
Serdica Journal of Computing 17(2), 2023, pp. 107-116, 10.55630/sjc.2023.17.107-116
Published by Institute of Mathematics and Informatics, Bulgarian Academy of Sciences

Recognition of Handwritten Mathematical
Expressions Using Systems of Convolutional

Neural Networks

Tate Rowney1, Alexander I. Iliev2

1The Bay School of San Francisco, United States
taterowney@gmail.com

2Institute of Mathematics and Informatics,
Bulgarian Academy of Sciences, Bulgaria

ailiev@berkeley.edu

Abstract

Accurate recognition of handwritten mathematical expressions has
proven difficult due to their two-dimensional structure. Various machine-
learning techniques have previously been employed to transcribe hand-
written math, including approaches based on convolutional neural net-
works (CNNs) and larger encoder/decoder-based models. In this work,
we explore a CNN-based method for transcribing handwritten math ex-
pressions into the typesetting language known as LATEX. This approach
utilizes machine learning not only for classifying individual characters but
also for extracting individual characters from handwritten inputs and de-
termining what forms of two-dimensionality exist within the expression.
This approach achieves significant reliability when recognizing common
mathematical expressions.

Keywords: Handwritten Mathematical Expression Recognition, Convolu-
tional Neural Networks, Deep Learning

ACM Computing Classification System 2012: Computing methodologies →
Artificial intelligence

Mathematics Subject Classification 2020: 68T45

Received: December 22, 2023, Accepted: January 17, Published: February 21, 2024
Citation: Tate Rowney, Alexander I. Iliev, Recognition of Handwritten Mathematical

Expressions Using Systems of Convolutional Neural Networks, Serdica Journal of Computing
17(2), 2023, pp. 107-116, https://doi.org/10.55630/sjc.2023.17.107-116

https://serdica-comp.math.bas.bg/
https://doi.org/10.55630/sjc.2023.17.107-116
mailto:taterowney@gmail.com
mailto:ailiev@berkeley.edu
https://doi.org/10.55630/sjc.2023.17.107-116


108 Tate Rowney, Alexander I. Iliev

1 Introduction

Machine learning — the use of a variety of statistical and computational
methods to help a computer stochastically discover patterns in inputs — is not
a new concept. As early as 1943, McCulloch and Pitts proposed that complex
thought could be modeled using a system of mathematically simulated “Artifi-
cial Neurons” [1], creating what is now known as an artificial neural network.
However, progress in machine learning relatively stagnated for many decades
and was plagued by unsatisfactory results compared to other methods of im-
plementing artificial intelligence. The exploration of deep learning, the use of
multiple connected “layers” of artificial neurons, started to regain momentum
in the 1980s with the application of backpropagation, a simple calculus-based
algorithm to tune neurons to reduce error and fit patterns in data. Break-
throughs in deep learning strategies such as Recurrent Neural Networks and
Convolutional Neural Networks, as well as the ease with which widely available
Graphics Processing Units (GPUs) can expedite and parallelize the training
of neural networks [2], have caused deep learning to once again reside at the
forefront of AI.

Machine learning has shown particular aptitude in problems of computer
image recognition. In 1998, LeCun et al. introduced a machine-learning archi-
tecture to recognize handwritten numerical digits with an accuracy surpassing
many traditional methods, using what is known as a Convolutional Neural Net-
work (CNN) [3]. This paper helped to popularize the use of CNNs in image
recognition and signal processing, where they are broadly applicable. CNNs,
like traditional neural networks, are composed of layers of artificial neurons that
translate and linearly scale inputs (effectively a high-dimensional affine transfor-
mation). CNNs also contain “convolutional layers,” in which an n-dimensional
array of input values is combined with an n-dimensional array of adjustable
weights (called the “kernel”) in a discrete analog of mathematical convolution
(Fig. 1). This strategy is used in classical programs to blur, sharpen, recolor,
or adjust images and, when tuned by machine learning algorithms, can signifi-
cantly improve artificial neural networks’ ability to discover patterns in image
data.

CNN-based deep learning has achieved nearly superhuman results in the
transcription of handwritten text [3, 4]. However, since CNN-based classifiers
sort inputs into a discrete number of classes, they are generally trained to rec-
ognize only one character at a time (as with [3–5]), requiring longer inputs to
be split into smaller images containing a single character each. This becomes
a challenge in problems such as transcribing handwritten mathematical expres-



Recognition of Handwritten Mathematical Expressions 109

Figure 1: Convolution of a 2D input with 2-by-2 kernel.

sions into a typesetting language: variation in characters’ size and location (as
with exponents), as well as overlap between characters (such as the contents of
a square root), make separating individual characters much more complicated
than in standard, evenly-spaced handwritten text. Previous implementations
have utilized classical methods for character separation, such as by combining all
contiguous curves into a single character [5]. This method provides varying lev-
els of accuracy, including the erroneous combination of different characters that
happen to overlap (as in Fig. 2). Some approaches have bypassed this problem
entirely by utilizing encoder-based models with variable output lengths, such as
the transformer architecture. These models are significantly more complex than
a standard CNN classifier, using considerably more parameters and requiring
upwards of 150 training epochs to achieve accuracy [6].

2 Strategy

To mitigate these challenges, we propose a new strategy to recognize and
transcribe handwritten expressions into the LATEX typesetting language. This
strategy implements online character recognition, requiring data on the posi-
tions and order in which the user draws each distinct curve that composes each
character. It utilizes three separate convolutional neural networks: the first of
these, a model to detect stroke combination, is trained to predict whether two
strokes belong within the same character, using images formed by combining
two subsequent strokes, as well as a binary feature indicating whether these
strokes are part of a single LATEX symbol (Fig. 3).

The second, a special formatting predictor, determines what kind of “two-
dimensionality” is present between two adjacent characters; more specifically,



110 Tate Rowney, Alexander I. Iliev

Figure 2: A single connected curve forming two different characters (xn).

whether the two characters lie next to each other or form an exponent, fraction,
etc., equivalent to the presence of ““ and “” in the LATEX output. This model is
trained on cropped, scaled images of adjacent characters, as well as a label indi-
cating what (if any) type of nonstandard formatting is present (Fig. 4). Finally,
a character classifier is trained on images of individual characters, mapping each
to its LATEX equivalent (Fig. 5).

Thus, full-length handwritten mathematical expressions can be analyzed by
feeding each distinct curve drawn by the user, as well as the curve drawn imme-
diately after, into the stroke combination predictor to determine which strokes
are part of a single character (a low predicted probability indicates that curves
before and after the one considered should be separated). Subsequently, each
group of curves can be individually classified into a LATEX character. Appro-
priate curly braces can be added to the LATEX output based on the results of
the special formatting prediction model: by testing a character combined with
others located incrementally longer distances from it until they are determined
to be “in a row,” the locations of opening and closing curly braces can be de-
termined.

3 Motivation

This strategy presents numerous benefits over current CNN-based hand-
written equation recognition models, mainly due to its use of deep learning to
differentiate between characters. This offers greater potential for adaptability
and accuracy compared to classical approaches. Additionally, it eliminates the
need to hard-code different recognition algorithms for different types of two-



Recognition of Handwritten Mathematical Expressions 111

Figure 3: Example training data for stroke combination model.

Figure 4: Example training data for nonstandard formatting classification model.

Figure 5: Example training data for character classification model.



112 Tate Rowney, Alexander I. Iliev

Figure 6: Format (after cleaning and rendering) of CROHME dataset expressions.

dimensionality in expressions: helping the model recognize more complex LATEX
tokens is simply a matter of adding to the training set.

Even though this strategy cannot adjust its predictions based on the con-
text of other nearby characters, it uses a far simpler architecture than most
context-interpreting encoder/decoder models, likely requiring fewer parameters.
Furthermore, this strategy can begin to predict the corresponding LATEX of user
input before a user has finished writing. It only compares curves near each
other, allowing it to begin segmenting and recognizing characters the user has
just written. This can save computation time that would otherwise occur after
the expression was fully written.

4 Results

An implementation of this strategy was trained using Python’s TensorFlow
library on the CROHME 2019 dataset. This dataset contains approximately
11,000 handwritten mathematical expressions composed of a total of 98 distinct
characters (Fig. 6). Expressions are recorded as a series of curves, each com-
posed of a variable number of x and y coordinates, representing (in order) the
points the user’s pen has passed through. It also contains information on which
curves combine to form any given character, as well as LATEX and MathML
representations of the entire expression.

The character classification model was trained by combining each character’s
strokes together, converting them to a bitmap representation using Bresenham’s
Line Algorithm [7], and scaling down to a 28x28x1 black-and-white image. Each
of the 201,114 images, along with an integer representing the characters they



Recognition of Handwritten Mathematical Expressions 113

Figure 7: Model structure repurposed for each of the three CNNs.

depict, was fed into a convolutional neural network (described below) with a final
98-unit softmax layer and compiled using the sparse categorical cross-entropy
loss function.

The stroke combination model was trained by combining pairs of consecutive
strokes from each expression, converting them to an image as described above,
and labeling them based on whether they come from the same character. The
493,440 examples were fed into the convolutional neural network below with
a sigmoid-activated final layer and compiled using a binary cross-entropy loss
function.

The character nesting model was trained by combining the strokes from a
single character and all characters following it, which were either nested or di-
rectly following the set of nested characters. Each pair of strokes was converted
into an image as described above, which was then separated into two different
arrays, each containing one of the characters. These 172,357 examples were
labeled according to which type of nesting they represented (no nesting, super-
script, subscript, square root, and the top/bottom of a fraction). These were
fed into the convolutional neural network below with a final softmax-activated
layer and compiled using the sparse categorical cross-entropy loss function.

All of the above models utilized a similar structure, pictured in Fig. 7. Three
2-dimensional convolutional layers with a kernel size of 3x3 were used, each
followed by a batch normalization operation and a ReLU activation function.
The first convolutional layer was initialized with 32 input channels, with the
number of channels doubling each subsequent layer. A max pooling layer with a
2x2 pool size was placed after the final convolutional layer to prevent overfitting.
Following convolution, the output was flattened, fed through 2 dense sigmoid-
activated layers with 256 units each, a 30% dropout layer, and a final dense
layer with properties dependent on the network in question. All networks were
optimized using the Adam optimizer with a learning rate of 0.001 and trained
for 20 epochs with a batch size of 32.



114 Tate Rowney, Alexander I. Iliev

Figure 8: Loss and accuracy plots for character classification model.

Figure 9: Loss and accuracy plots for stroke combination model.

Figure 10: Loss and accuracy plots for nonstandard formatting classification model.



Recognition of Handwritten Mathematical Expressions 115

Model Name Final Model Trainable
Layer Size Accuracy Parameters

Character Classification 96 95.77% 314,912
Stroke Combination 1 99.42% 290,497
Nonstandard Formatting 6 99.33% 423,110
Classification

Table 1: Size of final layer, mean accuracy on data outside of training set, and number
of trainable parameters for each of the three models.

Calculations were performed on a machine running Ubuntu 22.04, Python
3.9, and TensorFlow 2.12, equipped with an Intelr i9 CPU and NVIDIAr

40-series GPU. Python’s Matplotlib, OpenCV, and Numpy libraries were used
during the cleaning and preprocessing of the dataset.

When tested on a set of 50 common mathematical expressions, the program
as a whole was able to successfully recognize individual characters with approxi-
mately 84% accuracy and correctly identify full expressions with approximately
58% accuracy. The program performed better on shorter inline and exponen-
tial equations but became somewhat unreliable when working with characters
composed of many separate lines.

5 Conclusion

Despite its relative simplicity, this approach to recognizing handwritten
mathematical expressions achieves considerable accuracy. One area of concern
for this strategy relative to encoder/decoder-based approaches is its inability
to correct errors based on context. For example, the result of “c0s” is likely
a misinterpretation of “cos.” To remedy this problem, a Hidden Markov or
sequence-to-sequence model trained on n-grams of LATEX output could be ap-
pended to correct common errors. This model would only require a small input
(the uncorrected output of the CNNs), giving it a distinct advantage in train-
ing time and likely accuracy over models that utilize the entire handwritten
expression as input.



116 Tate Rowney, Alexander I. Iliev

References

[1] W. S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous
activity, Bulletin of Mathematical Biophysics, 5:115–133, 1943.

[2] K.-S. Oh, K. Jung, GPU implementation of neural networks, Pattern Recognition,
37:1311–1314, 2004.

[3] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to
document recognition, Proceedings of the IEEE, 86:2278–2324, 1998.

[4] D. C. Cireşan, U. Meier, J. Masci, L. M. Gambardella, J. Schmidhuber, Flexible,
high performance convolutional neural networks for image classification, Proceed-
ings of Twenty-second international joint conference on artificial intelligence, 2011.

[5] C. Lu, K. Mohan, Recognition of online handwritten mathematical expressions
using convolutional neural networks, CS231n project report Stanford, 2015.

[6] H. Wang, G. Shan, Recognizing handwritten mathematical expressions as
LaTeX sequences using a multiscale robust neural network, arXiv preprint,
arXiv:2003.00817, 2020.

[7] J. E. Bresenham, Algorithm for computer control of a digital plotter, Seminal
graphics: pioneering efforts that shaped the field, pp. 1-6, 1998.

https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1016/j.patcog.2004.01.013
https://doi.org/10.1016/j.patcog.2004.01.013
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-210
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-210
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-210
http://vision.stanford.edu/teaching/cs231n/reports/2015/pdfs/mohan_lu_cs231n-project-final.pdf
http://vision.stanford.edu/teaching/cs231n/reports/2015/pdfs/mohan_lu_cs231n-project-final.pdf
https://doi.org/10.48550/arXiv.2003.00817
https://doi.org/10.48550/arXiv.2003.00817
https://doi.org/10.48550/arXiv.2003.00817
https://doi.org/10.1145/280811.280913
https://doi.org/10.1145/280811.280913

	Introduction
	Strategy
	Motivation
	Results
	Conclusion

