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Abstract

This is the second part of the paper. In this part we will use the
world of the chess game in order to create the language we are looking
for. We will show how a complex world can be described in a simple and
understandable way. Before describing the movement of chess pieces, we
will need to extend the concept of algorithm. The new concept describes
the algorithm as a sequence of actions performed in an arbitrary world.
In the meaning of the new concept, a cooking recipe is also an algorithm.
If we look at a world in which there is an infinite tape and a head which
travels over the tape, then the algorithm of that world will be a Turing
machine. This means that the new concept of algorithm is a generalization
of the old one. Computer programs are algorithms both in the new concept
and in the old one, however, there are many other sequences of actions
which extend the concept.
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1 Introduction

This is the second part of the paper. In Part 1 [1] we already introduced the
basic concepts which we will need going forward. In this second part, we will
create the language we are looking for by using the description of a concrete
world. We will describe the world of the chess game. The chess game will be
presented in two versions: a game with a single player (i.e. a game in which we
play against ourselves), and a game between two players.

By using Event-Driven (ED) models, we will generalize the concept of al-
gorithm and will apply the newly-obtained concept in order to describe the
algorithms which define the movement of the various chess pieces. We will show
that Turing machines are a special case of the newly-obtained algorithm con-
cept. For this purpose we will use a third world in which we have an infinite
tape and head which travels over the tape.

Contributions

1. A definition of the concept algorithm. We have presented the algorithm
as a sequence of events in an arbitrary world. Further on, we present the Turing
machine as an ED model found in a special world where an infinite tape exists.
Thus we prove that the new definition generalizes the Turing machine concept
and expands the algorithm concept.

2. A language for description of worlds such that the description can be
searched automatically without human intervention.

How is this paper organized. First (in Section 2) we will identify the
particular world which we are going to describe. Then (in Section 3) we will
prove that the known tools for description of worlds are not appropriate for the
world in question.

In Section 4 we will describe some simple patterns and will present them by
using ED models (such as the patterns Horizontal and Vertical).

In Section 5 we will define the rules to which the chess pieces move. For
this purpose we will need to expand the algorithm concept. The algorithms to
which chess pieces move will also be presented through ED models.

In Section 6 we will present the chess pieces as objects. The objects will be
an abstraction of higher order. They will be defined through properties. The
property is something concrete and it will be defined through an ED model.

In Section 7 we will add a second player. For this purpose we will make
another higher-order abstraction. This will be the abstraction agent. We will
not observe agents directly and instead will gauge them through their actions.
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Agents will make the world non-computable, but if we add some non-computable
rule then the world can become non-computable even without agents.

Finally, in Section 8 we will look at the agents and various interplays between
them.

2 The chess game

Which concrete world are we going to use in order to create the new language
for description of worlds? This will be the world of chess.

Let us first note that we will want the world to be partially observable
because if the agent can see everything the world will not be interesting. If the
agent sees everything, she will not need any imagination. The most important
trait of the agent is the ability to imagine the part of the world she does not see
at the current moment.

Figure 1: Position of the eye

For the world to be partially observable we will assume that the agent sees
just one square of the chessboard rather than the entire board (Figure 1). The
agent’s eye will be positioned in the square she can see at the moment, and the
agent will be able to move that eye from one square to another so as to monitor
the whole board. Formally speaking, there is not any difference between seeing
the whole board at once and exploring it by checking one square at a time – in
either case one gets the full picture. There will not be any difference only if you
know that by moving your sight from one square to another you will monitor
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the whole chessboard. In practice the agent does not know anything, so she will
need to conjure up the whole board, which however will not be an easy process
and will require some degree of imagination.

In Figure 1, the agent has her eye in square a2 and can move it in all the
four directions. (Right now she cannot move it left because this is the edge of
the board and a move to the left would be incorrect.) In addition to moving the
eye in the four directions, the agent can perform two other actions: “Lift the
piece you see right now” and “Put the piece you lifted in the square you see right
now”. We will designate the two additional actions as Up and Down. These six
actions will enable the agent monitor the chessboard and move the chess pieces,
and that’s everything one needs to play chess.

2.1 A chess game with a single player

We will examine two versions of a chess game – a game with a single player
and a game with two players.

How do you play chess with a single player? You first move some white
piece, then turn the board around, play some black piece and so forth.

We will start by describing the more simple version in which the agent plays
against herself. This version is simpler because in that world there is only
one agent and that agent is the protagonist. Next we will examine the more
complicated version wherein there is a second agent in the world and that second
agent is an opponent of the protagonist.

The question is what can be the goal when we play against ourselves?

2.2 The goal

While the authors of most papers dedicated to AI choose a goal, in this
paper we will not set a particular goal. All we want is to describe the world,
and when we figure out how the world works we will be able to set various goals.
In chess for example our goal can be to win the game or lose it. When we play
against ourselves, the goal can vary. When we play from the side of the white
pieces our goal can be “white to win” and vice versa.

Understanding the world does not hinge on the setting of a particular goal.
The Natural Intelligence (the human being) usually does not have a clearly
defined goal, but that does not prevent human beings from living.

There are two questions: “What’s going on?” and “What should I do?”
Most authors of AI papers rush to answer the second question before they have
answered the first one. In other words, they are looking for some policy, and a
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policy can only exist when there is a goal to be pursued by that policy. We will
try to answer only the first question and will not deal with the second one at
all. Hence, for the purposes of the present paper we will not need a goal.

In most papers the goal is defined through rewards (the goal is to collect as
many rewards as possible). When referring to Markov decision process (MDP)
we will assume that rewards have been deleted from the definition because we
need them only when we intend to look for a policy, while this paper is not
about finding policies.

3 Related work

Can the chess world be described using the already known tools for descrip-
tion of worlds? We will review the tools known at this time and will prove that
they are not appropriate.

3.1 Markov decision process

The most widely used tool for description of worlds is Markov decision pro-
cess (MDP). Can we use MDP for describing the kind of world selected in this
paper? Let us first note that we will have to use Partially observable MDP
(POMDP) because the world we are aiming to describe is Partially observable.

Certainly, the chess world can be presented as a POMDP, but how many
states will this take? We will need as many states as the positions on the
chessboard are, which is an awful lot (in the range of 1045 according to [2]). We
will even need some more states because in addition to the chessboard position
the state must remember the whereabouts of the eye. This means 64 times more
states, which is a little more because adding two zeroes to a large number seems
an insignificant increase. Thus, we do not perceive the numbers 1045 and 1047
as much different.

If we wish to describe this kind of POMDP in tabular form, the description
will be so huge that storing it would be beyond the capacity of any computer
memory. Of course storing the description is the least problem. A much more
serious issue is that we should find and build that table on the basis of our lived
experience which means that for such a huge table we would need enormously
huge lived experience (almost infinite).

Therefore, efforts to find a POMDP description of the chess are bound to
fail.
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3.2 Situation calculus

The first language for description of worlds was proposed by Raymond Reiter
and this is Situation Calculus described in [3].

The chess world can indeed be presented through the formalism proposed by
Raymond Reiter, but we will run into two problems (a small one and big one).

The first (smaller) problem is that in order to present the state of the world
obtained after a certain action, Reiter uses a functional symbol. Thus, Reiter
assumes that the next state of the world is unambiguously defined. That as-
sumption would not be a problem for deterministic worlds such as the chess
game, but would be an issue when it comes to a dice game. The problem of
course is not a big one because we can always assume that the next state is
determinate even if we do not know which one it is. (In other words, we can
assume that there is some destiny which defines the future in an unambiguous
manner, although it does not help us predict what is going to happen.)

In Section 3.2. of their publication of 2001, Boutilier, Reiter and Price [4]
attempt to resolve the first (smaller) problem by replacing each step with two
steps (plies). Instead of a single step of the agent they suggest two plies –
agent ply and nature ply. The idea is that the agent step is non-deterministic
because the world (nature) can respond in a variety of ways, so if we decouple
the agent’s action from nature’s response then the output from each ply would
be deterministic. Essentially we use the same idea by creating a Simple MDP
(further down in this paper).

The second (big) issue with Situation Calculus is Reiter’s implied assumption
that there is some human being (programmer) who has figured out how the world
is designed and will describe that design using first order formulas. All of us wish
to get to a description of the world by first order formulas, but the objective is
to ensure that the description can be found automatically, i.e. without human
intervention. While this paper actually provides a manmade description of the
chess game, our objective is to come up with a machine-searchable description
and the one provided here can indeed be searched and found automatically.

4 Description of the chess game

4.1 Computer emulation

We have emulated the chess-game world by the computer program [5] written
in the language Prolog [6]. The rules of the game used by that program are
presented as ED models.
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Figure 2: Chess game computer emulation

When you start the program [5], in the bottom of the screen you will see the
visuals provided in Figure 2.

The left-hand side of Figure 2 shows the stream of input-output information,
in fact not the full stream, but only the last 50 steps. The top row shows the
agent’s observations and the bottom row – the agent’s actions. There are four
possible observations: {0, x, y, z}. The possible actions are also four: {0, a, b,
c}. For the sake of legibility the nil and the ‘c’ character are replaced by dots
and minuses.

All the agent can see is the left-hand side of Figure 2. The agent cannot see
what is in the right-hand side, and must figure it out in order to understand
the world. In the right-hand side we can see (i) the position on the board, (ii)
the piece lifted by the agent (knight), (iii) the place from which the knight was
lifted (the yellow square) and the square observed currently (the one framed in
red).

4.2 We use coding

The agent will be able to do 8 things: move her gaze (the square currently
observed) in the four directions, lift the piece she sees at the moment and drop
the lifted piece in the square she sees at this moment. The seventh and eighth
thing the agent can do is “do nothing”.

We will limit the agent’s actions to the four characters {0, a, b, c}. The
0 and ‘c’ symbols will be reserved for the “do nothing” action. This leaves us
with 6 actions to describe with as little as 2 characters. How can we do that?
We will do that by coding: Let us divide the process in three steps. Every first
step will describe how we move the square in horizontal direction (i.e. how we
move the observation gauge). Every second step will describe how we move the
square in vertical direction and every third step will indicate whether we lift a
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piece or drop the lifted piece.
We mentioned in [7] that we should avoid excessive coding because the world

is complicated enough and we do not want to complicate it further. However,
the coding here is not excessive because it replaces eight actions with four and
therefore simplifies the world rather than complicate it.

4.3 Two void actions

Why do we introduce two actions that mean “I do nothing”? Actually, when
the agent just stays and does nothing, she observes the world. The question is,
will she be a passive observer or will she observe actively?

When you just stay and observe the world, you are not a passive observer.
At the very least, you are moving your gaze.

All patterns that the passive observer can see are periodic. In a sense, the
periodic patterns are few and not very interesting. Much more interesting are
the patterns that the active observer can see.

We expect the agent to be able to notice certain patterns (properties). For
example, the type and color of pieces are such properties. When the agent stays
in a square and does nothing, it will be difficult for her to detect the pattern
(property), especially since she may have to detect two or three patterns at
the same time. If the agent is active and can alternate two actions, then the
patterns she observes will be much clearer and more quickly detectable.

To distinguish between the two “I do nothing” actions, we called the second
one “surveillance”.

4.4 One, two, three

The first pattern which will exist in this particular world (the game of chess)
stems from our division of the steps in three groups. Let us name this pattern
“One, two, three”. The pattern is modeled in Figure 3.

Figure 3: One, two, three
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What is the gist of this pattern? It counts: one, two, three.
The pattern is presented through an Event-Driven (ED) model. This par-

ticular ED model has three states. The event in this model is only one and this
is the event “always” (i.e. “true” or “at each step”).

4.5 Trace

Does anything specific occur in the states of the above model so that we can
notice it and thereby discover the model? In other words, is there a “trace”?
This terminology was introduced in [8].

Yes, in the third state, action a or action b (or both) must be incorrect. The
reason is that the third state indicates whether we lift the piece we see or drop a
piece which is already lifted. These two actions cannot be possible concurrently.

We can describe the world without this trace, but without it the “One, two,
three” pattern would be far more difficult to discover. That is why it is helpful
to have some trace in this model.

The trace is the telltale characteristic which makes the model meaningful.
Example: cold beer in the refrigerator. Cold beer is what makes the fridge a
more special cupboard. If there was cold beer in all cupboards, the refrigerator
would not be any special and it would not matter which cupboard we are going
open.

The trace enables us predict what is going to happen. When we open the
fridge, we expect to find cold beer inside. Furthermore, the trace helps us
recognize which state we are in now and thereby reduce non-determinacy. Let
us open a white cupboard, without knowing whether it is the fridge or just a
regular white cupboard. If we find cold beer inside, then we will know that we
have opened the fridge and thus we will reduce non-determinacy.

We will consider two types of traces – permanent and moving. The per-
manent trace will be the special features (phenomena) which occur every time
while the moving trace will represent features which occur from time to time
(transiently).

An example in this respect is a house which we describe as an Event-Driven
model. The rooms will be the states of that model. A permanent feature of
those rooms will be number of doors. Transient phenomena which appear and
then disappear are “sunlit” and “warm”. I.e. the permanent trace can tell
us which room is actually a hallway between rooms and the moving trace will
indicate which room is warm at the moment.

Rooms can be linked to various objects. These objects have properties (the
phenomena we see when we observe the relevant object). Objects can also be
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permanent or moving and accordingly their properties will be relatively perma-
nent or transient phenomena (a relatively permanent phenomenon is one which
always occurs in a given state). Furniture items (in particular heavyweight ones)
are examples of permanent objects. People and pets are examples of moving
objects. To sum up, a fixed trace will describe what is permanent and a moving
trace will describe what is transient.

4.6 Horizontal and vertical

The next Event-Driven model we need for our description of the world is the
Horizontal model (Figure 4).

Figure 4: Horizontal pattern

This model tells us in which column of the chessboard is the currently ob-
served square.

Here we have two events: left and right which reflect the direction in which
the agent moves her gaze – to the left or to the right. So, the agent performs
the actions a and b when model 1 is in state 1. We also have two traces. In state
1 playing to the left is not possible. Therefore, the left event cannot occur in
state 1. Similarly, we have state 8 and the trace that playing to the right is not
possible. These two traces will make the model discoverable. For example, if
you are in a dark room which is 8 strides wide, you will find that after making 7
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strides you cannot continue in the same direction. You will realize this because
you will bump against the wall. Therefore, the trace in this case will be the
bump against the wall. These bumps will occur only in the first and in the last
position.

In addition to helping us discover the model, the trace will do a nice job
explaining the world. How else would you explain that in the leftmost column
one cannot play left.

The next model is shown on Figure 5. This model is very similar to the
previous one.

Figure 5: Vertical pattern

This model will tell us the row of the currently observed square. Likewise,
we have two events (forward and backward) and two traces (forward move not
allowed and backward move not allowed).

It makes perfect sense to do the Cartesian product of the two models above
and obtain a model with 64 states which represents the chessboard.

The bad news is that our Cartesian product will not have a permanent trace.
In other words, nothing special will happen in any of the squares. Indeed, various
things happen, but they are all transient, not permanent. For example, seeing a
white pawn in the square may be relatively permanent, but not fully permanent,
because the player can move the pawn at some point of time. Thus we arrive
at the conclusion that the trace may not always be permanent.
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4.7 The moving trace

As we said, moving traces are the special features which occur in a given
state only from time to time (transiently), but not permanently.

How can we depict a moving trace? In the case of permanent traces, for
each state we included an indication showing whether an event occurs always in
that state (by using red color and accordingly blue color for events which never
occur in that state).

We will depict the moving trace by an array with as many cells as are the
states in the model under consideration. In each cell we will write the moving
traces which are in the corresponding state in the current moment. That is, the
moving trace array will be changing its values.

Here is the moving trace array of the Cartesian product of models 2 and 3:

Figure 6: The chessboard as a moving trace

This moving trace is very complicated because it pertains to a model with 64
states. Let us take the moving trace of a model with two states (Figure 7). This
is model 4 which remembers whether we have lifted a chess piece. Its moving
trace will remember which the lifted piece is. Certainly, the model will also have
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its permanent trace which says that in state 2 lifting a piece is impossible and
in state 1 dropping a piece is impossible.

The moving trace of that model will be an array with two cells which cor-
respond to the two states of the ED model. The cell which corresponds to the
current state is framed in red. The content of the current cell is not very im-
portant. What is important is the content of the other cells because they tell
us what will happen if one of these other cells becomes the current cell. In this
case, if we drop a lifted piece we will go to state 1, where we will see the lifted
piece. (We will see what we have dropped, in this case a white knight.)

Figure 7: Which is the lifted piece?

We said that the language for description of worlds will tell us which the
current state of the world is. Where is this state stored? At two locations –
first, the current state of each ED model and second, the moving traces. For
example, in Figure 6 we can see how the moving trace presents the position on
the chessboard.

If the language for description of worlds were a standard programming lan-
guage, its memory would hold the values of the variables and of the arrays. By
analogy, we can say that the current state of the ED model is the value of one
variable and the value of one moving trace is the value of one array.

The value of the current state of an ED model is usually a number when the
model is deterministic or several numbers if the ED model has several current
states (the value can be a belief if different states have different probabilities).
The value of each cell of the moving trace array will consist of several numbers
because one state can have many moving traces. Certainly, the permanent
traces can also be more than one.
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5 Algorithms

Now that we have described the basic rules of the chess game and the position
of the chessboard, the next step is to describe how the chess pieces move. For
this purpose we will resort to the concept of algorithm.

Most papers do not distinguish between an algorithm and a computable
function. This is not correct because the algorithm is a sequence of actions
while the computable function is the result from the execution of that sequence
of actions. We should differentiate sequences of actions from results. E.g. a
pancake recipe is not the same as a real pancake. The result from the execu-
tion of an algorithm depends on the specific world in which we execute that
algorithm. This means that in a different world the pancake making algorithm
may produce a different result. That result can be, for example, a computable
function or a spacecraft.

5.1 What is an algorithm

For most people an algorithm is a Turing machine. The reason is that
they only look at N → N functions and see the algorithm as something which
computes these functions. To us, an algorithm will describe a sequence of actions
in an arbitrary world. In our understanding, algorithms include cooking recipes,
dancing steps, catching a ball and so forth. We just said a sequence of actions.
Let us put it better and change this to a sequence of events. An action is an
event, but not every event is an action or at least our action – it can be the action
of another agent. The description of the algorithm will include our actions as
well as other events. For example, we wait for the water in our cooking pan to
boil up. The boiling of water is an event which is not our action.

In our definition, an algorithm can be executed without our participation at
all. The Moonlight Sonata, for example, is an algorithm which we can execute
by playing it. However, if somebody else plays the Moonlight Sonata, it will
still be an algorithm albeit executed by someone else. When we hear the piece
and recognize that it is the Moonlight Sonata, we would have recognized the
algorithm even though we do not execute it ourselves.

Who actually executes the algorithm will not be a very important issue. It
makes sense to have somebody demonstrate the algorithm to us first before we
execute it on our own.

We will consider three versions of algorithm:
1. Railway track;
2. Mountain footpath;
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3. Going home.
In the first version there will be restrictions which do not allow us to deviate

from the execution of the algorithm. For example, when we board a coach, all
we can do is travel the route. We cannot make detours because someone else
is driving the coach. Similarly, when listening to someone else’s performance
of the Moonlight Sonata, we are unable to change anything because we are not
playing it.

In the second version, we are allowed to make detours but then consequences
will occur. A mountain footpath passes near an abyss. If we go astray of the
footpath we will fall in the abyss.

In the third version, we can detour from the road. After the detour we can
go back to the road or take another road. The Going home algorithm tells
us that if we execute it properly, we will end up at our home, but we are not
anyhow bound to execute it or execute in exactly the same way.

Typically, we associate algorithms with determinacy. We picture in our
mind a computer program where the next action is perfectly known. However,
even computer programs are not single-threaded anymore. With multi-threaded
programs it is not very clear what the next action will be. Cooking recipes are
even a better example. When making pancakes, we are not told which ingredient
to put first – eggs or milk. In both cases we will be executing the same algorithm.

Imagine an algorithm as a walk in a cave. You can go forward, but you can
also turn around and go backward. The gallery has branches and you are free
to choose which branch to take. Only when you exit the cave you will have
ended the execution of the cave walk algorithm. In other words, we imagine the
algorithm as a directed graph with multiple branches and not as a road without
any furcations.

5.2 The formal definition

Our definition of algorithms will be very similar to that of phenomena except
that we will add a result to the terminal conditions.

Definition 30. An algorithm will be the 3-tuple 〈Triggers,Model, Condi-
tions〉. Here Triggers is a set of trigger points, Model is an ED model and
Conditions is a set of terminal conditions, including some results.

Definition 31. A trigger point will be the 3-tuple 〈e, [a, b], s〉. Here e is an
event, [a, b] is some probability (probability interval) and s is the state of the
ED model from which the algorithm sets off.

Definition 32. A terminal condition with a result will be the 3-tuple
〈e, [a, b], r〉. Here e is an event, [a, b] is some probability (probability interval)
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and r is an element of some set Results. The set Results is finite or countable,
at most.

Our typical understanding of a phenomenon is something which happens on
its own devices, while an algorithm is perceived as something which is executed
by someone else. Our definition here does not differentiate the two concepts in
this way. The only difference in our case is the assumption that an algorithm
can return some result (such as yes or no).

Definition 33. The execution of an algorithm is a segment of life which
starts with a trigger point and ends in a terminal condition with a result. Also,
the ED model pattern has to be fulfilled within that segment.

When dealing with a Railway track type of algorithm we assume that there
is some trace which prevents us from exiting the execution of the algorithm
before it comes to its end (before the end of the rail track). That is, the trace
will indicate that such a departure from the algorithm is impossible. When
the algorithm at hand is of Mountain footpath type, we assume that we have a
trace indicating that any termination before the end of the execution will lead
to the occurrence of some additional events (e.g. falling in an abyss). In this
case, we have to add one more terminal condition (the event will be “exit the
algorithm before the end of execution”, the probability of which will be 1 and
the result from which will be algorithm is interrupted). When the algorithm is
of Going home type, the assumption is that there is no trace which prevents us
from exiting before the end of the algorithm, nor a trace which indicates that
some additional events will occur upon exit. However, we will need to add an
additional terminal condition the result from which is algorithm is interrupted.
This additional condition will allow the termination of the algorithm before its
execution has come to an end. That is, we will still have some execution of the
algorithm, but that execution will end with algorithm is interrupted.

5.3 The algorithm of chess pieces

We will use algorithms to describe the movement of chess pieces. We will
choose the Railway track version (the first one of the versions examined above).
This means that when you lift a piece you will invoke an algorithm which pre-
vents you from making an incorrect move.

We could have chosen the Mountain footpath which allows you to detour
from the algorithm, but with consequences. For example, lift the piece and
continue with the algorithm, but if you break it at some point the piece will
escape and go back to its original square.

We could have chosen the Going home version where you can move as you
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like but can drop the piece only at places where the algorithm would put it if it
were properly executed. That is, you have full freedom of movement while the
algorithm will tell you which moves are the correct ones.

We will choose the first version of the algorithm mainly because we have let
the agent play randomly and if we do not put her in some rail track, she will
struggle a lot in order to make a correct move. Moreover, we should consider
how the agent would understand the world. How would she discover these
algorithms? If we put her on a rail track, she will learn the algorithm – like it or
not – but if we let her loose she would have hard time trying to guess what the
rules for movement are. For example, if you demonstrate to a school student
the algorithm of finding a square root, he will learn to do so relatively easily.
But, the kid’s life would become very difficult if you just explain to him what
is square root and tell him to find the algorithm which computes square roots.
You can show the student what a square root is with a definition or examples,
but he would grasp the algorithm more readily if you demonstrate hands-on
how it works.

What will be the gist of our algorithms? These will be Event-Driven models.
There will be some event which will be the trigger point of the algorithm which
triggers its execution (an event which sets off from state 1 with probability of
one) and another terminating condition which will put an end to the execution
of the algorithm. Later on we will clone the terminating condition in two (real
move and fake move). Each chess piece will have its algorithm.

5.4 The king and knight algorithms

The king’s algorithm (Figure 8) will be the simplest one. The trigger event
will be king lifted. The initial state will be state 1 (this applies to all algorithms
described here). The events will be four (left, right, forward and backward).

The trace will consist of four events (left move not allowed, right move not
allowed, etc.). These four events (traces) will restrict the king’s movement to
nine squares. Thus, the four events (traces) will be the rail tracks in which we
will enter and which will not let us leave the nine squares until we execute the
algorithm. In Figure 8, the four traces are marked with red horizontal lines.
For example, the three upper states have the first trace which means that the
king cannot move forward from these three states.

We may drop the lifted piece (the king) whenever we wish. Certainly, there
will be other restrictive rules and algorithms. E.g. we cannot capture our own
pieces is an example of other restrictions, which however are not imposed by
this algorithm. If we drop the piece in state 1, the move will not be real but
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Figure 8: The algorithm of the king

Figure 9: The algorithm of the knight

fake. If we drop the piece in another state, then we would have played a real
move.

The knight’s algorithm is somewhat more complicated (Figure 9). The main
difference with the king’s algorithm is that here we have one more trace. This
trace restricts us such that in certain states we cannot drop the lifted piece.
(Only this trace is marked in Figure 9, the other four traces are not.) In this
algorithm we have only two options – play a correct move with the knight or
play a fake move by returning the knight to the square which we lifted it from.
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5.5 The rook and bishop algorithms

Although with less states, the rook’s algorithm is more complex (Figure 10).
The reason is that this algorithm is non-deterministic. In state 3 for example
there two arrows for the move forward event. Therefore, two states are can-
didates to be the next state. This non-determinacy is resolved immediately
because in state 1 it must be seen that a piece has been lifted from that square
while the opposite must be seen in state 3. Therefore, we have a trace which
resolves the algorithm’s non-determinacy immediately.

Figure 10: The algorithm of the rook

Even more complicated is the bishop’s algorithm (Figure 11). The reason is
that we cannot move the bishop diagonally outright and have to do this in two
steps: first a horizontal move and then a vertical move. If the event left occurs
in state 1, we cannot know whether our diagonal move is left and forward or
left and backward. This is another non-determinacy which cannot however be
resolved immediately. Nevertheless, the non-determinacy will be resolved when
a forward or backward event occurs. In these two possible states we have
traces which tell us “forward move not allowed” in state 8 and “backward move
not allowed” in state 2. If the no-forward restriction applied in both states, the
forward event would breach the algorithm. But in this case the event is allowed
in one of the states and disallowed in the other state. So, the forward event is
allowed, but if it occurs state 8 will become inactive and the non-determinacy
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Figure 11: The algorithm of the bishop

will be resolved. (In Figure 11 we have marked only the no-forward and the
no-backward traces.)

The most complicated algorithm is that of the queen because it is a com-
bination of the rook and bishop algorithms. The pawn’s algorithm is not com-
plicated, but in fact we have four algorithms: for white/black pawns and for
moved/unmoved pawns.

5.6 The Turing machine

So far we described the chess pieces algorithms as Event-Driven (ED) models.
Should we assert that each algorithm can be presented as an ED model? Can
the Turing machine be presented in this way?

We will describe a world which represents the Turing machine. The first
thing we need to describe in this world is the infinite tape. In the chess game,
we described the chessboard as the moving trace of some ED model with 64
states. Here we will also use a moving trace, however we will need a model with
countably many states. Let us take the model in Figure 4. This is a model of
a tape comprised of eight cells. We need the same model which has again two
events (left and right), but is not limited to a leftmost and rightmost state.
This means an ED model with infinitely many states. So far we have only used
models with finitely many states. Now we will have to add some infinite ED
models which nevertheless have structures as simple as this one. In this case
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the model is merely a counter, which keeps an integer number (i.e. an element
of Z). The counter will have two operations (minus one and plus one) or (move
left and move right). The addition of an infinite counter expands the language
for description of the world, but as we said we will keep expanding the language
in order to cover the worlds we aim to describe.

What kind of memory will this world have? We must memorize the counter
value (that is the cell on which the head of machine is placed). This is an integer
number. Besides this, we will need to memorize what is stored on the tape. For
this purpose we will need an infinite sequence of 0 and 1 numbers, which is
equinumerous to the continuum. We usually use Turing machines in order to
compute N → N functions. In this case we can live only with configurations
which use only a finite portion of the tape, i.e. we can consider only a countable
number of configurations, however, all possible configurations of the tape are
continuum many.

Note: The agent’s idea of the state of the world will be countable even
though the memory of the world is a continuum. In other words, the agent
cannot figure out all possible configurations on the tape, but only a countable
subset of these configurations. In this statement we imagine the agent as an
abstract machine with an infinite memory. If we image the agent as a real com-
puter with a finite memory, in the above statement we must replace countable
with finite. Anyway, if the agent is a program for a real computer, the finite
memory would be enormous, so for the sake of simplicity we will deem it as
countable.

Thus, we have described the tape of the Turing machine with an infinite ED
model. In order to describe the head of the machine (the algorithm per se) we
will need another ED model. We will employ the Turing machine in order to
construct the second ED model.

We assumed that the machine uses two letters (0 and 1). Let us construct
an ED model with four events:

• write(0),

• write(1),

• move left,

• move right.

Then each command to the machine will be in the following format:

• if observe(0) then write Symbol 0, move Direction 0, goto Command 0
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• if observe(1) then write Symbol 1, move Direction 1, goto Command 1

Here Symbol i, Direction i and Command i have been replaced with concrete
values. For example:

• if observe(0) then write(1), move left, goto s3

• if observe(1) then write(0), move right, goto s7

We will replace each command with four states which describe it. The above
command will take the following form:

Figure 12: Each command replaced with four states

In Figure 12, the input is over the move right event. In fact there will be
many input paths – sometimes over the move left event and other times over
the move right event. Importantly, the input will be non-deterministic but the
non-determinacy will be resolved immediately because the first two states have
a trace. In the top state the event “observe(0)” must always occur and in the
bottom state the “observe(0)” event must never occur.

Thus, each state of the machine is replaced with four states as shown in
Figure 12 and then the individual quaternaries are interconnected. For example,
the quaternary in Figure 12 connects to the quaternary in s3 by arrows over
the move left event and to the quaternary in s7 by arrows over the move right
event.

We have to add some more trace to accommodate the rule that only one of
the four events is possible in each state. The new trace should tell us that the
other three events are impossible. We should do this in case we want a Railway
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track type of algorithm. If we prefer a Mountain footpath algorithm, we must
add a trace which tells which consequences will occur if one of the other three
events happens. If we wish a Going home algorithm, then the other three events
must lead to a termination of the algorithm.

Thus we presented the Turing machine through an Event-Driven model or,
more precisely, through two ED models – the first one with infinitely many states
and the second one with a finite number of states (the number of machine states
multiplied by 4).

Who executes the algorithm of the Turing machine? We may assume the four
events are actions of the agent and that she is the one who runs the algorithm.
We may also assume that the events are acts of another agent or that the events
just happen. In that case the agent will not be the executor of the algorithm,
but just an observer. In the general case, some events in the algorithm will be
driven by the agent and all the rest will not. For example, “I pour water in the
pot” is an action of the agent while “The water boils up” is not her action. The
agent can influence even those events which are not driven by her actions. This
is described in [9]. For these events the agent may have some “preference” and
by her “preferences” the agent could have some influence on whether an event
will or will not occur.

5.7 Related work

Importantly, this paper defines the term algorithm as such. Very few people
bother to ask what is an algorithm in the first place. The only attempts at a
definition I am aware of are those made by Moschovakis [10,11]. In these works
Moschovakis says that most authors define algorithms through some abstract
machine and equate algorithms with the programs of that abstract machine.
Moschovakis goes on to explain what kind of an algorithm definition we need –
a generic concept which does not depend on a particular abstract machine. The
computable function is such a concept, but for Moschovakis it is too general
so he seeks to narrow it down to a more specific concept which reflects the
notion that a computable function can be computed by a variety of substantially
different algorithms. This is a tall aim which Moschovakis could not reach in
[10]. What he did there can be regarded as a new abstract machine. Indeed, the
machine is very interesting and more abstract than most known machines, but
again we run into the trap that the machine’s program may become needlessly
complicated and in this way morph into a new program which implements the
same algorithm. Although [10] does not achieve the objective of creating a
generic definition of an algorithm, Moschovakis himself admits that his primary
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objective is to put the question on the table even if he may not be able to
answer it. His exact words are: “my chief goal is to convince the reader that
the problem of founding the theory of algorithms is important, and that it is
ripe for solution.”

6 Objects

6.1 Properties

Having defined the term algorithm, we will try to define another fundamen-
tal concept: property. For the definition of this concept we will again resort
to the Event-Driven models. A property is the phenomenon we see when we
observe an object which possesses that property. Phenomena are patterns which
are not observed all the times but only from time to time. Given that the other
patterns are presented through ED models, it makes perfect sense to present
properties through ED models, too.

The difference between a pattern and a property will be that the pattern
will be active on a permanent basis (will be observed all the time) while the
property will be observed from time to time (when we observe the object which
possesses that property).

6.2 What is an object?

The basic term will be property while object will be an abstraction of higher
order. For example, if in the chess world one observes the properties white and
knight he may conclude that there is a white knight object which is observed
and which possesses these two properties. We may dispense of objects and
simply imagine that some properties come and go, i.e. some phenomena appear
and disappear. However, the abstraction object is mandatory for understanding
complex worlds.

6.3 The second coding

The agent’s output consists of four characters only which made us use coding
in other to describe the eight possible actions of the agent. The input is also
limited to four characters. While it is true that the input will depict to us only
one square rather than the full chessboard, four characters are still too little
because a square can accommodate six different pieces in two distinct colors.
Furthermore, we need to know whether the pawn on the square has moved and
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whether the lifted piece comes from that square. How can one present all that
amount of information with four characters only?

That information may not necessarily come to the agent for one step only.
The agent can spend some time staying on the square and observing the input.
As the agent observes the square, she may spot various patterns. The presence
or absence of each of these patterns will be the information which the agent
will receive for the square she observes. Although the input characters are only
four, the patterns that can be described with four characters are countless.

Let us call these patterns properties and assume that the agent is able to
identify (capture) these patterns. We will further assume that the agent can
capture two or more patterns even if they are layered on top of each other.
Thus, the agent should be able to capture the properties white and knight even
when these properties appear at the same time.

How would the properties look like? In the case of chess pieces, the patterns
and algorithms of their movement are written by a human who has an idea of
the chess rules and of how the pieces move. The properties are not written by a
human and are generated automatically. As an example, Figure 13 depicts the
property king. That property appears rather bizarre and illogical. The reason
is, as we said, that the property is generated automatically in a random way.
It is not written by us because we do not know how the king would look like.
How the king looks like does not matter. What matters is that the king should
have a certain appearance such that it can be recognized by the agent. In other
words, the king should have some face, but how that face would look like is
irrelevant.

Figure 13: How does the king look like?

In our program [5] there are 10 properties and each of them has some trace.
When several properties are active at the same time, each of them has an impact
(via its trace) on the agent’s input. Sometimes these impacts may be contra-
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dictory. For example, one property tells us that the next input must be the
character x, while another property insists on the opposite (the input must not
be x). The issue at hand is then solved by voting. The world counts the votes
for each decision and selects the one which reaps the highest number of votes.
As concerns contradictory recommendations, they will cancel each other.

7 A two-players chess game

We will sophisticate the chess game by adding another agent: the opponent
(antagonist) who will play the black pieces. This will induce non-determinacy
because we will not be able to tell what move the opponent will play. Even if
the opponent is deterministic, her determinacy would be too complicated for us
to describe it.

7.1 A deterministic world

So far we have described a chess world where the agent plays solitaire against
herself. We have written a program [5] which contains a simple description of
this world and by this description emulates the world. Run this program and
see how simple that description happens to be. The description consists of
24 modules presented in the form of Event-Driven models (these models are
directed graphs with a dozen states each). The ED models of the chess game
belong to three types: (5 patterns + 9 algorithms + 10 properties = 24 models).
In addition to the ED models there are also two moving traces (i.e. two arrays).
We added also six simple rules which we need as well. These rules provide us
with additional information about how the world has changed. For example,
when we lift a piece, the property Lifted will appear in the square of that piece.
This rule looks like this:

up, here⇒ copy(Lifted) (1)

(If we lift a piece and if we are in the square 〈X,Y 〉, then the property
Lifted will replace all properties which are in this square at the moment.)

We are able to formulate these rules owing to the fact that we have the
context of the chessboard (the moving trace from Figure 6). If we had no idea
that a chessboard exists, we would not be able to formulate rules for the behavior
of the pieces on that board. In the demonstration program [5] the agent plays
randomly. Of course the agent’s actions are not important. What matters is
the world and that we have described it.
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The description thus obtained is deterministic, i.e. the initial state is deter-
mined and every next state is determined. A deterministic description means
that the described world is free from randomness. Should the description of the
world be deterministic? Should we deal only with deterministic descriptions?
The idea that the world may be deterministic seems outlandish. And even if it
were, we need not constrain ourselves to deterministic descriptions.

If we apply a deterministic description to a non-deterministic world, that
description will very soon exhibit its imperfections. Conversely, the world may
be deterministic but its determinacy may be too complicated and therefore
beyond our understanding (rendering us unable to describe it). Accordingly,
instead of a deterministic description of the world will find a non-deterministic
description which works sufficiently well.

Typically, the world is non-deterministic. When we shoot at a target we
may miss it. This means that our actions may not necessarily yield a result or
may yield different results at different times.

We will assume that the model may be non-deterministic. For most authors,
non-deterministic implies that for each possible event there is one precisely de-
fined probability. In [8,9] we showed that the latter statement is too determin-
istic. Telling the exact probability of occurrence for each and every event would
be an exaggerated requirement. Accordingly, we will assume that we do not
know the exact probability, but only the interval [a, b] in which this probability
resides. Typically that would be the interval [0, 1] which means that we are in
total darkness as regards the probability of the event to occur.

7.2 Impossible events

We said the world would be more interesting if we do not play against our-
selves but against another agent who moves the black pieces.

For this purpose we will modify the fifth ED model (the one which tells us
which pieces we are playing with – white or black). This model has two states
which are switched by the event change. Previously we defined that event as
“real move” (this is the event when we make a real move while in “fake move”
we only touch a piece). We will change the definition of that event and define
it as never (this is the opposite of every time). This change produces a world
where the agent cannot switch sides.

Does it make sense to describe in our model events which can never happen?
The answer is yes, because these events may happen in our imagination. I.e.
even though these events do not occur, we need them in order to understand
the world. For example, we are unable to fly or change our gender, but we can
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do this in our imagination. The example is not very appropriate, because we
can already fly and change our gender if we wish to. In other words, we can
imagine impossible events in our minds. Also, at some point, these impossible
events may become possible.

We will use the impossible event change in order to add the rule that we
cannot play a move after which we will be in check (our opponent will be able
to capture our king). Figure 14 depicts the algorithm which describes how we
switch sides (turn the chessboard around) and capture the king. If an execution
of that algorithm exists, then the move is incorrect. (Even if an execution exists
the algorithm cannot be executed, because it includes an impossible event.)

Figure 14: How do we switch sides?

This algorithm is more consistent with our understanding of algorithms.
While the algorithms of the chess pieces were directed graphs with multiple
branches, this one is a path without any branches. In other words, this algorithm
is simply a sequence of actions without any diversions.

This algorithm needs some more restrictions (traces) which are not shown in
Figure 14. In state 1 for example we cannot move in any of the four directions
(otherwise we could go to another square and play another move). The change
event can only occur in state 2 and not in any other state. In state 4 we have the
restriction “not observe(King) ⇒ not down” which means that the only move
we can make is to capture the king.

Part of this algorithm is the impossible action change. As mentioned above,
although this action is not possible, we can perform it in our imagination. This
event may be part of the definition of algorithms which will not be executed but
are still important because we need to know whether their executions exist.

Note: In this paper, by saying that an algorithm can be executed we mean
that it can be executed successfully. This means that the execution may finish
in a final (accepting) state or with an output event (successful exit).
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7.3 The second agent

The algorithm in Figure 14 would become simpler if we allow the existence
of a second agent. Instead of switching between the color of the pieces (turning
the chessboard around) we will replace the agent with someone who always
plays the black pieces. Thus, we will end up with an algorithm performed by
more than one agent, which is fine because these algorithms are natural. For
example, “I gave some money to someone and he bought something with my
money” is an example of an algorithm executed by two agents.

The important aspect here is that once we move a white piece, we will have
somebody else (another agent) move a black piece. While in the solitaire ver-
sion of the game we wanted to know whether a certain algorithm is possible,
in the two players version we want a certain algorithm to be actually executed.
Knowing that a certain algorithm is possible and the actual execution of that
algorithm are two different things. Knowing that “someone can cook pancakes”
is okay but “your roommate cooking pancakes this morning” is something dif-
ferent. In the first case you will know something about the world while in the
latter case you will have some pancakes for breakfast. If the actual execution
of an algorithm will be in the hands of agent, then it does matter who the
executing agent is. E.g. we will suppose that the pancakes coming from your
roommate’s hands will be better than those cooked by you.

We will assume that after each “real move” we play, the black-pieces agent
will execute the algorithm in Figure 15.

Figure 15: Algorithm of the black-pieces agent

The execution of an algorithm does not happen outright because it is a
multi-step process. Nevertheless, we will assume here that the opponent will
play the black pieces right away (in one step). When people expect someone to
do something, they tend to imagine the final result and ignore the fact that the
process takes some time. Imagine that “Today is my birthday and my roommate
will cook pancakes for me”. In this reflection you take the pancakes for granted
and do not bother that cooking the pancakes would take some time.

As mentioned already, it matters a lot who the black-pieces agent is. Highly
important is whether the agent is friend or foe (will she assist us or try to disrupt
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us). The agent’s smartness is also important (because she may intend certain
things but may not be smart enough to do these things). It is also important
to know what the agent can see. In the chess game we assume that the agent
can see everything (the whole chessboard) but in other worlds the agent may
only be able to know and see some part of the information. The agent’s location
can also be important. Here will assume that it is not important, i.e. wherever
the agent is, she may move to any square and lift the piece in that square. In
another assumption the agent’s position may matter because the pieces that are
nearer the agent may be more likely to be moved than the more distant pieces.

7.4 Agent-specific state

We assumed here that the second agent sees a distinct state of the world.
I.e. the second agent has her distinct position 〈x, y〉 on the chessboard (the
square which she observes). We also assume that the second agent plays with
black pieces as opposed to the protagonist playing with the white pieces.

We assume that the two agents change the world according to the same
model but the memory of that model (the state of the world) is specific to
each agent. We might assume that the two states of the world have nothing
in common, but then the antagonist’s actions will not have any impact on the
protagonist’s world. Therefore, we will assume that the chessboard position
is the same for both agents (i.e. the trace in Figure 6 is the same for both).
We will further assume that each agent has her own coordinates and a specific
color for her pieces (i.e. the active states of Event-Driven models 2, 3 and 5 are
different for the two agents). As concerns the other ED models and the trace
in Figure 7, we will assume that they are also specific to each agent, although
nothing prevents us from making the opposite assumption.

Had we assumed that the two agents share the same state of the world,
the algorithm in Figure 15 would become heavily complicated. The antago-
nist would first turn the chessboard around (change), then play her move and
then turn the chessboard around again in order to leave the protagonist’s world
unchanged. Moreover, the antagonist would need to go back to her starting
coordinates 〈x, y〉 (these are the protagonist’s coordinates). It would be bizarre
to think that the separate agents are absolutely identical and share the same
location. The natural way of thinking is that the agents are distinct and have
distinct, but partially overlapping states of the world. For example, “Right now
I am cooking pancakes and my roommate is cooking pancakes, too”. We may
be cooking the same pancakes or it may be that my pancakes have nothing to
do with his.
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Note: It is not very accurate to say that the world has distinct states for
both agents. The world is one and it has only one state. It would be more
accurate to say that we have changed the world and now we have a world with
more complicated states. Let the new set of states be S′′. We can assume that
S′′ = S × S. The questions that are common to the two agents have remained
the same, but the other questions are now bifurcated. For example, “Where am
I?” is replaced with the questions “Where is the protagonist?” and “Where is
the antagonist?”.

Thus, from the model where the states are S we have derived a new model
where the states are S′′. The difference between S and S′′ is that the states in
S describe the state of one agent (without telling us which is that agent), while
the states in S′′ describe the states of the two agents. (In both cases the overall
state of the world is described as well.) The new model describes (i) the world
through the two agents and (ii) how the agents change their states according to
the first model. Nevertheless, it is more natural to assume that the world has
different states for the two agents and these agents change their states according
to the first model which operates only with the questions that apply only to one
of the agents.

7.5 Non-computable rule

So far we have described the first world in which the agent plays solitaire
against herself and have written the program [5] which emulates the first world.
The program [5] is a model which describes the first world. We have also
described a second world in which the agent plays against some opponent (an-
tagonist). Now, can we also create a program which emulates the second world?

In the second world we added a statement which says “This algorithm can be
executed”. (This statement was to be added in the first world, because playing
moves after which we are in check is not allowed in the first world, too. For the
time being the program [5] allows us to make this kind of moves.) In the second
world we also added the operation “Opponent executes an algorithm”. In the
general case that statement and that operation are undecidable (more precisely,
they are semi-decidable).

For example, let us take the statement “This algorithm can be executed”.
In this particular case the question is whether the opponent can capture our
king, which is fully decidable because the chessboard is finite, has finitely many
positions and all algorithms operating over the chessboard are decidable. In the
general case the algorithm may be a Turing machine and then the statement
will be equivalent to a halting problem.
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The same can be said of the operation “Opponent executes an algorithm”.
While the algorithm can be executed by many different methods, the problem
of finding at least one of these methods is semi-decidable. In the particular case
of the chess game we can easily find one method of executing the algorithm,
or even all methods (i.e. all possible moves). In the general case, however, the
problem is semi-decidable.

Therefore, in this particular case we can write a program which emulates the
second world, provided however that we have to select the opponent’s behavior
because it can go in many different paths. In other words, in order to create
a program which emulates the chess world, we should embed in it a program
which emulates a chess player.

In the general case however, we will not be able to write a program which
emulates the world we have described. Thus, the language for description of
worlds is already capable of describing worlds that cannot be emulated by a
computer program. We said in the very beginning that the model may turn
out to be non-computable. Writing a program which computes non-computable
model is certainly impossible.

However, being unable to write a program that emulates the world we have
described is not a big issue, because we are not aiming to emulate the world,
but write an AI program which acts on its understanding of the world (the
description of the world which it has found) in order to successfully plan its
future moves. Certainly, the AI program can proceed with one emulation of
the world, play out some of its possible future developments and select the best
development. (Essentially this is how the Min-Max algorithm of chess programs
works.) I.e. making an emulation of the world would be a welcome though not
mandatory achievement.

Besides being unable to produce a complete emulation of the world (when
the model is non-computable), AI would be unable to even figure out the current
state of the world (when the possible states are continuum many). Nevertheless,
AI will be able to produce a partial emulation and figure out the state of the
world to some extent. For example, if there is an infinite tape in the world and
this tape carries an infinite amount of information, AI will not be able to discern
the current state of the world, but would be capable of describing some finite
section of the tape and the information on that finite section.

Even the Min-Max algorithm is not a complete emulation due to combinato-
rial explosion. Instead, Min-Max produces partial emulation by only traversing
the first few moves. If the description of the world contains a semi-decidable
rule, AI will use that rule only in one direction. An example is the rule which
says that “A statement is true if there is proof for that statement”. People use
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that rule if (i) a proof exists and (ii) they have found that proof. If a proof does
not exist, the rule is not used because we cannot ascertain that there is not any
proof at all.

8 Agents

Our next abstraction will be the agent. Similar to objects, we will not be
able to detect agents outright but will gauge them indirectly by observing their
actions. The detection of agents is a difficult task. People manage to detect
agents, however, they need to search them everywhere. Whenever something
happens, people quickly jump into the explanation than some agent has done
that. In peoples’ eyes, behind every event there lurks a perpetrator which can
be another human or an animal or some deity. Very seldom they would accept
that the event has occurred through its own devices. AI should behave as people
do and look for agents everywhere.

Once AI detects an agent it should proceed to investigate the agent and try
to connect to it. To detect an agent means to conjure up an agent. When AI
conjures up an existing agent, then we can say that AI has detected the agent.
When AI conjures up a non-existing agent, the best we can say is that AI has
conjured up a non-existing thing. It does not really matter whether agents are
real or fictitious as long as the description of the world obtained through these
agents is adequate and yields appropriate results.

8.1 Interaction between agents

AI will investigate agents and classify them as friends or foes. It will label
them as smart or stupid and as grateful or revengeful. AI will try to connect
to agents. To this end, AI must first find out what each agent is aiming at
and offer that thing to the agent in exchange of getting some benefit for itself.
This exchange of benefits is the implementation of a coalition policy. Typically
it is assumed that agents meet somewhere outside the world and there they
negotiate their coalition policy. But, because there is no such place outside the
world, we will assume that agents communicate within the walls of the world.
The principle of their communication is: “I will do something good for you and
expect you to do something good for me in return”. The other principle is “I
will behave predictably and expect you to find out what my behavior is and
start implementing a coalition policy (engage in behavior which is beneficial to
both of us)”.



50 Dimiter Dobrev

This is how we communicate with dogs. We give a bone to a dog and right
away we make friends. What do we get in return? They will not bite us or bark
at us, which is a fair deal. As time goes by the communication may become
more sophisticated. We may show an algorithm to the agent and ask her to
replicate it. We can teach the dog to “shake hands” with a paw. Further on, we
can get to linguistic communication by associating objects with phenomena. For
example, a spoken word is a phenomenon and if this phenomenon is associated
with a certain object or algorithm, the agent will execute the algorithm as soon
as she hears the word. E.g. the dog will come to us as soon as it hears its name
or bring our sleepers when it hears us saying “sleepers”.

8.2 Signals between agents

When it comes to interaction or negotiation, we need some sort of commu-
nication. This takes us to the signals which agents send to their peers. We do
not mean pre-arranged signals, but ones which an agent chooses to send and
the others decipher on the basis of their observations. One example is “Pavlov’s
Dog” [12]. Pavlov is the agent who decides to send a signal by ringing a bell be-
fore he feeds the dog. The other agent is the dog which manages to comprehend
the signal.

Where an agent sends a signal to another agent, the latter need not nec-
essarily realize that this is a signal and has been send by someone else who is
trying to tell her something. In the previous example, Pavlov’s dog has not
any idea that Pavlov is the one ringing the bell to signal that lunch is ready.
The dog simply associates the ringing event to the feeding event. Thus, when
we send a signal we can remain anonymous. This ultimately means that we
can influence another agent without that agent ever realizing that she is under
somebody else’s influence.

Another way of sending a signal is to show something (provide some infor-
mation). For this purpose we need to know what the other agent can see and
when. For example, when a dog growls at us, it shows us its fangs. We see that
the dog has fangs – something which we know by default – but what we realize
in this case is that the dog has decided to remind us of this fact and understand
the message as “The dog issues a warning that it may use its fangs against us”.

In addition to natural signals (ones which we can guess ourselves), there
may be pre-established signals. Let us have a group of agents who have already
established some signals between them. When a new agent appears, she may
learn a signal from one of the agents and then use it in her communication with
other agents. An example for such signals are the words in our natural language.
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We learn the words from an agent (e.g. from our mothers) and then use the
same words in order to communicate with other agents.

8.3 Exchange of information

When agents communicate, they can exchange information in order to co-
ordinate their actions or to negotiate. An example of information exchange is
when an agent shares some algorithm with another agent. The algorithm can be
described in a natural language, i.e. it can be presented as a sequence of signals
(words) where each signal is associated with an object, phenomenon or algo-
rithm. For example, when we tell somebody how to get to a shop, we explain
this algorithm by using words. When we say “Open the door” we rely that the
other agent will associate the word “door” with the object door and the word
“open” with the algorithm open. In other words, we rely that the agent knows
these words and has an idea of the objects associated with these words.

If we assume that the agent keeps the algorithms in her memory in the
form of Event-Driven models, then the agent should be able to construct an
ED model from a description expressed in a natural language and vice versa –
describe some ED model in natural language (as long as the agent knows the
necessary words).

8.4 Communication interface

When creating the AI’s world, we need to equip it with some communication
interface to enable it communicate with other agents.

For example, when building a self-driving vehicle, we must give that vehi-
cle some face so that it can communicate with pedestrians and other drivers.
Indeed, vehicles have horns and blinkers, but this is not sufficient for full com-
munication. It would be a good idea to add some screen which expresses various
emotions. Smiling and winking will be very useful functions.

We usually try see where the other driver is looking at because it is very
import for us to know that the other driver has seen us. If this face (screen) is
able to turn to our side, it would be an indication that we have been seen.

8.5 Related work

Many authors deal with the interaction between agents. Their papers how-
ever do not tell us how AI will discover the agents as they assume that the
agents have already been discovered and all we need to do is set out rules for
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reasonable interaction. Goranko, Kuusisto and Rönnholm [13] for example look
at the case where all agents are friends and their smartness is unlimited. Agents
in [13] communicate on the basis that they can foretell what the others would
do (relying on the assumption that all agents are friends and are smart enough
to figure out what would be beneficial for everybody). The most interesting
aspect in [13] is that the paper raises the issue about the hierarchy between
agents (who is more important) and about their hastiness (how patient is each
agent). These are principles which real people apply in the real world and it
therefore makes sense for AI to also use these principles.

Interaction between agents is as complicated as interaction between humans.
As an example, agents in Mell, Lucas, Mozgai and Gratch [14] negotiate and
can even cheat each other.

Gurov, Goranko and Lundberg [15] as well as the present paper deal with a
multi-agent system where the agents do not see everything (Partial Observabil-
ity). The main difference between [15] and this paper is that in [15] the world
is given (is described by one relation) while in this paper the world is not given
and is exactly the thing that has to be found.

9 Future work

In this paper we provided a manual description of a world (the chess game)
and created the computer program [5] which emulates the world on the basis
of the manual description. Our next problem is the inverse one, namely create
a program which should automatically arrive at the same description of the
world as the one which we have described manually. That program will use the
emulation of the world [5], thanks to it will “live” inside the world and will have
to understand it (i.e. to describe it).

In this case we might be tempted to play with marked cards because the
program we make has to find a thing, and we know in advance what this thing
is. Of course we should not yield to this temptation because we will end up
with a program which is able to understand only and exclusively the particular
world. It would be much better if our program is able to understand (describe)
any world. This however is a tall order because essentially it asks us to build
AI. Accordingly, instead of aiming at a program which is capable to understand
any world, we would be happy with a program which can understand the given
world [5] and the worlds that are proximal to it. The larger the class of worlds
our program is able to understand, the smarter that program will be.
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10 Conclusion

Our task is to understand the world. This means we have to describe it but
before we can do so we need to develop a specific language for description of
worlds.

We have reduced the task of creating AI to a purely logical problem. Now
we have to create a language for description of worlds, which will be a logical
language because it would enable the description of non-computable functions.
If a language enables only the description of computable functions, it is a pro-
graming and not a logical language.

The main building blocks of our new language are Event-Driven models.
These are the simple modules which we are going to discover one by one. With
these modules we will present patterns, algorithms and phenomena.

We introduced some abstractions. Our first abstraction were objects. We
cannot observe the objects directly and instead gauge them by observing their
properties. A property is a special phenomenon which transpires when we ob-
serve an object which possesses that property. Thus the property is also pre-
sented through an ED model.

Then we introduced another abstraction – agents. Similar to objects, we
cannot observe agents directly and can only gauge them through their actions.

We created a language for description of worlds. This is not the ultimate
language, but only a first version which needs further development. We did not
provide a formal description of our language and instead exemplified it by three
use cases. That is, instead of describing the language we found the descriptions
of three concrete worlds – two versions of the chess game (with one and two
agents, respectively) and a world which presents the functioning of the Turing
machine.

Note: It is not much of a problem to provide a formal description of a
language which covers all the three worlds, but we are aiming elsewhere. The
aim is to create a language which can describe any world, and provide a formal
description of that language. This is a more difficult problem which we are yet
to solve.

We demonstrated that through its simple constituent modules, the language
for description of worlds can describe quite complicated worlds with multiple
agents and complex relationships among the agents. The superstructure we
build on these modules cannot hover in thin air and should rest on some steady
fundament. Event-Driven models are exactly the fundament of the language for
description of worlds and the base on which we will develop all abstractions of
higher order.
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