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Abstract

Kernel methods are highly flexible and powerful tools for capturing com-
plex, nonlinear relationships in data. In this paper, we propose a substantial
extension of existing network-based regression models by integrating kernel
methods with graph-theoretic constraints. Our approach builds upon the
foundational work of Li et al. [1], who incorporated network cohesion into
generalized linear models (GLMs). We extend their framework by introduc-
ing a kernelized regression model that allows for the modeling of nonlinear
interactions while leveraging network data. This kernelized framework re-
laxes the linearity constraints of GLMs, making the model more versatile
and capable of capturing complex patterns in high-dimensional spaces.

We demonstrate the effectiveness of our approach using simulated and
real-world datasets, such as the Teenage Friends and Lifestyle Study. Results
show that our kernelized network regression model not only outperforms
traditional linear and generalized linear models in predictive accuracy but
also scales efficiently to larger datasets. Our work represents a significant
advancement in the modeling of network-linked data, providing a robust,
scalable, and interpretable framework that extends the application of kernel
methods beyond their traditional constraints.

Future directions include exploring more complex graph structures, such
as weighted and directed graphs, and developing optimized algorithms for
even larger datasets.
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1 Introduction

Network data, which captures relationships between entities, has become
prevalent in various fields such as social media analysis, biology, economics, and
sociology. The challenge of incorporating network structures into predictive mod-
eling has led to significant advances in statistical machine learning. Traditionally,
linear regression models have served as the cornerstone of supervised learning,
and their adaptation to network data has been a key research area.

One of the most notable contributions in this domain is the work by Li et
al. [1], which introduced the idea of incorporating network cohesion into regression
models, allowing for observation-dependent intercepts based on network struc-
tures. Li et al.’s approach, which extended the classical linear regression model
to accommodate generalized linear models (GLMs), opened new possibilities for
network-based prediction by leveraging graph-based structures. In this frame-
work, the relationship between entities in the network is represented through a
graph, and these relationships are incorporated into the model via an adjacency
matrix.

The model proposed by Li et al. demonstrated that network cohesion, when
modeled effectively, could significantly enhance predictive performance. However,
their framework is constrained by the inherent linearity of GLMs, limiting its
capacity to capture nonlinear dependencies in the data. It’s interesting to note
that aside from [1], the literature on theory, methodology, computation, and
applications of graph theoretic methods now abounds [2–6].

In this work, we propose a substantial extension of Li et al.’s model by in-
troducing a kernelized regression framework that allows for more flexible and
powerful modeling of nonlinear relationships within the network structure. Ker-
nel methods have become a cornerstone of modern machine learning due to their
ability to implicitly map data into high-dimensional feature spaces, capturing
complex interactions that would otherwise be missed by linear models. By com-
bining kernel regression with graph-based network data, we enable the model to
handle nonlinearities while preserving the structure of relationships captured by
the graph. This kernelized approach retains the interpretability and flexibility of
network models while vastly improving their capacity for handling nonlinearity
in high-dimensional settings.
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One of the central innovations of this work lies in the incorporation of the
adjacency matrix into the kernel function, allowing us to capture both the in-
trinsic properties of the data and the relationships between them. We work with
undirected and unweighted graphs, where the incidence matrix is binary, i.e.,
aij = 1 if node i is connected to node j, and aij = 0 otherwise. This simple yet
effective representation of relationships suffices for our purpose of modeling social
networks among youngsters, as seen in the Teenage Friends and Lifestyle Study
dataset [7].

We build on Li et al.’s work by replacing their linear modeling approach with
a kernel-based regression model that uses a regularized kernel learning machine.
In particular, we extend the model to account for nonlinearity in both the input
features and the relationships encoded by the network structure. Through this
enhancement, we demonstrate that kernelizing the regression model with graph
constraints leads to better performance in both interpretability and predictive
accuracy.

In our experiments on real-world social network data, we observe significant
improvements over standard GLM-based models, with the kernelized version cap-
turing subtle nonlinear patterns that the earlier models missed. Li et al.’s work
rightly deserves to be deemed seminal in this context and provides a detailed
account of linear regression with network cohesion, specifically deriving both the
algorithmic details of a sound theory and a promising application [1]. They even
provide a package in the R software environment to help with the exploration of
a variety of network data-related statistical machine learning activities [8].

Building from their work, which established the linear regression model and
later expanded to generalized linear models for broader application, this research
departs from the interpretability that motivated Li to adopt the GLM family. It
instead emphasizes the versatility, flexibility, and predictive capacity of the func-
tion space, selecting kernel regression as the central approach. In a spirit similar
to Li’s research, we build a regularized kernel regression framework with a reg-
ularizing component induced by graph theoretic constraints assumed to underlie
the accompanying network data.

This research’s quintessential contribution lies in improving the predictive
performance of kernel regression by appropriately induced graph-theoretic con-
straints similar to those used by Li et al. [1] on generalized linear models.

Throughout this research, we focus on the scenario where we are given a data
set

Dn = {(xj , yj)
iid∼ pxy(x, y), xj ∈X , yj ∈ R, j = 1, . . . , n}.

We assume a regression learning model under homoscedastic Gaussian noise,
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specifically, (Yi|f(·),xi, σ2)
iid∼ N(f(xi), σ

2), where f ∈HK with the correspond-
ing function space is defined by

HK :=

{
x 7→

n∑
j=1

wjK(x,xj) + α(x), α(x) ∈ R, wj ∈ R, j ∈ [n]

}
, (1)

where α(x) represents the network contribution of x.
We will see in subsequent sections that αi during training is replaced by αnew

for predicting out-of-training samples, specifically for the xnew whose response
value is to be predicted for members of the test set. In this context, the kernel K
is a bivariate function defined on the input space. For our purposes, the kernel
measures the similarity between any two given elements from X , and is therefore
defined as:

K : X ×X −→ R+

(xl,xm) 7−→ K(xl,xm).
(2)

For clarity, one of the most commonly used kernels in practical applications, is
the so-called Gaussian Radial Basis Function (RBF) kernel, which is very flexible
and versatile and defined as follows:

K(xl,xm) = exp
(
− γ‖xl − xm‖22

)
. (3)

There are very many other kernels used by practitioners and methodologists for
various applications as we will see later in our computational demonstrations. As
we will see in the rest of this paper, once a kernel K is selected for the task of
interest, the resulting Gram matrix K = (K(xl,xm)), l.m = 1, . . . , n is formed
and, became a central element in subsequent analyses. It is readily apparent that
the Gram matrix K fulfills a role analogous to that of the design matrix or data
matrix X in linear models:

K :=



K(x1,x1) K(x1,x2) · · · K(x1,xn)
K(x2,x1) K(x2,x2) · · · K(x2,xn)

...
... · · ·

...
K(xi,x1) K(xi,x2) · · · K(xi,xn)

...
... · · ·

...
K(xn,x1) K(xn,x2) · · · K(xn,xn)


. (4)

Some learning machines, including support vector machines, require the kernel to
be positive definite in order to guarantee the convergence and stability properties
of the learning process. Our choice of the function space in Equation (1) aims to
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not only extend but also enhance the methodologies proposed by Li et al. [1] in
terms of both predictive accuracy and modeling flexibility.

Kernel regression models provide significant versatility since they can han-
dle input spaces that are not necessarily real-valued, thus allowing for a more
adaptable modeling framework. Moreover, the added benefit is the ability of
kernel regression learning machines to represent arbitrarily complex underlying
regression functions.

In fact, kernel regression and kernel methods have grown tremendously in
popularity, and they are continually used, further developed, and improved all
the time. Kernel methods have never ceased to gain more popularity in modeling,
and many software packages are continually built around them [6,9].

Gaussian Processes, for instance, have provided one of the most commonly
used kernel methods and become fashionable in machine learning, having proven
to be formidable learning machines with excellent predictive performances on
high dimensional [10–15]. The phenomenal success of support vector classifiers
was immediately followed by the arrival on the scene of support vector regression,
with the seminal paper featuring support vector regression appearing in [16] and
[17].

The relevance vector machine [18] is another example of a kernel learning
machine that yielded excellent predictive performance in high dimensional re-
gression. Central to all the kernel learning machines is the need for suitable regu-
larization owing to their inherent ill-posedness. It is found that in their practical
form used for actually building the kernel regression machine, the learning task is
done via the optimization of the following penalized (regularized) empirical risk
functional:

R̂λ,n(f) =
1

2n

n∑
i=1

(yi − f(xi))
2 +

λ

2
‖f‖2K (5)

where ‖f‖2K plays an extremely important role in addressing the typically ill-
posed learning problem inherent in kernel learning machines. Equation (5) is
clearly very general and indeed generic, yet it provides the perfect vehicle for us
to formulate the two-fold contribution of the present manuscript as we will see
in the subsequent sections.

2 Kernel regression with double penalization

Once again, the chief aim of this manuscript is to extend [1] using both kernel-
ization to capture subtle nonlinearities in the patterns of functional relationships,
and the network relationships among the sampling units to further sharpen our
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predictions. To this end, our two-fold contribution not only suitably penalized
the weights in the kernel expansion, but also integrates the graph Laplacian in-
duced penalization that captures the patterns of relationship among the sampling
units. It is fair to claim that our treatment is sufficiently detailed and thorough.

2.1 First regularization via penalization on weights

It is noteworthy that the function space described in Equation (1) is a gener-
alization of a scenario in which α(x) = α is a constant. In such cases of constant
α, the representer theorem of [19,20] results in an empirical risk function that is
expressed in terms of the weights, namely

R̂λ,n(w) =
1

2n
(Y − α1n −Kw)>(Y − α1n −Kw) +

λ

2
w>Kw (6)

which yields the nice and desirable closed-form expression

ŵ = (K + nλIn)−1Y and α̂ = Ȳ − n−11nKŵ. (7)

One of the distinct advantages of Equation (7) is that it provides estimates in
closed form, which can be readily obtained computationally.

2.2 Regularized kernel regression via network cohesion

Upon encountering this regularization framework, a natural question arises
about how to integrate or adapt the network data into it. As remarked by Li et
al., the model inherent in Equation (6) uses an intercept α that remains the same
for all the observations in the training set Dn. Providentially, it turns out that
making the intercept observation-dependent naturally provides a mechanism for
incorporating the network data into the model via the graph theoretical deriva-
tions. This method of incorporation is also discussed in other works [1,3–5,21–23].
Specifically, [1] developed multiple linear regression incorporating network cohe-
sion, formulated as:

Yi = αi + β>xi + εi, with xi ∈ Rp,β ∈ Rp and εi
iid∼ N(0, σ2), (8)

which we are extending and adapting within the context of kernel learning in
Equation (9) below, namely Yi = f(xi) + εi, i ∈ [n], with

f(xi) = αi +

n∑
j=1

wjK(xi,xj) and εi
iid∼ N(0, σ2), i ∈ [n]. (9)
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Crucially, the αi values are incorporated in as contributors to the model from
the network data, as detailed in Equation (1). We, therefore, end up having 2n
parameters to estimate: n from the vector α and n from the vectorw. In practice,
with only n observations in the data, estimating 2n quantities is inherently ill-
posed. To address this challenge, regularization ends up being the approach used
to circumvent this difficulty, with assumptions like Auv = 1 and Auu = 0 in the
adjacency matrix following the approach outlined by Li et al. Specifically, the
resulting regularized kernel regression model, in its raw form, is given by:

R̂λ,n(α,w) = (Y −α−Kw)>(Y −α−Kw) + λα>Lα. (10)

The vector n-dimensional vector α = (α1, α2, ..., αn) ∈ Rn is the vector of the
individual effects of every node, the vector w = (w1,w2, ...,wn)> ∈ Rn is the
vector of regression coefficients, and

α>Lα =
∑

(u,v)∈E

(αu − αv)2. (11)

In the model, it is assumed that the graph G = (V ,E) captures the links between
observations derived from network data, where V = {1, 2, ..., n} is the node set of
the graph, and E ⊂ V ×V is the edge set. The corresponding adjacency matrix
A ∈ Rn×n is the graph Laplacian G = (V ,E) which is given by L = D − A,
where D = diag(d1, d2, ..., dn) is the degree matrix, with each node degree dv
calculated as dv =

∑
u∈E Auv, following the methodology outlined in [24].

Through straightforward computations, including matrix differentiation as
detailed in [25], it is possible to derive estimates of both α and w. The estimators
are computed as follows:

(α̂, ŵ) = (K̃>K̃ + λM)−1K̃>Y , (12)

where Y = (y1, . . . , yn) is the n-dimensional vector of response values,

K̃ = [In×n,K] and M =

[
L 0n×n

0n×n 0n×n

]
.

It bears emphasizing that the straightforward derivation of the key compo-
nents of this regression framework is one of its key appeals. This appeal further
carries through when we combine kernel expansion weights regularization with
network cohesion regularization.
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2.3 Kernel regression with weights and network regularization

While the above straightforward adaptation of Li’s research to kernel regres-
sion provides several advantages, we considered it advantageous to combine tra-
ditional regularization on w with the α derived from the network. As a result, a
more complete and certainly more powerful framework is derived, as seen in the
following regularized objective function depicted in Equation (13):

R̂λ,n(α,w) = (Y −α−Kw)>(Y −α−Kw) + λα>Lα+ ψw>Kw. (13)

Theorem 1. Based on Equation (13), the derivation of the corresponding esti-
mates for α and w is straightforward and in the following form.

(α̂, ŵ) = (K̃>K̃ + ψN + λM)−1K̃>Y , (14)

where K̃ = [In×n,K], N =

[
0n×n 0n×n
0n×n In×n

]
and M =

[
L 0n×n

0n×n 0n×n

]
.

Proof. By using standard matrix-vector derivation, we get the following:

dL(α,w)

dα
= −2K>(Y −Kw −α) + 2ψIn×nw = 0

dL(α,w)

dw
= −2In×nK

>(Y −Kw −α) + 2λLα = 0

By solving the above equations, it is straightforward to get

K>Y −K>Kw −K>α− ψIw = 0

Y −Kw −α− λLα = 0

which can be written as:

K>Y = (K>K + ψI)w +K>α

Y = Kw + (I + λL)α

The result could be written in matrix form:(
In
K>

)
Y =

(
In + λL K
K> K>K + ψIn

)(
α
w

)
,

which equals:(
In
K>

)
Y =

[(
In K
K K>K

)
+ λ

(
L 0
0 0

)
+ ψ

(
0 0
0 In

)](
α
w

)
.
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It is remarkable how straightforward the adaptation of network cohesion to
kernel regression turns out to be, especially considering how substantial the gain
in predictive performance ends up being in practice, as seen later in the computa-
tional demonstrations. As mentioned previously, one of the principal advantages
of kernel methods is their ability to handle non-numeric input spaces, provided
that suitable kernels (measures of similarity) are well-defined.

2.4 Obtaining predictions in training and testing

Since improvement in predictive performance is one of the main motivations
for resorting to kernel methods, we now show the straightforward nature of the
prediction function in this case. Having obtained α̂ and ŵ, it is straightforward
to see that for all (xi, yi) ∈ Dn

f̂(xi) = α̂i +
n∑
j=1

ŵjK(xi,xj), (15)

so that for the whole training set Dn, the n-dimensional vector Ŷ of in-sample
predicted (fitted) values is given by

Ŷ = K̃(K̃>K̃ + ψN + λM)−1K̃Y = H(λ, ψ)Y , (16)

where
H(λ, ψ) = K̃(K̃>K̃ + ψN + λM)−1K̃ (17)

is the so-called “hat” matrix. Given that one of the principal motivations behind
adopting kernel regression is the construction of optimal predictive regression
models, it is important to focus on the out-of-sample prediction mechanism. More
specifically, we seek to make E[f̂(xnew)] small, where

f̂(xnew) = α̂new +
n∑
j=1

ŵjK(xnew,xj). (18)

With n training observations and m testing observations, the resulting Laplacian
is (n+m)× (n+m) matrix that admits the decomposition of the form:

L̃ =

(
Lss Lst
Lts Ltt

)
, (19)

where Lss corresponds to the n training observations, Ltt to the m observations
from the test set, while Lst and Lts correspond to the relationships between the
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members of the training set and those of the test set. The complete (n + m)-
dimensional individual effect vector is αall = (α>s ,α

>
t )>, where αs ∈ Rn refers

to the training data, and αt ∈ Rm refers to the test data for which predictions
outside of training are sought. The following step is to set the optimization
problem:

α̂t = argmin
αt

{
(α̂s

>,α>t )>L̃(α̂>s ,α
>
t )
}
, (20)

which in turn yields the following desired result:

α̂t = −L−1tt Ltsα̂s. (21)

Given the estimate α̂t, it is easy to make out of sample predictions. Note that
α̂new in Equation (18) is simply the same of as α̂t for a single prediction.

3 Computational explorations and demonstrations

We herein use both simulated and real-world data to assess the performance of
our proposed models and learning methods. We specifically compare our proposed
kernel regression with network cohesion against a wide variety of other scenarios.
We compare our work to [1] featuring the generalized linear model with the
network cohesion model. We also compare our work against the generic multiple
linear regression model without network information with the finality of checking
evidence for the effect of the non-linearity of kernels and the effect of network
data on the overall performance of regression estimators. Importantly, we make
comparisons against standard kernel regression paradigms like support vector
regression, relevance vector regression, and Gaussian process regression to further
assess and measure network data’s effect on the predictive performance.

In the spirit of predictive optimality, we focus on estimates of the generaliza-
tion error given by many random replications of the test error. We generate 50
replicates of the test error and perform our comparisons based on those. Through-
out our simulations, we assume and generate data from a model of the form:

Yi = αi + f(xi) + εi, i = 1, . . . , n, (22)

and we further assume homoscedastic Gaussian noise, so that εi
iid∼ N(0, σ2), for

some noise variance σ2 suitably chosen in keeping with signal to noise ratio. For
clarity, we specify the target signal-to-noise ratio for each simulated example.
Regarding the values of the αi’s, we either use the degree of the vertex or the
same scheme used by Li’s work. Regarding the kernels, we simply resort to the
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Algorithm 1 Kernelized Regression with Network Constraints

Require: Data Dn = {(xi, yi)}ni=1 with features xi ∈ Rp, network adjacency
matrix A ∈ Rn×n, kernel function K, regularization parameters λ and ψ

Ensure: Predictions ŷ for a test set {xnew}
1: Construct the Kernel Matrix
2: for each i, j ∈ {1, . . . , n} do
3: Compute kernel value K(xi, xj)
4: Store in Gram matrix Kij = K(xi, xj)
5: end for

6: Regularize with Network Cohesion
7: Form the Laplacian matrix L = D −A, where D is the degree matrix and A

is the adjacency matrix
8: Construct the augmented kernel matrix K̃ = [In,K]

9: Construct the regularization matrix M =

[
L 0
0 0

]
10: Solve the Regularized Problem
11: Compute the weight vector w and intercept vector α by solving:

(K̃T K̃ + λM + ψI)

[
α
w

]
= K̃TY

where Y = (y1, y2, . . . , yn)T

12: Make Predictions
13: for each new data point xnew do
14: Compute the predicted value ŷ(xnew) as:

ŷ(xnew) = αnew +

n∑
j=1

wjK(xnew, xj)

15: end for

most commonly used ones, namely (a) the linear kernel, also referred to as the
vanilla kernel, (b) the polynomial kernel, (c) the Gaussian Radial basis function
kernel, (d) the Laplace kernel, and (e) the hyperbolic tangent kernel. Some other
kernel functions can be found in [9, 26].
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3.1 First simulated example

For our first simulation study, we consider the two-dimensional Euclidean
space along with a nonlinear underlying regression function f defined in Equation
(23). We also use a uniform network as shown in Figure (1). For the network
contribution α, we simply use the degree of the network for each vertex. The
variables are generated from a multivariate Gaussian distribution, and the error
term ε is taken from a standard normal distribution. For the purposes of this
computational demonstration, we repeatedly generate 200 data points, with 100
of those used for training and the remaining 100 used as test data for computing
our test errors.

f(x) = x2
1 + x2 (23)

We conducted 50 replicates and compared the mean squared error (MSE).
The results are displayed in Figure 2 and Table 1. As shown in Figure 2, the
polynomial kernel model incorporating network cohesion outperforms all other
models in this dataset. Similarly, it leads in terms of the lowest mean squared
test error as recorded in Table 1. Generally, models that include network cohesion
tend to surpass those that do not, demonstrating that the integration of network
information significantly enhances the model’s predictive performance.

We do 50 replicates and compare the mean squared error. The results are
shown in Figure 2 and Table 1. In Figure 2, the polynomial kernel model incor-
porating network cohesion outperforms all other models in this dataset. Similarly,
it leads in terms of the lowest mean squared test error as recorded in Table 1.
Generally, models that include network cohesion tend to surpass those that do
not, demonstrating that integrating network information significantly enhances
the model’s predictive performance.

3.2 Moderately challenging simulated data

We now consider an intriguing simulated example found in [27], herein referred
to as Friedman1, with underlying function f given for each x = (x1, x2, x3, x4,
x5)
> ∈X by

f(x) = 10 sin(πx1x2) + 20
(

x3 −
1

2

)2
+ 10x4 + 5x5. (24)

For this example, we use the bipartite network shown in Figure 3. For the data,
we use the Friedman1 data set. We simulate 200 data points, 100 for training
data, and 100 for test data. Since we only focus on the predicted performance,
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we eliminate the noise variables in the dataset. The error ε is from Normal
distribution with N(0, 2). The individual network parameter is given by:{

αi = 2, αj = −2, where i = 1 · · · 100; j = 101 · · · 200
}
.

Compared to the last experiment, the data structure is more complex. The
response variable is shown in Equation (24).

We perform 50 replicates and compare the mean squared error. The results are
shown in Figure 4 and Table 2. The outcomes are represented in Figure 4a, where
models incorporating network cohesion consistently outperform others. Table 2
corroborates these findings, highlighting that the polynomial kernel regression
with network cohesion is the most effective model for this dataset.

3.3 More complex simulated data

For the last simulation study, we use yet another dataset generated thanks
to Friedman and his co-authors and found in [28] and herein referred to as the
Friedman3 data. and the data structure is even more complex than the previous
two data sets. We use the bipartite network in this simulation. Like the last
two experiments, we simulate 200 data points, 100 for training, and 100 for test
data. For the error, ε is from Normal distribution with N(0, 0.1) and the network
parameter α is given by{

αi = 1, αj = −1, where i = 1 · · · 100; j = 101 · · · 200
}
.

The response variable is given in Equation (25).

f(x) = tan−1

(
x2x3 − 1

x2x4

x1

)
. (25)

In this case, the input space X is a subset of the four-dimensional Euclidean space
R4, with each of the four variables measured on a different scale. Specifically,
0 ≤ x1 ≤ 100, 20 ≤ (x2/2π) ≤ 280, 0 ≤ x3 ≤ 1 and 1 ≤ x4 ≤ 11.

Similar to the last two experiments, We did 50 replicates and compared the
mean squared error. The results are shown in Figure 5 and Table 3. According
to Table 3, all the network cohesion models do extremely well. The polynomial
kernel regression with the network cohesion model is the best one; furthermore,
Table 5a shows all the network cohesion models have a smaller variance of test
errors and smaller test errors than the others.
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Figure 1: Uniform Networks, there are four groups in the network, which are shown as
four colors.

Table 1: Mean squared training and test error with Uniform network. LIN: linear re-
gression with network cohesion, COS: kernel regression with network cohesion models
that use cosine kernel, RBF: Gaussian kernel, LPC: Laplace kernel, NN: hyperbolic tan-
gent kernel, POL: polynomial kernel, MLR: multilinear regression, SVM: support vector
machine, RVM: relevance support machine and GP: Gaussian processes for regression.

SN MLR LIN COS RBF LPC NN POL SVM RVM GP

Training Error 23.01 14.94 20.16 4.94 4.59 10.03 5.58 101.17 6.38 101.19
Test Error 24.26 24.22 24.29 18.33 14.01 39.23 7.18 15.88 24.82 16.74
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(a) Uniform Test Error

(b) 95% confidence level, Differences in mean levels of variable

Figure 2: Uniform Network Results
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Figure 3: Bipartite Networks include two groups of networks shown in two colors.

Table 2: Mean squared training and test error with Bipartite network for Friedman1
data.

SN MLR LIN COS RBF LPC NN POL SVM RVM GP

Training Error 3.6 2.17 2.44 2.16 1.42 2.38 1.85 15.27 2.43 15.28
Test Error 3.78 3.22 3.22 3.09 2.91 3.27 2.87 3.6 3.84 3.57

Table 3: Mean squared training and test error with Bipartite network for Friedman3
data.

SN MLR LIN COS RBF LPC NN POL SVM RVM GP

Training Error 0.9907 0.1008 0.1162 0.1177 0.0845 0.1158 0.0812 1.679 0.914 1.6614
Test Error 1.0357 0.1539 0.1554 0.1527 0.1332 0.156 0.1186 1.1916 1.107 1.069
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(a) Friedman1 Test Error

(b) 95% confidence level, Differences in mean levels of variable

Figure 4: Friedman1 Results
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(a) Friedman3 Test Error

(b) 95% confidence level, Differences in mean levels of variable

Figure 5: Friedman3 Results
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(a) The histogram of the numbers of friends,
most students have 3-5 friends in school.

(b) The Friendship network: The network of all
the students in the data we are using, there are
3 colors in the plots: yellow means one has less
than 4 friends, green means one has 4-8 friends,
red means one has more than 8 friends.

Figure 6: The Friendship Data summary

Table 4: Training error for the ‘Teenage Friends, and Lifestyle Study’ data.

SN MLR LIN COS RBF LPC NN POL SVM RVM GP

Training Error 0.5617 0.0679 0.0074 0.0071 0.0074 0.0075 0.0081 1.6559 0.3772 1.3399

Table 5: Test error for the ‘Teenage Friends, and Lifestyle Study’ data.

SN MLR LIN COS RBF LPC NN POL SVM RVM GP

Test Error 0.5809 0.5796 0.5601 0.5148 0.5262 0.579 0.6688 0.5949 0.6066 0.6038
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(a) Training error

(b) Test error

Figure 7: The left image shows the mean MSE for the training set. The right image
shows the mean MSE for the test set.
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3.4 Applications

This section evaluates our method using the Teenage Friends and Lifestyle
Study data [7]. The social network data were collected in the Teenage Friends and
Lifestyle Study. Friendship network data and substance use were recorded for a
cohort of pupils in a school in the West of Scotland. The panel data were recorded
over three years, starting in 1995, when the pupils were aged 13, and ending in
1997. A total of 160 pupils took part in the study. 129 pupils were present at
all three measurement points. The friendship networks were formed by allowing
the pupils to name up to twelve best friends. Pupils were also asked about
substance use and adolescent behavior associated with, for instance, lifestyle,
sporting behavior, and tobacco, alcohol, and cannabis consumption. The school
was representative of others in the region in terms of social class composition.

In this application study, we focus on one question, “How often does one
use Alcohol?” using eight predictor variables: age, sex, romantic involvement,
family smoking habits, money (their allowance), sporting behavior, and church
attendance. The data is split into training and test sets, which are 70 % and 30
%. We compare the Mean Squared Error among all the machines used in the
simulation study.

According to Table 4, all models incorporating network cohesion outperform
those that do not. The table 5 shows that most RNC-kernel models have a
smaller MSE compared to other models, except the one with the polynomial
kernel; the RNC-linear model is slightly better than MLR, and both of them are
better than SVM, RVM, and GP. Among all the machines, RNC with Gaussian
kernel is the best one. These results indicate that incorporating network cohesion
significantly enhances predictive performance. Particularly, kernel regression with
network cohesion machines shows marked improvements over linear regression
with network cohesion. This suggests that selecting the appropriate kernel, as
demonstrated by this experiment, is crucial for optimizing results.

4 Conclusion

The incorporation of network data into predictive models remains a critical
and active area of research in statistical machine learning. In this paper, we
extended the foundational work by Li et al. [1] by introducing a kernelized re-
gression framework that accounts for both the input data and the structure of
the network in a more flexible and powerful way. Our proposed method advances
the state-of-the-art by addressing the limitations of the generalized linear model
framework and extending it to handle nonlinear relationships, which are often
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present in real-world data but remain undetectable by linear models.

The primary innovation of this work is the seamless integration of graph-
theoretic constraints into a kernelized regression framework. By leveraging undi-
rected and unweighted graphs, we model relationships within the data in a
straightforward but powerful manner, allowing us to incorporate social networks
or other relational structures directly into the predictive model. This not only en-
hances interpretability but also results in significant improvements in predictive
accuracy.

Through experiments using both simulated and real-world data, including the
Teenage Friends and Lifestyle Study, we demonstrated the superior performance
of our proposed kernel regression model over traditional linear and generalized
linear models with network cohesion. The results consistently showed that the
incorporation of network data, coupled with the flexibility of kernel methods, led
to better generalization and more accurate predictions, particularly in scenarios
where the underlying relationships were highly nonlinear.

Moreover, the kernelized approach is highly adaptable, allowing for the use
of various kernel functions, such as the Gaussian Radial Basis Function (RBF),
polynomial kernels, and others, depending on the specific problem at hand. This
flexibility makes the method applicable to a wide range of domains where network
data is prevalent, such as biology, social science, economics, and beyond.

Looking forward, there are several avenues for future work. One promising
direction is the exploration of more complex graph structures, such as directed
or weighted graphs, which could capture additional nuances in the relationships
between entities. Furthermore, alternative regularization techniques could be
investigated to improve the stability and performance of the model in cases where
the network structure is particularly sparse or irregular. The development of
efficient algorithms for large-scale network data is another important area of
future research, particularly in the context of high-dimensional and big data
applications, but also in studies where the sample size n is very large to the point
of making our present treatment not scalable.

We recall that our chief motivation for this manuscript was inspired by the
fact that Kernel methods are known for their flexibility and powerful ability to
capture complex, nonlinear patterns. However, a major challenge arises when
scaling these methods to large datasets. This is due to the fact that kernel
methods revolve around the computation of the Gram matrix K, which is of size
n × n. Operations involving K typically have a computational complexity of
O(n3), rendering kernel methods unscalable for large values of n. To address this
issue, several techniques have been developed to enhance the scalability of kernel
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methods:

1. A common approach to reduce the computational burden is to approximate
the Gram matrix. One powerful technique is the Nyström approximation,
which approximates the full kernel matrix using a smaller subset of randomly
selected data points. This reduces the computational complexity from O(n3)
to O(m2n), where m � n is the number of selected samples. Another
technique is the use of random Fourier features, which map the data into a
lower-dimensional space where linear methods can be applied to approximate
the kernel trick efficiently, reducing the complexity to linear in n.

2. Another powerful approach is the use of incremental or online learning algo-
rithms, such as Incremental Support Vector Machines (ISVMs) and Incre-
mental Gaussian Processes. These methods allow the model to be updated
incrementally as new data arrives, without the need to recompute the entire
kernel matrix from scratch. This makes them particularly well-suited for
streaming data or large-scale scenarios.

3. Low-rank approximations, such as Kernel Principal Component Analysis
(KPCA), can project the data onto a lower-dimensional subspace. This
significantly reduces the dimensionality of the Gram matrix, lowering the
computational and storage requirements while still capturing the essential
structure of the data.

4. Finally, distributed and parallel computing frameworks, such as MapReduce
and Apache Spark, have been employed to distribute the computation of ker-
nel methods across multiple nodes. This approach enables efficient handling
of large datasets by leveraging the power of parallel computation. While
we do not implement any of the scalability approaches in this manuscript,
the most natural extension of our work in the future of future work, is a
straightforward adaptation of our present work to studies with large n.

By combining these strategies, kernel methods can be made more scalable,
allowing them to tackle large-scale problems while maintaining their ability to
capture complex, nonlinear patterns.

In conclusion, the proposed kernelized regression framework represents a sub-
stantial advancement in the modeling of network-linked data. By extending the
capabilities of previous models, this work paves the way for more robust, flexible,
and accurate machine learning methods that can be applied to a wide variety of
complex, real-world datasets.
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