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Abstract

This paper explores the Minimum Weighted Independent Dominating
Set Problem and proposes novel approaches to tackle it. Namely, two
integer linear programming formulations and a fast greedy heuristic as an
alternative approach are proposed. Extensive computational experiments
are conducted to evaluate the performance of these approaches on the
established set of benchmark instances for the problem. The obtained re-
sults demonstrate that the introduced integer linear programming models
are able to achieve optimal solutions on all instances with 100 nodes and
significantly outperform existing exact methods on numerous other in-
stances. Additionally, the greedy heuristic exhibits superior performance
compared to competing greedy heuristics, particularly on random graphs.
These findings suggest promising directions for future research, including
the integration of these methods into hybrid algorithms or metaheuristic
frameworks.
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1 Introduction

Domination problems in graphs have been studied extensively from both
theoretical and practical perspectives [1] due to their wide-ranging applications
in various fields, including graph mining [2], routing in wireless sensor and ad-
hoc networks [3], social network influence [4], bioinformatics [5], etc.

The canonical problem within this class of problems is the minimum dom-
inating set problem (MDSP). Given an undirected graph G = (V,E), a domi-
nating set is defined as S ⊆ V , such that every node v ∈ V is either element
of S or is connected by an edge to node u ∈ S. The goal is to find such set S
of minimum cardinality. While the literature has explored various variations of
the MDSP, such as the minimum connected dominating set problem [6], mini-
mum capacitated dominating set problem [7], and minimum total dominating
set problem [8], this paper focuses on the minimum weighted independent dom-
inating set problem (MWIDSP).

This NP-hard problem was originally introduced in [9] as a weighted general-
ization of the minimum independent dominating set problem (MIDSP). MIDSP
has applications in feature selection [10,11], virtual backbone network construc-
tion in mobile ad-hoc networks [12], clustering in wireless sensor networks [13].
The weighted variant of the problem is applicable in analogous scenarios, al-
lowing for the assignment of weights to both nodes and edges of the graph.
For instance, in the context of wireless network clustering, node weights may
be determined by various factors including node degree, mobility and residual
energy [14], while edge weights may naturally represent the distances between
nodes.

1.1 Problem definition

A set S ⊆ V is called independent if for any pair of nodes u, v ∈ S there is no
edge {u, v} ∈ E. A set S is called independent dominating set if it is independent
and dominating at the same time. The MWIDSP considers undirected graphs
with node and edge weights that are positive numbers. The aim is to find an
independent dominating set S that minimizes the following objective function:

obj(S) =
∑
v∈S

wv +
∑

v∈V \S

min{we | e = {v, u}, u ∈ S} (1)

Accordingly, the objective function value of set S is calculated by adding the
weights of the nodes within S to the weights of the minimum-weight edges
connecting nodes outside of S to nodes within S.
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1.2 Example instance

2 1

3

54

7

5

2

3

2

1

6

3
4

2

Figure 1: Problem instance. The numbers represent the weights of nodes and edges.
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Figure 2: The optimal solution of the problem instance (a). The set S consists of the
nodes filled in blue color. Red edges contribute to the second and third sum of the
objective function. The objective function value is (4 + 3) + (1 + 3 + 2 + 3) = 7 +
9 = 16. Best viewed in color.

2 Related work

A linear time algorithm has been proposed in [9] to solve the MWIDSP in
series-parallel graphs. There are two papers that handle the general graphs. In
[15] multiple approaches have been proposed:

• Three integer linear programming models

1. Ilp-1 is a model based on three sets of indicator variables, that are vertex
binary variables xv denoting if node v is chosen for the solution, edge binary
variables ye indicating if edge e is choosable, and edge binary variables ze
indicating if edge e is selected for connecting a non-chosen node to a chosen
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one. This model has a total of |V | + 2 · |E| variables and 3 · |V | + 5 · |E|
constraints.

2. Ilp-2 is a similar model that eliminates the set of ye variables while uti-
lizing additional constraints. This model comprises a total of |V | + |E|
variables and 3 · |V |+ 4 · |E| constraints.

3. Ilp-3 is a structurally different model based on the idea of explicitly mod-
eling edge-weight contribution of each node using integer variables qv. This
model utilizes 2 · |V | variables and 5 · |V |+ 2 · |E| constraints in total.

• Two greedy heuristics

1. Greedy-1 starts with an empty solution S and iteratively adds a node v

with the maximum |NG′ (v)|
wv

value, where G′ is the remaining graph after
node selection and NG′(v) is the neighborhood of v in G′. After adding a
node v to S, v and all of its neighbor nodes and all their incident edges
are removed from G′.

2. Greedy-2 also considers edge weights. Specifically, it uses an auxiliary
objective function faux defined as the sum of contributions of nodes with
respect to the partial solution S. Node v ∈ S has contribution of wv, and
node v /∈ S has contribution of min{wuv | u ∈ S} if it has neighbors in S,
otherwise it is defined as the maximum edge weight in the whole graph.

• Population based iterated greedy (Pbig) metaheuristic based on the prob-
abilistic version of the Greedy-2 heuristic, and it is applied both in isola-
tion and as an integral component of the construct, merge, solve and adapt
(CMSA) [16] framework. This hybrid is denoted as Cmsa-Pbig.

The current state-of-the-art method is a local search algorithm with reinforce-
ment learning inspired repair procedure (LSRR) proposed in [17]. Three dif-
ferent scoring functions are introduced that are specifically suited for different
weight properties of nodes and edges, and are used within a greedy heuristic
and local search.

2.1 Main contribution

Building upon established methodologies used in solving combinatorial opti-
mization problems such as the uncapacitated facility location problem (UFLP)
[18] and the weighted total domination problem (WTDP) [19], two novel ILP
models are introduced tailored to address the MWIDSP. These models offer
significant advancements over existing exact methods, showcasing superior per-
formance in terms of solution quality and computational efficiency.
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In addition to the ILP models, a novel greedy algorithm is specifically de-
signed for MWIDSP. This algorithm surpasses the performance of two com-
peting greedy algorithms from the literature, demonstrating its effectiveness in
producing high-quality solutions efficiently.

3 ILP models

In this section two alternative ILP models are presented that, as is shown in
Section 5, outperform competing models from [6].

3.1 New-1 ILP model

The first of the two newly proposed ILP models, referred to as New-1,
employs two sets of binary variables. Specifically, xu for each node u ∈ V
indicates whether or not u is selected for inclusion in the solution. Additionally,
yuv is assigned a value of 1 for each node pair (u, v) if node v ∈ V is adjacent
to the node u ∈ S through the arc (u, v) ∈ A. Here, A = {(u, v) ∪ (v, u) |
∀e = {u, v} ∈ E} represents the set of bidirected arcs associated with E. Before
presenting the formulation, let us define the set of incoming arcs to node u as
δ−(u), and, analogously, the set of outgoing arcs from node u as δ+(u). Using
this notation, the MWIDSP can be formulated as:

min
∑
u∈V

wuxu +
∑

(u,v)∈A

wuvyuv, such that (2)

xu + xv ≤ 1, ∀e = {u, v} ∈ E (3)

xu +
∑

(v,u)∈δ−(u)

yvu = 1, ∀u ∈ V (4)

yuv ≤ xu, ∀(u, v) ∈ A (5)

xu ∈ {0, 1}, ∀u ∈ V (6)

yuv ∈ {0, 1}, ∀(u, v) ∈ A (7)

Constraints (3) ensure no two neighboring nodes are elements of the solu-
tion, threreby enforcing the solution to be an independent set. Additionally,
constraints (4) guarantee that every node u is either inside the solution, or is
covered by exactly one neighbor v from the solution. Moreover, constraints
(5) verify that node u must be included in the solution if it is to cover its
neighbor v. Coupled with the second part of the objective (2), they ensure the
accurate computation of edge weights connecting nodes outside the solution to
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those within. Final two sets of constraints (6) and (7) affirm that, as previously
stated, variables x and y are binary.

The total number of variables in this formulation amounts to |V | + 2 · |E|,
while the number of constraints is 2 · |V |+ 5 · |E|.

3.2 New-2 ILP model

Drawing inspiration from previous work on similar problems [18, 19], in the
second ILP model named New-2, Benders decomposition is employed to project
out the y variables. Continuous variables q are introduced to account for the
edge weights connecting nodes outside the solution to those within. Let us define
N ′(u) as the list of neighboring nodes of node u arranged in ascending order on
the edge weights connecting them to u. Utilizing this notation, MWIDSP can
be expressed as:

min
∑
u∈V

wuxu + qu, such that (8)

xu + xv ≤ 1, ∀e = {u, v} ∈ E (9)

xu +
∑

v∈N(u)

xv ≥ 1, ∀u ∈ V (10)

qu ≥ wsu −
s−1∑
t=1

(wsu − wtu)xt − wsuxu, ∀u ∈ V,∀s ∈ {1, . . . , |N ′(u)|} (11)

xu ∈ {0, 1}, ∀u ∈ V (12)

qu ≥ 0, ∀u ∈ V (13)

Constraints (9), as before in New-1, represent the independent set condition.
Constraints (10) make sure the solution is a dominating set. Let us break the
third set of constraints (11) in two cases for easier exposition. First, when
xu = 0, indicating node i is not in the solution, the constraints become similar to
Benders optimality cuts for UFLP and WTDP, and the variable qi will have the
value of minimum weight edge connecting node i to some node in the solution.
On the other hand, when xu = 1, the right hand side is at most zero, so the value
of qi will be zero for every node within the solution. Constraints (12) and (13)
state that variables x and q are binary and positive continuous, respectively.

The total number of variables in this formulation is 2 · |V |, while the number
of constraints is 3 · |V |+3 · |E|. It is worth noting that the number of constraints
(11) equals the sum of all node degrees in the graph, i.e., 2 · |E|. The remaining
calculations follow straightforwardly.
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4 Greedy algorithm

The newly constructed greedy algorithm starts from an empty solution S.
Then, at each iteration it adds to S the highest score node v∗ from the set of
all nodes not currently covered V ′. A node is considered covered if it adheres
to the independent dominating set constraint, meaning it either belongs to the
solution or neighbors a node within the solution. The score value of a node v is
calculated as:

score(v) =

∑
u∈N(v) (wu +

∑
t∈N(u)\{v} wut)

wv +
∑
u∈N(v) wuv

(14)

As the aim is to maximize the score value, a large numerator and a small
denominator are desirable. The denominator indicates a preference for the total
weight of node v and its incident edges to be relatively small, which aligns
well with the objective function (1). Conversely, the numerator denotes that
neighboring nodes of v and their incident edges (except for those connecting
them to v) are preferably of relatively large weights. This represents the gain
achieved after covering those nodes with v – their large weight and large edge
weights to potential alternative nodes from the solution need not be accounted
for.

An important note is that after adding the best node with respect to the score
(14), its closed neighborhood N [v∗] is removed from the graph, as all those nodes
are now covered. Specifically, all the neighbors of v∗ and their incident edges
are removed. Therefore, they do not affect the summations of edge weights, and
transitively, the score, in the following iterations of the algorithm.

The pseudocode of the greedy algorithm is given in Algorithm 1. The worst-
case time complexity of the algorithm is O(|V | · |E|).

5 Experimental evaluation

The two newly introduced ILP models and the greedy algorithm are evalu-
ated on a comprehensive set of benchmark instances previously established in
the literature. Their results are compared to 8 competing approaches mentioned
in the Section 2. All methods are implemented in Python. The experiments
were conducted on a PC with Intel Core i9-11900 @ 2.5GHz CPU with a mem-
ory limit of 4GB RAM per execution, under Ubuntu 22.04 OS. The ILP models
were solved using the Cplex 20.1 solver.
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Algorithm 1 Greedy-New

Input: graph G = (V,E)
Output: solution S

1: S ← ∅
2: G′ = (V ′, E′)← G = (V,E)
3: edgeWeights← [

∑
v∈N(u) wuv|u ∈ V ]

4: while size(V ′) > 0 do
5: v∗ ← −1
6: scoreMax← −1
7: for v ∈ V ′ do
8: nodeWeights← 0
9: uvEdgeWeights← 0

10: otherEdgeWeights← 0
11: for u ∈ NG′(v) do
12: nodeWeights← nodeWeights+ wu
13: uvEdgeWeights← uvEdgeWeights+ wuv
14: otherEdgeWeights← otherEdgeWeights+edgeWeightsu−wuv
15: end for
16: score← (nodeWeights+ otherEdgeWeights)/

(wv + uvEdgeWeights)
17: if score > scoreMax then
18: scoreMax← score
19: v∗ ← v
20: end if
21: end for
22: S.add(v∗)
23: for v ∈ NG′ [v∗] do
24: for u ∈ NG′(v) do
25: edgeWeightsu ← edgeWeightsu − wuv
26: end for
27: remove node v from G′

28: end for
29: end while
30: return S
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5.1 Benchmark instances

The same set of benchmark instances as the competition [15,17] was utilized.
There are two types of graphs within the benchmark set: random graphs and
random geometric graphs. For both of these types graphs of varying size were
generated, specifically |V | ∈ {100, 500, 1000}.

The random graphs were generated adding edges between nodes at random,
using the Erdős–Rényi model [20], with a probability ep for each edge. Thus,
the parameter ep controls the density of the graph, with ep ∈ {0.05, 0.15, 0.25}
representing graphs of different densities.

On the other hand, the random geometric graphs were generated assigning
random coordinates from the unit square to nodes and then connecting any two
nodes at a distance smaller than r by an edge. This graph generation method
is also known as the Unit disk model [21] and is often used to simulate ad-hoc
wireless networks [22]. In this case the graph density is controlled by the radius
r. To match the random graphs densities the values of r ∈ {0.14, 0.24, 0.34}
were used.

The node and edge weights were generated using three different schemes:

1. Both node and edge weights were drawn uniformly at random from the set
{0, . . . , 100}. This group is referred to as the neutral graphs (NG).

2. Node weights were drawn uniformly at random from the set {0, . . . , 1000},
and edge weights uniformly at random from the set {0, . . . , 10}. Conse-
quently, in these node-oriented graphs (NG), the choice of nodes is crucial.

3. Node weights were drawn uniformly at random from the set {0, . . . , 10}, and
edge weights uniformly at random from the set {0, . . . , 1000}. Therefore, in
this group, called edge-oriented (EG) graphs, the selection of edges is key.

For each combination of the graph type, number of nodes, edge probability
ep (or radius r), and weight generation scheme, 10 instances were generated.
Hence, the benchmark set consists of a total of 540 graphs, comprising 270
random graphs and 270 random geometric graphs.

The problem instances, along with the implementation of the proposed meth-
ods, are publicly available at https://github.com/StefanKapunac/mwids public.

5.2 Experimental results

The results are presented in two pairs of tables, each corresponding to one
of the two graph types (random or random geometric) and algorithm types
(exact or heuristic). Tables 1 and 2 display the results of exact methods for all

https://github.com/StefanKapunac/mwids_public
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random and random geometric graphs, respectively. Similarly, Tables 3 and 4
showcase the results of heuristic methods for all random and random geometric
graphs, respectively. All tables are structured as follows. The first three columns
represent the number of nodes in the graph (|V |), the weight scheme, and the
graph density parameter, i.e. edge probability ep for random graphs and radius r
for random geometric graphs. The subsequent columns contain the results of the
considered algorithms. Namely, the column named result is the average result
obtained across the corresponding 10 problem instances. Similarly, time column
indicates the average time (in seconds) taken to find the solution, across the 10
corresponding problem instances. The time limit for each algorithm is 3 · |V |
seconds per graph. Besides the aforementioned result and time1, the results of
all ILP models include a gap column, representing the average optimality gap
(in percentage). The overall best result is highlighted in bold, while the best
result among the greedy heuristics is underscored.

Based on the experimental results of exact methods, the following observa-
tions can be made:

• New-1 and New-2 obtain higher quality results on the vast majority of
random instances, in comparison to the other three ILP models. Additionally,
both models successfully solve all instances with 100 nodes to optimality, in
contrast to models from [15] that achieve optimality in only 4 or 5 groups
out of the total 9 instance groups of that size. It is worth noting that the
average execution time of New-1 and New-2 for instances with 100 nodes
is relatively short, with around half completing in less than 1 second. The
longest execution time observed is 35.3 seconds for the densest edge-oriented
graphs.

• New-1 and New-2 consistently outperform the three competing ILP models
across the majority of random geometric instances. Both new models suc-
cessfully solve all instances with 100 nodes to optimality. Additionally, they
achieve optimality for all node-oriented instances with 500 nodes and some
instances with 1000 nodes. Specifically, New-1 solves the node-oriented in-
stance group with the lowest density (radius r = 0.14), while New-2 solves
nearly all node-oriented instances except for three instances from the densest
group (radius r = 0.34). It is worth mentioning that the execution times of
New-1 and New-2 are significantly lower than those of the metaheuristics
in some cases, especially in lower density instances.

1Note that information regarding the average time for the ILP models from [15] was not
available.
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The experimental results of heuristic methods yield the following observa-
tions:

• Greedy-New consistently yields higher quality solutions across nearly all
random graphs, compared to the other two greedy heuristics. The only two
exceptions are observed in the group of node-oriented instances with 100 nodes
and 0.05 or 0.15 edge probability, where Greedy-1 achieves slightly better
average result.

• The comparison between greedy heuristics for random geometric graphs is
not as definitive as it is for random graphs. However, on average, Greedy-
New algorithm achieves higher-quality solutions compared to the competing
Greedy-1 and Greedy-2.

• Metaheuristic approaches outperform greedy heuristics, particularly on larger
graphs, prioritizing higher quality at the expense of longer execution times.
Notably, Lsrr stands out as a state-of-the-art algorithm, achieving optimal
solutions for all instances where the optimal solution is known, matching the
results of the two proposed ILP models.

5.3 Statistical analysis

The statistical significance of the observed differences among the competing
approaches was assessed using the following statistical methodology. Initially,
all algorithms were collectively analyzed using the Friedman’s test [23]. Sub-
sequently, in cases where the null hypothesis was rejected (H0 indicating that
competitor approaches are statistically equal), pairwise comparisons were con-
ducted using the Nemenyi’s post-hoc test [24].

The corresponding outcomes are depicted in Figure 3 through critical differ-
ence plots. Essentially, each approach is positioned within the segment based
on its average ranking across the considered subset of instances. Subsequently,
the critical difference (CD) is calculated for a significance level of 0.05, and
the performance of algorithms with a difference lower than CD is considered
statistically equivalent – denoting no significant difference. This equivalence
is illustrated in the graphic by black horizontal bars connecting the respective
algorithms.

Analyzing the CD plots the following conclusions are obtained:

• Metaheuristic approaches have the lowest average rank, indicating higher
quality solutions, with Lsrr particularly standing out for achieving the low-
est average rank. However, when considering all instances together, there is
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(a) All approaches

(b) Exact methods

(c) Greedy heuristics

Figure 3: Critical difference plots for all instances of the two benchmark sets.
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(a) Random graph instances

(b) Random geometric graph instances

Figure 4: Critical difference plots for two groups of instances.

no statistical difference among the results delivered by the three metaheuris-
tic approaches (Lsrr, Cmsa-Pbig and Pbig) and New-2 ILP model. As
for the New-1, only Lsrr is statistically significantly better. Among the
greedy heuristics, Greedy-New has the lowest average rank and is signifi-
cantly better than Greedy-2, but there is no statistical difference between
Greedy-New and Greedy-1.

• Among exact methods, both New-1 and New-2 demonstrate statistically
significant superiority over the three competing approaches. Notably, there
is no statistical difference between New-1 and New-2. Additionally, there is
no statistical difference among Ilp-1, Ilp-2, and Ilp-3.

• In the realm of greedy heuristics, Greedy-New significantly outperforms
both Greedy-1 and Greedy-2. While Greedy-2 achieves a lower average
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rank than Greedy-1, the distinction lacks statistical significance.

5.4 Additional statistical analysis

• When examining the group of random graphs, Lsrr emerges as the only
method statistically superior to both proposed ILP models, New-1 and New-
2. As before, there is no statistical difference among the three metaheuristic
approaches. While Greedy-New exhibits a lower average rank compared to
all Ilp-1, Ilp-2, Greedy-1, and Greedy-2, the disparity is not statistically
significant.

• In the case of random geometric graphs, there exists no statistical difference
between the introduced ILP models (New-1 and New-2) and the metaheuris-
tics (Lsrr, Cmsa-Pbig and Pbig), despite the metaheuristic approaches
achieving a lower average rank. Greedy-New once again obtains lower av-
erage rank compared to the competing Greedy-1 and Greedy-2, yet the
difference is not significant.

6 Conclusions and future work

This study delved into the minimum weighted independent dominating set
problem, presenting two distinct integer linear programming models (New-1
and New-2) alongside a novel greedy heuristic (Greedy-New). Extensive
computational experiments were conducted to assess the efficacy of the pro-
posed methods. The introduced ILP models, New-1 and New-2, attained op-
timal solutions across all instances with 100 nodes and outperformed competing
ILP models on the majority of other cases. While metaheuristic approaches re-
main preferable for larger instances, the proposed ILP models offer a compelling
alternative for specific instance classes, particularly node-oriented random ge-
ometric graphs. Notably, within the lower density graphs of this type, New-2
demonstrated significantly reduced execution times compared to metaheuristics.

The novel greedy algorithm Greedy-New outperformed the competing
greedy heuristics from the litreature across the majority of instances. Notably,
it also demonstrated superior performance compared to some of the competing
ILP models, particularly on random graphs with larger number of nodes.

This study has demonstrated the high potential of the proposed ILP models
and/or greedy heuristics to be integrated as core components within the design
of new hybrid algorithms or to improve the performance of existing metaheuris-
tics. In light of these findings, this represents a promising direction for future
research.
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