
ambiguous configurations has measure zero.

Recall that we believe that every Steiner tree which is not unique for its n
terminals cannot be a maximal distance minimizer for any n-point setM and any
r > 0. This motivated the following more general question.

Question 6.11. Fix M ⊂ Rd and r > 0. Does a set GΣ of energetic points
determine a minimizer Σ?
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