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Abstract

A q-ary linear code is an [n, k, d]q code, which is a linear code of length
n, dimension k and minimum weight d over Fq, the field of order q. A
fundamental problem in coding theory is to find nq(k, d), the minimum
length n for which an [n, k, d]q code exists for given k, d and q. We in-
troduce a new notion “e-locally 2-weight (mod q)” for linear codes over
Fq and we give a necessary condition for the property. As an application,
we prove the non-existence of some [n, 4, d]9 codes with d ≡ −1 (mod 9),
which determines n9(4, d) for some d.
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1 Introduction

We denote by Fq the field of q elements. Let Fnq be the vector space of
n-tuples over Fq. A k-dimensional subspace C of Fnq is called a linear code of
length n and dimension k, or an [n, k]q code. C is also called an [n, k, d]q code
if the minimum Hamming weight min{wt(c) | c ∈ C, c 6= (0, . . . , 0)} is d, where
wt(c) is the number of non-zero entries in the vector c. We only consider linear
codes having no coordinate which is identically zero.

A fundamental problem in coding theory is to find nq(k, d), the minimum
length n for which an [n, k, d]q code exists [1, 2]. The length n of an [n, k, d]q
code satisfies the following inequality called the Griesmer bound [3, 4]:

n ≥ gq(k, d) =

k−1∑
i=0

⌈
d/qi

⌉
,

where dxe denotes the smallest integer greater than or equal to x. The values
of nq(k, d) are determined for all d only for some small values of q and k. For
k = 3, nq(3, d) is known for all d for q ≤ 9. See [5] for the updated linear codes
bound. As for the updated tables of nq(k, d) for some small q and k, see [6]. It
is known that Griesmer codes do exist if d is large enough for given q and k [1].
But the problem to find all d such that [gq(k, d), k, d]q codes exist is still open.
For example, the following results are known for n9(4, d).

Theorem 1.1 ([7]).

(a) n9(4, d) = g9(4, d) + 1 for d = 585, 810,

(b) n9(4, d) = g9(4, d) or g9(4, d) + 1 for d = 584, 809,

(c) n9(4, d) ≥ g9(4, d) + 1 for d = 198.

It is not known if a [g9(4, d), 4, d]9 code exist or not for d = 197. See also [8]
for the recent progress on n9(4, d). We prove the non-existence of [g9(4, d), 4, d]9
codes for d = 197, 584, 809 as an application of our main result, giving the
following.

Theorem 1.2.

(a) n9(4, d) = g9(4, d) + 1 for d = 584, 809,

(b) n9(4, d) ≥ g9(4, d) + 1 for d = 197.
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The weight distribution of C is the list of positive integers Ai, where Ai is
the number of codewords of weight i, 0 ≤ i ≤ n. The weight distribution with
(A0, Ad, . . .) = (1, α, . . .) is expressed as 01dα · · · . A linear code C over Fq is w-
weight (mod q) if there exists a w-set W = {i1, · · · , iw} ⊂ Zq = {0, 1, · · · , q− 1}
such that Ai > 0 implies i ≡ ij (mod q) for some ij ∈ W . For example, the
well-known Golay [11, 6, 5]3 code has weight distribution 0151326132833091101124,
which is 2-weight (mod 3).

The code obtained by deleting the same coordinate from each codeword of an
[n, k, d]q code C is called a punctured code of C. If there exists an [n+1, k, d+1]q
code C′ which gives C as a punctured code, C is called extendable and C′ is an
extension of C. The Golay [11, 6, 5]3 code is extendable by the following result
proved by Hill and Lizak (1995).

Theorem 1.3 ([9, 10]). Every [n, k, d]q code with gcd(d, q) = 1 whose weights
of codewords are congruent to 0 or d (mod q) is extendable.

Assume gcd(d, q) = 1. Let C be an [n, k, d]q code with generator matrix G.

Let Vm be an m-dimensional subspace of Fkq . We say that C is locally 2-weight
(mod q) at Vm if

wt(vG) ≡ 0 or d (mod q) (1)

for all v ∈ Vm. We also say that C is e-locally 2-weight (mod q) at Vm if (1)
holds for all v ∈ Vm except for e(q − 1) vectors.

Example 1.1. Let C1 be the [23, 4, 14]3 code with generator matrix

G1 =


10001111111111111000000
01002222211111000111100
00102210022100210112210
00011022020012201211011

 .
Then, C1 has weight distribution 011422152416181712182232. Take a 2-dimension-
al subspace of F4

3 as

V1 = {(0, 0, 0, 0), v1, 2v1, v2, 2v2, v3, 2v3, v4, 2v4},

where v1 = (1, 0, 0, 0), v2 = (1, 0, 0, 1), v3 = (1, 0, 0, 2), v4 = (0, 0, 0, 1). Since
wt(v1G) = 14, wt(v2G) = 15, wt(v3G) = 17, wt(v4G) = 14, C1 is locally
2-weight (mod 3) at V1. Next, take a 3-dimensional subspace of F4

3 as

V3 = {(0, a1, a2, a3) | a1, a2, a3 ∈ F3}.
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Then, (1) holds for any v ∈ V3 except for

v ∈ {(0, b, 0, b), (0, 0, b, b), (0, 0, b, 2b) | b = 1, 2}.

Hence, C1 is 3-locally 2-weight (mod 3) at V3.

In this paper, we prove the following.

Theorem 1.4. Let C be an [n, k, d]q code with k ≥ 3, gcd(d, q) = 1. If C is
e-locally 2-weight (mod q) at Vm for some 1 ≤ m ≤ k − 1 and e > 0, then
e ≥ qm−2.

The structure of this paper is as follows. In Section 2, we recall the usual
geometric method through projective geometry and we prove Theorem 1.4 from
the geometrical point of view. In Section 3, we prove Theorem 1.2 as an ap-
plication of the geometric version of Theorem 1.4 (Theorem 2.2) and Theorem
1.3.

2 Geometric preliminaries and main result

In this section, we first recall the usual geometric method [1,11,12] to inves-
tigate linear codes over Fq through the projective geometry. Denote by PG(r, q)
the projective geometry of dimension r over Fq. A j-flat is a projective subspace
of dimension j in PG(r, q). The 0-flats, 1-flats, 2-flats, (r− 2)-flats and (r− 1)-
flats are called points, lines, planes, secundums and hyperplanes, respectively.
We denote by θj the number of points in a j-flat, i.e., θj = (qj+1 − 1)/(q − 1),
see [13].

Let C be an [n, k, d]q code with generator matrixG having no all-zero column.
Then, the columns of G can be considered as a multiset of n points in Σ =
PG(k − 1, q) denoted by MC . A point P in Σ is called an i-point if it has
multiplicity mC(P ) = i in MC . Denote by γ0 the maximum multiplicity of a
point from Σ in MC and let Pi be the set of i-points in Σ, 0 ≤ i ≤ γ0. For
any subset S of Σ, the multiplicity of S with respect to C, denoted by mC(S), is
defined as

mC(S) =
∑
P∈S

mC(P ) =

γ0∑
i=1

i·|S∩Pi|,

where |T | denotes the number of elements in a set T . Then we obtain the
partition Σ =

⋃γ0
i=0 Pi such that n = mC(Σ) and

n− d = max{mC(π) | π ∈ Fk−2},
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where Fj denotes the set of j-flats in Σ. Such a partition of Σ is called an
(n, n − d)-arc of Σ. Conversely an (n, n − d)-arc of Σ gives an [n, k, d]q code
in the natural manner. A line l with t = mC(l) is called a t-line. A t-plane, a
t-hyperplane and so on are defined similarly. For an m-flat Π in Σ, let

γj(Π) = max{mC(∆) | ∆ ⊂ Π, ∆ ∈ Fj}, 0 ≤ j ≤ m.

We denote simply by γj instead of γj(Σ). It holds that γk−2 = n−d, γk−1 = n.
When C is Griesmer, the values γ0, γ1, ..., γk−3 are also uniquely determined
([14]) as follows:

γj =

j∑
u=0

⌈ d

qk−1−u

⌉
for 0 ≤ j ≤ k − 1. (2)

Denote by [h1, . . . , hk] the hyperplane of Σ defined by a non-zero vector h =
(h1, . . . , hk) ∈ Fkq as {P(p1, . . . , pk) ∈ Σ | h1p1 + · · ·+ hkpk = 0}, and by ai the
number of i-hyperplanes in Σ. Note that

ai = An−i/(q − 1) for 0 ≤ i ≤ n− d. (3)

The list of ai’s is called the spectrum of C. We usually use τj ’s for the spectrum
of a hyperplane of Σ to distinguish from the spectrum of C. Simple counting
arguments yield the following [15]:

n−d∑
i=0

ai = θk−1, (4)

n−d∑
i=1

iai = nθk−2, (5)

n−d∑
i=2

i(i− 1)ai = n(n− 1)θk−3 + qk−2
γ0∑
s=2

s(s− 1)λs. (6)

When γ0 = 1, one can get the following from (4)-(6):

n−d−2∑
i=0

(
n− d− i

2

)
ai =

(
n− d

2

)
θk−1 − n(n− d− 1)θk−2 +

(
n

2

)
θk−3. (7)

Lemma 2.1 ([16]). Put ε = (n − d)q − n and t0 = b(w + ε)/qc, where bxc
denotes the largest integer less than or equal to x. Let Π be a w-hyperplane
through a t-secundum δ. Then t ≤ (w + ε)/q and the following hold.
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(a) aw = 0 if an [w, k − 1, d0]q code with d0 ≥ w − t0 does not exist.

(b) γk−3(Π) = t0 if an [w, k− 1, d1]q code with d1 ≥ w− t0 + 1 does not exist.

(c) Let hj be the number of j-hyperplanes through δ other than Π. Then∑
j hj = q and ∑

j

(γk−2 − j)hj = w + ε− qt. (8)

From now on, let C be an [n, k, d]q code with gcd(d, q) = 1, q ≥ 3. We
assume k ≥ 4 since Theorem 1.4 is trivial for k = 3. From (3), the congruence
condition in Theorem 1.3 is equivalent to that

mC(Π) ≡ n or n− d (mod q) (9)

for any hyperplane Π in Σ = PG(k − 1, q). Let σ be an s-flat in Σ. We call
that C is locally 2-weight (mod q) at σ if (9) holds for any hyperplane Π of Σ
through σ. We also call that C is e-locally 2-weight (mod q) at σ if (9) holds for
any hyperplane Π through σ except for exactly e hyperplanes.

Example 2.1. Let C1 be the [23, 4, 14]3 code in Example 1.1. We look at C1
again from the geometrical point of view. From the weight distribution, C1 has
spectrum

(a0, a5, a6, a7, a8, a9) = (1, 1, 6, 9, 12, 11).

Note that ai > 0 with i 6≡ n, n− d (mod 3) implies i = 7 and that the 7-planes
are [0, 0, 1, 1], [0, 0, 1, 2], [0, 1, 0, 1], [1, 0, 1, 1], [1, 1, 1, 2], [1, 2, 0, 1], [1, 2, 0, 2],
[1, 2, 2, 1], [1, 2, 2, 2], where [a, b, c, d] stands for the hyperplane V (ax0 + bx1 +
cx2 + dx3) in Σ = PG(3, 3). Let ` be the line through two points P(0, 1, 0, 0)
and P(0, 0, 1, 0), and let δ1 = [1, 0, 0, 0], δ2 = [0, 0, 0, 1], δ3 = [1, 0, 0, 1], δ4 =
[1, 0, 0, 2] be the planes through `. Then, mC(δ1) = mC(δ2) = 9, mC(δ3) = 8,
mC(δ4) = 6. Thus, C1 is locally 2-weight (mod 3) at `. Next, take a point
P and three 7-planes H1, H2, H3 in Σ as P = P(1, 0, 0, 0), H1 = [0, 1, 0, 1],
H2 = [0, 0, 1, 1], H3 = [0, 0, 1, 2]. Then, every plane δ (6= H1, H2, H3) through P
satisfies mC(δ) ≡ n or n − d (mod 3). Hence, C1 is 3-locally 2-weight (mod 3)
at P .

Theorem 2.2. Let σ be an s-flat in Σ = PG(k − 1, q) with 0 ≤ s ≤ k − 4.
If an [n, k, d]q code C is e-locally 2-weight (mod q) at σ for some e > 0, then
e ≥ qk−s−3.
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Proof. Let C be an [n, k, d]q code with a generator matrix G whose i-th row is
gi, 1 ≤ i ≤ k. We prove Theorem 2.2 by the dual version of the usual geometric
method, that is, the columns of G are considered as hyperplanes of the dual
space Σ∗ of Σ = PG(k − 1, q). For P = P(p1, . . . , pk) ∈ Σ∗, the weight of
P with respect to G, denoted by wG(P ), is defined in [17] as the weight of a

corresponding codeword, i.e., wG(P ) = wt(
k∑
i=1

pigi). Now, let

F1 = {P ∈ Σ∗ | wG(P ) 6≡ 0, d (mod q)}

and let σ∗ be the set of hyperplanes in Σ through σ, which forms a (k−2−s)-flat
of Σ∗. Let ϕ1 = |F1 ∩ σ∗|. Then, it follows from “Proof of Theorem 1.5” in [18]
that ϕ1 ≥ qk−3−s. This completes the proof.

In the above proof, the (k−2− s)-flat σ∗ corresponds to Vm in Theorem 1.4
with m = k − 1 − s. Hence, Theorem 1.4 follows. Especially for s = k − 4, we
get the following.

Corollary 2.3. Let H1, H2, . . . ,Hs be distinct s hyperplanes through a (k− 4)-
flat σ in Σ. Assume mC(Π) ≡ n or n+ 1 (mod q) for any other hyperplane Π
containing σ. Then, mC(Hi) ≡ n or n+ 1 (mod q) for 1 ≤ s ≤ q − 1.

3 Proof of Theorem 1.2

We prove the non-existence of [g9(4, d), 4, d]9 codes for d = 197, 583, 809 as
an application of Theorem 2.2.

Lemma 3.1. There exists no [223, 4, 197]9 code.

Proof. Let C be a putative Griesmer [223, 4, 197]9 code. Then, an i-plane
through a fixed t-line in Σ = PG(3, 9) satisfies

t ≤ i+ 11

9
(10)

by Lemma 2.1. If there exists a 2-plane δ2, it follows from (10) that there exists
no 2-line on δ2, a contradiction. If there exists a 11-plane, it corresponds to
a [11, 3, d0]9 code with d0 ≥ 11 − 2 = 9, which does not exist, see [5]. Thus,
a11 = 0. In this way, one can get

ai = 0 for all i 6∈ {0, 1, 7-10, 16, 17, 25, 26}.
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This procedure to rule out some possible multiplicities of hyperplanes using the
known results on nq(k − 1, d) and Lemma 2.1 and the possible spectra for an
(n− d)-hyperplane is called the first sieve [7]. The equality (8) gives∑

j

(26− j)hj = w + 11− 9t (11)

with
∑
j hj = 9. From (7), we have

∑
i≤17

(
26− i

2

)
ai = 6705. (12)

Suppose a0 > 0 and let δ0 be a 0-plane. Setting w = t = 0, the maximum
possible contribution of hj ’s in (11) to the LHS of (12) is (h16, h25, h26) =
(1, 1, 7). Hence we get

(LHS of (12)) ≤
(

10

2

)
θ2 +

(
26

2

)
= 4420,

a contradiction. Hence a0 = 0. One can show a1 = 0 similarly.
Suppose a9 > 0 and let P be a 1-point on a 9-plane δ9. Then, there are

eight 2-lines and two 1-lines on δ9 through P . Since the possible solutions of
(11) with w = 9 is (h16, h25, h26) = (1, 1, 7) or (h17, h25, h26) = (1, 2, 6) for t = 1
and only (h25, h26) = (2, 7) for t = 2, every plane δ ( 6= δ9) through P satisfies
mC(δ) ≡ 7 or 8 (mod 9), which contradicts Corollary 2.3. Thus, a9 = 0. One
can similarly prove a10 = 0.

Now, applying Theorem 1.3, C is extendable, which contradicts Theorem 1.1
(c). This completes the proof.

Lemma 3.2 ([19]). The spectrum of a [48, 3, 42]9 code is (a0, a3, a6)=(3, 16, 72).

Lemma 3.3. There exists no [658, 4, 584]9 code.

Proof. Let C be a putative Griesmer [658, 4, 584]9 code. Then, (γ0, γ1, γ2) =
(1, 9, 74) from (2), and an i-plane through a fixed t-line in Σ = PG(3, 9) satisfies

t ≤ i+ 8

9
(13)

by Lemma 2.1. We have

ai = 0 for all i 6∈ {0, 1, 10, 28, 37, 46-48, 55, 64, 65, 73, 74}
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by the first sieve. The equality (8) gives∑
j

(74− j)hj = w + 8− 9t (14)

with
∑
j hj = 9. Suppose a0 > 0 and let δ0 be a 0-plane. Since the possible

solution of (14) with w = t = 0 is (h73, h74) = (8, 1) only, C is 1-locally 2-weight
(mod 9) at any point on δ0, which contradicts Corollary 2.3. Hence a0 = 0.

Suppose a48 > 0 and let P be a 1-point on a 48-plane δ48. Then, from
Lemma 3.2, the lines on δ48 through P consist of nine 6-lines and one 3-line.
Since the possible solution of (14) with (w, t) = (48, 6) is (h73, h74) = (2, 7)
only and since the RHS of (14) with (w, t) = (48, 3) is 29, there are at most
one 48-plane (6= δ48) through P , which also contradicts Corollary 2.3. Thus,
a48 = 0.

Now, we have ai = 0 for all i 6≡ n, n− d (mod 9). Applying Theorem 1.3, C
is extendable, which contradicts Theorem 1.1 (a). This completes the proof.

Lemma 3.4 ([20]). Let C be a Griesmer [n, k, d]q code, where q is a power of a
prime p. If q divides d, then C is p-divisible.

Lemma 3.5. There exists no [911, 4, 809]9 code.

Proof. Let C be a putative Griesmer [911, 4, 809]9 code. Then, (γ0, γ1, γ2) =
(2, 12, 102) from (2), and an i-plane through a fixed t-line in Σ = PG(3, 9)
satisfies

t ≤ i+ 7

9
(15)

by Lemma 2.1. Since γ0 = 2, we have λ2 = λ0 + 91, for λ0 + λ1 + λ2 = θ3, and
λ1 + 2λ2 = 911. One can get

ai = 0 for all i 6∈ {0, 47, 48, 74-81, 101, 102}

by the first sieve. The equality (8) gives∑
j

(102− j)hj = w + 7− 9t (16)

with
∑
j hj = 9. Suppose a0 > 0 and let δ0 be a 0-plane. Then, we have a0 = 1

and that the other planes are 101- or 102-plane by (16), which contradicts
Corollary 2.3 taking a 0-point of δ0 as σ. Hence a0 = 0. From (7), we have∑

i≤81

(
102− i

2

)
ai = 81λ2 − 4131. (17)
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Suppose a81 > 0 and let δ81 be an 81-plane. Then, the spectrum of δ81 is
(τ0, τ9) = (1, 90) [21]. Setting w = 81, the maximum possible contribution
of hj ’s in (16) to the LHS of (17) is (h47, h76, h101) = (1, 1, 7) for t = 0 and
(h101, h102) = (7, 2) for t = 9. Hence we get

(LHS of (17)) ≤
(

47

2

)
+

(
76

2

)
+

(
81

2

)
= 2020,

whence λ2 ≤ 75, which contradicts that λ2 = 91+λ0 ≥ 91. Hence a81 = 0. One
can similarly prove a80 = a79 = 0.

Now, let δ be a 102-plane with spectrum τj . Then, δ corresponds to a
Griesmer [102, 3, 90]9 code from (15), and hence τj > 0 implies j ∈ {0, 3, 6, 9, 12}
by Lemma 3.4. Take a 1-point P on δ and let sj be the number of j-lines through
P on δ. Then, we have

(s3, s6, s9) ∈ {(1, 0, 0), (0, 1, 1), (0, 0, 3)}. (18)

Note that the solutions of (16) with w = 102 satisfy that h76 + h77 + h78 is at
most 4−m for t = 3m with m = 1, 2, 3, 4. Hence, from (18), there are at most
three 76-, 77- or 78-planes through P , which contradicts Corollary 2.3. Thus,
we obtain a76 = a77 = a78 = 0. Applying Theorem 1.3, C is extendable, which
contradicts Theorem 1.1 (a). This completes the proof.

Now, Theorem 1.2 follows from Theorem 1.1 and Lemmas 3.1, 3.3, 3.5.

4 Conclusion

When an [n+ 1, k, d+ 1]q code with d+ 1 divisible by q does not exist, it is
most likely that an [n, k, d]q code does not exist as well. Hill-Lizak’s Extension
Theorem is often employed to prove the non-existence of an [n, k, d]q code with
d ≡ −1 (mod q). We gave a result on a new notion “e-locally 2-weight (mod q)”
for linear codes over Fq, which could help to rule out some possible weights of
codewords so that one can apply the extension theorem to get a contradiction.
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