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1Higher Teachers Training College,
Marien Ngouabi University, Republic of Congo

michel.koukouatikissa@umng.cg

2Faculty of Economics Sciences,
Marien Ngouabi University, Republic of Congo

gelinlouz@gmail.com

Abstract

In this paper, we propose the bivariate distribution of the Katz dis-
tribution [1] constructed by the trivariate reduction method, method de-
veloped in [6] and used in [5] to give an equivalent definition of the bi-
variate Poisson distribution [7, 8]. The constructed distribution includes,
in particular, the bivariate Poisson distribution [5] and has interesting
properties. For the estimation of the parameters, we used two methods:
the method of moments and the maximum likelihood method using the
EM algorithm. An application to concrete data has been made in order
to carry out a comparative study between bivariate Poisson and Katz
distributions, and we discuss the likelihood-ratio test, which assesses the
goodness of fit of two competing statistical models.
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1 Introduction

Katz [1] has formulated one of the most important families of probability
distributions in the analysis and modeling of count data. Defined from the
successive probability ratios:

p(z + 1)

p(z)
=
λ+ βz

z + 1
, z = 0, 1, . . . ,

with p(0) 6= 0 and p(z) = P (Z = z), where λ > 0 and β < 1, are the canonical
and the dispersion’ parameters, respectively. It is understood that if λ+βz < 0
then p(z) = 0 for z = 1, 2, . . . [2,3]. Its probability mass function (pmf) is given
by [4]:

p(z) =


λz

z!
e−λ, if β = 0,

(λ/β)zβ
z

z!
(1− β)λ/β , otherwise,

z = 0, 1, . . . ,

where (α)z is the Pocchammer symbol and defined to be (α)z = α(α+1) . . . (α+
z− 1) for z = 0, 1, . . . , and α any real number with (α)0 = 1. In particular, this
distribution is reduce to [3]:

• Poisson distribution P(λ), when β = 0,

• binomial distribution B(N,P ) with N = −λ
β

or

[
−λ
β

]
+ 1 according as −λ

β

is or not an integer and P =
−β

1− β
, when β < 0,

• negative binomial NB(r, β) with r =
λ

β
, when 0 < β < 1.

Each of these last three distributions is the prototype of equi-, under-, and over-
dispersed distributions, respectively. So the Katz distribution is a good way to
unify Poisson, binomial and negative binomial distributions.

Starting from this univariate Katz distribution, we construct a bivariate Katz
distribution using the trivariate reduction method for analysis and modeling of
count data. The obtained model is a good way to unify bivariate Poisson,
bivariate binomial, and bivariate negative binomial distributions. Since the
Katz distribution is a generalization of the Poisson distribution, this work can
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be viewed as a generalization of [5]. Moreover, this bivariate Katz distribution
can be seen as resulting from a combination of the univariate Poisson, binomial,
and negative binomial distributions.

The trivariate reduction method was developed in [6] and used in [5] to give
an equivalent definition of the bivariate Poisson distribution [7–9]. The basic
idea is to construct a pair of dependent but also independent random variables
from three independent random variables. Let be consider three independent
random variables Z1, Z2 and Z3. The random pair (X,Y ) defined as follow:

X = Z1 + Z3, Y = Z2 + Z3, (1)

admits for pmf p(x, y), the joint probability P (X = x, Y = y) = p(x, y), given
by [10]

p(x, y) =

min(x,y)∑
k=0

p(x− k)p(y − k)p(k),

where p(t) is the pmf of univariate distribution.

On this basis, the rest of the paper is presented as follows. First, we present
successively the following notions: probability mass function, probability gener-
ating function, moments, correlation and independence, marginal distributions,
and recurrent relations. Secondly, we estimate the parameters and we discuss
the likelihood-ratio test. For parameter estimation, we use two methods: the
method of moments and the maximum likelihood method using the Expectation-
Maximization (EM) algorithm. In this work, we do not discuss the existence
and uniqueness of the estimators. Finally, we make an application to concrete
data in order to carry out a comparative study between bivariate Poisson and
Katz distributions. Two criteria were used, Akaike information criterion (AIC)
and bayesian information criterion (BIC), for a better choice of distribution.

2 Bivariate Katz’s distribution

In this section, we present and study the bivariate Katz distribution from a
probabilistic point of view.

2.1 Probability mass function

Let be consider three independent univariate Katz random variables Z1, Z2

and Z3 with parameters (λ1, β1), (λ2, β2) and (λ3, β3), respectively. From (1),
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the random pair (X,Y ), such that X = Z1 + Z3 and Y = Z2 + Z3, follows a
bivariate Katz distribution which the pmf pBK(x, y) is:

pBK(x, y) = (1− β1)λ1/β1(1− β2)λ2/β2(1− β3)λ3/β3

×
min(x,y)∑
k=0

(λ1/β1)x−k(λ2/β2)y−k(λ3/β3)kβ
x−k
1 βy−k2 βk3

(x− k)!(y − k)!k!
. (2)

In particular, we have the following bivariate distributions:

• bivariate Poisson distribution [7]:

p(x, y) = e−(λ1+λ2+λ3)

min(x,y)∑
k=0

λx−k1 λy−k2 λk3
(x− k)!(y − k)!k!

,

• bivariate binomial distribution [11]:

p(x, y) = N1!N2!N3!

×
min(x,y)∑
k=0

P x−k1 P y−k2 P k3 (1− P1)N−x+k(1− P2)N−y+k(1− P3)N−k

(x− k)!(y − k)!k!(N − x+ k)!(N − y + k)!(N − k)!
,

with x, y = 0, 1, . . . , N ,

• bivariate negative binomial distribution [12]:

p(x, y) =
βr11 β

r2
2 β

r3
3

Γ(r1)Γ(r2)Γ(r3)

min(x,y)∑
k=0

Γ(r1 + x− k)Γ(r2 + y − k)Γ(r2 + k)

(x− k)!(y − k)!k!

× (1− β1)x−k(1− β2)y−k(1− β3)k.

2.2 Probability generating function

The probability generating function GZ for univariate Katz random variable
Z with parameters (λ, β) is given by [2, 3]:

GZ(t) =

[
1− βt
1− β

]−λ/β
.
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Let us consider the Katz random pair (X,Y ) with parameters (λ1, λ2, λ3,
β1, β2, β3), the probability generating function GX,Y of (X,Y ) is:

GX,Y (t1, t2) = E
[
tX1 t

Y
2

]
= E

[
tZ1
1

]
E
[
tZ2
2

]
E
[
(t1t2)Z3

]
= GZ1

(t1)GZ2
(t2)GZ3

(t1t2)

=

[
1− β1t1
1− β1

]−λ1/β1
[

1− β2t2
1− β2

]−λ2/β2
[

1− β3t1t2
1− β3

]−λ3/β3

,

where Z1, Z2, Z3 are independent.

2.3 Moments

The expressions for the first three moments of the Katz are as follows [2,3]:

E(Z) =
λ

1− β
,

V (Z) =
λ

(1− β)2
,

E(Z3) =
λ(1 + λ)

(1− β)2
.

(3)

Since Z1, Z2 and Z3 are independent Katz random variables, and from (1) and
(3), we have: 

E(X) =
λ1

1− β1
+

λ3
1− β3

,

V (X) =
λ1

(1− β1)2
+

λ3
(1− β3)2

,

E(Y ) =
λ2

1− β2
+

λ3
1− β3

,

V (Y ) =
λ2

(1− β2)2
+

λ3
(1− β3)2

.

(4)

Now let µr,s = E [(X − E(X))r(Y − E(Y ))s] be the (r, s)th central moment of
(X,Y ). For r = s = 1,

µ11 = cov(X,Y ) = V (Z3) =
λ3

(1− β3)2
, (5)
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and for r = 1 and s = 2 or r = 2 and s = 1,

µ21 = µ12 = E
(
Z3
3

)
− 3E

(
Z2
3

)
E (Z3) + 2 [E (Z3)]

3
=
λ3(1 + β3)

(1− β3)3
.

2.4 Correlation and independence

From (4) and (5), the correlation coefficient of X and Y is:

ρXY =
λ3

(1− β3)2
[

λ1
(1− β1)2

+
λ3

(1− β3)2

]1/2 [
λ2

(1− β2)2
+

λ3
(1− β3)2

]1/2 .
Since λ3 > 0 then ρXY > 0, i.e., the correlation coefficient of this model is
strictly positive. This shows that the condition of zero correlation is not satisfied
and the random variables X and Y can’t be independent. As in [13], for the
variables X and Y to be independent, it is necessary and sufficient that X3 = 0,
which would imply λ3 = 0.

2.5 Marginal distributions

The marginal distributions are:

P (X = x) = (1− β1)λ1/β1(1− β3)λ3/β3

x∑
k=0

(λ1/β1)x−k(λ3/β3)kβ
x−k
1 βk3

(x− k)!k!
, (6)

and

P (Y = y) = (1− β2)λ2/β2(1− β3)λ3/β3

y∑
k=0

(λ2/β2)y−k(λ3/β3)kβ
y−k
2 βk3

(y − k)!k!
. (7)

In particular, if β1 = β2 = β3 = β, then since

n∑
k=0

(a)n−k(b)k
(n− k)!k!

=
(a+ b)n

n!
,

equations (6) and (7) reduce to:

P (X = x) =
((λ1 + λ3)/β)xβ

x

x!
(1− β)(λ1+λ3)/β ,

and

P (Y = y) =
((λ2 + λ3)/β)yβ

y

y!
(1− β)(λ2+λ3)/β ,

i.e., X and Y follow univariate Katz distributions with parameters (λ1 + λ3, β)
and (λ2 + λ3, β), respectively. We have the same result as Theorem 3 in [4].
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2.6 Recurrent relations

Following [14], the terms in the first row and column can be computed using
the univariate Katz distribution, as is seen from

p(0, 0) = (1− β1)λ1/β1(1− β2)λ2/β2(1− β3)λ3/β3 ,
p(x, 0) = (1− β2)λ2/β2(1− β3)λ3/β3p1(x), x = 1, 2, . . . ,
p(0, y) = (1− β1)λ1/β1(1− β3)λ3/β3p2(y), y = 1, 2, . . . ,

where p1 and p2 are the pmf of univariate Katz distributions with parameters
(λ1, β1) and (λ2, β2), respectively. The probabilities for x = 1, 2, . . . , y =
1, 2, . . . can be computed recursively as:

p(x, y) = (1− β1)−λ1/β1(1− β2)−λ2/β2(1− β3)−λ3/β3

×
min(x,y)∑
k=0

p(x− k, 0)p(0, y − k)
(λ3/β3)kβ

k
3

k!
.

3 Statistical study

In this section, we study the bivariate Katz distribution from a statistical
point of view. Specifically, we estimate the parameters and discuss the adequacy
test.

3.1 Parameters estimating

In this subsection, we are interested in the estimation of the parameters, and
we use two methods of estimation: the method of moments and the maximum
likelihood method. In practice, the moment estimators (in short, MME) can be
used as initial values in the algorithm for determining the maximum likelihood
estimators (in short, MLE). We then use the EM algorithm to maximize the
likelihood function of the bivariate Katz distribution.

3.1.1 Method of moments

The method of moments consists to equal the theoretical moments and the
empirical moments in order to determine the estimators. Let be consider a
n−sample (xi, yi), i = 1, 2, . . . , n and note

x =
1

n

n∑
i=1

xi, y =
1

n

n∑
i=1

yi, σ̂2
X =

1

n

n∑
i=1

(xi − x)2, σ̂2
Y =

1

n

n∑
i=1

(yi − y)2,
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and

µ̂j1 =
1

n

n∑
x,y

nxy(x− x)(y − y)j for j = 1, 2,

where nx,y is the frequency of the pair (x, y) for x = 0, 1, . . . , y = 0, 1, . . ., and∑
x,y

nxy = n.

The system equalizing the theoretical moments to the empirical moments is:

λ1
1− β1

+
λ3

1− β3
= x,

λ1
(1− β1)2

+
λ3

(1− β3)2
= σ̂2

X ,

λ2
1− β2

+
λ3

1− β3
= y,

λ2
(1− β2)2

+
λ3

(1− β3)2
= σ̂2

Y ,

λ3
(1− β3)2

= µ̂11,

λ3(1 + β3)

(1− β3)3
= µ̂21.

(8)

We can derive the moment estimators from (8):

λ̂1 =
(µ̂11 + µ̂21)2x2 + 4

[
µ̂2
11 − x(µ̂21 + µ̂11)

]
µ̂2
11

(µ̂11 + µ̂21) [(µ̂11 + µ̂21)σ̂2
X − µ̂2

11 − µ̂11µ̂21]
,

λ̂2 =
(µ̂11 + µ̂21)2y2 + 4

[
µ̂2
11 − y(µ̂21 + µ̂11)

]
µ̂2
11

(µ̂11 + µ̂21) [(µ̂11 + µ̂21)σ̂2
Y − µ̂2

11 − µ̂11µ̂21]
,

λ̂3 =
4µ̂3

11

(µ̂11 + µ̂21)2
,

β̂1 =
(x− σ̂2

X)(µ̂11 + µ̂21) + µ̂11µ̂21 − µ̂2
11

µ̂2
11 + µ̂11µ̂21 − (µ̂11 + µ̂21)σ̂2

X

,

β̂2 =
(y − σ̂2

Y )(µ̂11 + µ̂21) + µ̂11µ̂21 − µ̂2
11

µ̂2
11 + µ̂11µ̂21 − (µ̂11 + µ̂21)σ̂2

Y

,

β̂3 =
µ̂21 − µ̂11

µ̂11 + µ̂21
.
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3.1.2 Maximum likelihood estimation using the EM algorithm

The EM algorithm [15] is an iterative parametric estimation algorithm within
the general maximum likelihood framework.

Consider three independent random variables Zj , j = 1, 2, 3, which are Katz
distributed with parameters (λj , βj), j = 1, 2, 3, respectively.

Define θ = (λ1, λ2, λ3, β1, β2, β3) as the vector of parameters. The joint pmf
of (Z1, Z2, Z3) is given by [16]:

p(z1, z2, z3|θ) =

3∏
j=1

(1− βj)λj/βj

zj !

z∏
k=1

[λj + βj(k − 1)]. (9)

Now consider the diffeomorphism ϕ defined as follows:

ϕ : N3 −→ N3

(z1, z2, z3) 7−→ (x, y, t)

such as: x = z1 + z3, y = z2 + z3 and t = z3.
The joint pmf of (X,Y, T ), using (9), is given by:

p(x, y, t|θ) = p ◦ ϕ−1(x, y, t)
∣∣Jϕ−1

∣∣ = p(z1, z2, z3|θ) = p(x− t, y − t, t|θ),

=
(1− β1)λ1/β1

(x− t)!

x−t∏
k=1

[λ1 + β1(k − 1)]
(1− β2)λ2/β2

(y − t)!

y−t∏
k=1

[λ2 + β2(k − 1)]

× (1− β3)λ3/β3

t!

t∏
k=1

[λ3 + β3t],

where t ≤ min(x, y) and
∣∣Jϕ−1

∣∣ is the absolute value of the determinant of the
Jacobian of ϕ. The log-likelihood corresponding is given by:

l(θ) =

3∑
j=1

nλj
βj

log(1− βj) +

n∑
i=1

xi−ti∑
k=1

log [λ1 + β1(k − 1)]− nlog(x− t)!

+

n∑
i=1

yi−ti∑
k=1

log [λ2 + β2(k − 1)]− nlog(y − t)!

+

n∑
i=1

ti∑
k=1

log [λ3 + β3(k − 1)]− nlog t!, (10)
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where log t! =
1

n

n∑
i=1

log ti!, with convention

ti∑
k=1

= 0 for ti = 0.

Following [17], the EM algorithm for the bivariate Katz model (2) is given
by:

• E-step: Using the current parameter values of r iteration noted by λ
(r)
1 , λ

(r)
2 ,

λ
(r)
3 , β

(r)
1 , β

(r)
2 and β

(r)
3 , calculate the conditional expected values of t∗i for

i = 1, . . . , n:

t∗i = Q(θ|θ(r)) = E[Ti|Xi, Yi, θ
(r)]

=



λ3
pBK

(
xi − 1, yi − 1|θ(r)

)
pBK

(
xi, yi|θ(r)

) + β3

[
λ3
pBK

(
xi − 2, yi − 2|θ(r)

)
pBK

(
xi, yi|θ(r)

) + . . .

+ β3

[
λ3
pBK

(
xi − 3, yi − 3|θ(r)

)
pBK

(
xi, yi|θ(r)

)
+ β3

[
λ3
pBK

(
xi −min(xi, yi), yi −min(xi, yi)|θ(r)

)
pBK

(
xi, yi|θ(r)

) ]
. . .

]]
,

if min(xi, yi) > 0,

0, if min(xi, yi) = 0,

where pBK(x, y|θ) is given in (2).

• M-step: By replacing ti by t∗i in (10), we obtain:

l(θ|θ(r)) =

3∑
j=1

nλj
βj

log(1− βj) +

n∑
i=1

xi−t∗i∑
k=1

log [λ1 + β1(k − 1)]− nlog(x− t∗)!

+

n∑
i=1

yi−t∗i∑
k=1

log [λ2 + β2(k − 1)]− nlog(y − t∗)!

+

n∑
i=1

t∗i∑
k=1

log [λ3 + β3(k − 1)]− nlog t∗!. (11)

Next, we maximize (11). The two steps are repeated iteratively until the
difference between two successive iterations is less than ε, for all ε > 0 quite
small. We use a numerical algorithm as the Newton-Raphson procedure for
iteratively computing θ(r), because there is no closed form solution of the
M-step [18].
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3.2 Hypotheses testing

In this subsection, we perform a test on the dispersion parameters of the
bivariate Katz distribution. Since the bivariate Katz distribution reduces to the
bivariate Poisson distribution for β1 = β2 = β3 = 0, we use the likelihood ratio
test to test the bivariate Poisson distribution (constrained parametric model)
against the bivariate Katz distribution (unconstrained parametric model).

Following [19], the test hypotheses are reformulated as follows:

H0 : β1 = β2 = β3 = 0 versus H0 isn’t true.

The null hypothesis H0 signifies the bivariate Poisson model is reasonable, and
the alternative hypothesis (H1 : ∃j ∈ {1, 2, 3}, βj 6= 0), the bivariate Katz
distribution is more appropriate.

To simplify notation, define θ = (λ1, λ2, λ3, β1, β2, β3) and θ0 = (λ1, λ2, λ3).
The likelihood ratio test statistic LR is given by [20]:

LR = −2 log

[
L(θ0)

L(θ)

]
= −2[l(θ0)− l(θ)], (12)

where L and l denote the maximum likelihood and the maximum log-likelihood,
respectively.

The LR test statistic follows approximately, under the null hypothesis, the
chi-square distribution (χ2) with degrees of freedom df = dim(θ) − dim(θ0),
where dim designates the dimension [21].

4 Applications

In this section, we carry out a comparative study between the bivariate
Katz distribution (BKD) and the Poisson distribution (BPD). On this basis, we
consider the same real data used in [17] to present an R package called bivpois.
This data concerns the demand for Health Care in Australia (Data set 1) and
the Italian football championship (Serie A) for season 1991-92 (Data set 2),
presented in Tables 1 and 2, respectively. See [13, 17] for more details on the
description of these data sets.

For the bivariate Poisson distribution, we used the simple.bp EM function
from the bivpois package, which provides a number of fitting statistics. For
the bivariate Katz distribution, we wrote an EM algorithm program in the
R language environment [22] similar to the simple.bp EM function. Table 3
contains the parameter estimates of the two distributions for the two data sets,
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Number of Doctor Number of Prescribed medications (Y )
Consultations (X) 0 1 2 3 4 5 6 7 8

0 2789 726 307 171 76 32 16 15 9
1 224 212 149 85 50 35 13 5 9
2 49 34 38 11 23 7 5 3 4
3 8 10 6 2 1 1 2 0 0
4 8 8 2 2 3 1 0 0 0
5 3 3 2 0 1 0 0 0 0
6 2 0 1 3 1 2 2 0 1
7 1 0 3 2 1 2 1 0 2
8 1 1 1 0 1 0 1 0 0
9 0 0 0 0 0 0 0 0 1

Table 1: Cross-tabulation of data from the Australian health survey [5].

Goals scored by the Goals scored by the away team (Y )
home team (X) 0 1 2 3 4 8

0 38 23 13 0 1 0
1 41 58 12 10 3 0
2 28 19 10 3 0 1
3 6 11 4 4 1 0
4 7 5 1 0 1 0
5 2 2 2 0 0 0

Table 2: Cross-tabulation of data for Italian football championship (Serie A) for season
1991-92.

and Table 4 contains the fitting statistics: values of the loglikelihood, AIC, BIC,
and the number of iterations (Iter). The moment estimates were used as initial
values for the EM algorithm for the bivariate Katz distribution. The package
maxLik for the R statistical environment [23] was used for the optimization of
(11).

Table 3 shows that the dispersion parameters are positive (or null), and as
the bivariate Katz distribution can result from a combination of the univariate
Poisson, binomial, and negative binomial distributions, for these two data sets,
the bivariate Katz distribution is seen as a combination of a univariate Poisson
distribution and two negative binomials, i.e., the bivariate Katz is none other
than the bivariate Poisson-negative binomial distribution. And from Table 4,
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Data Distri- Parameters
set butions λ1 λ2 λ3 β1 β2 β3

1
BPD 0.176 0.737 0.125
BKD 0.173 0.362 0.097 7.2 × 10−24 0.505 0.241

2
BPD 1.242 0.834 0.096
BKD 0.967 0.620 0.180 0.165 0.174 8.1 × 10−25

Table 3: Parameters estimation.

Data set Distributions loglikelihood AIC BIC Iter.

1
BPD -11268.36 22542.71 22564.46 14
BKD -9382.162 18776.32 18819.81 22

2
BPD -845.4001 1696.800 1710.050 74
BKD -789.4036 1590.807 1617.308 147

Table 4: Goodness-of-fit.

depending on the values of AIC and BIC, the bivariate Katz distribution would
be preferable to the Poisson one, despite the number of additional parameters.
That is confirmed by the ratio test. Indeed, the values of the LR−statistic
corresponding to two data sets are 3772.396 and 111.993, respectively, and for
df = 3, χ2 = 7.8147 at the significance level of 5%. In other terms, the bivariate
Katz model is more appropriate than the Poisson model.

5 Conclusion

In this paper, we have proposed the bivariate Katz distribution constructed
by the trivariate reduction technique. This model has some interesting prop-
erties, and is a good way to unify bivariate Poisson, bivariate binomial, and
bivariate negative binomial distributions. Katz’s bivariate distribution is there-
fore a generalization of Poisson’s and is as flexible and competitive as other
bivariate distributions in the literature, as the results obtained in the applica-
tion clearly illustrate.

The work carried out presents several avenues for future research. More
precisely, we are working to propose goodness-of-fit tests for the bivariate Katz
distribution, generalizing the goodness-of-fit tests for the bivariate Poisson dis-
tribution [24], and to realize a regression study of the uni- and bi-variate Katz
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models that will enable us to carry out an in-depth study of the data processed
in Section 3. We will also carry out a discussion on the existence and uniqueness
of the estimators.
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