
Serdica Journal of Computing 17(1), 2023, pp. 1-16, 10.55630/sjc.2023.17.1-16
Published by Institute of Mathematics and Informatics, Bulgarian Academy of Sciences

Higher Order Orthogonal Polynomials as
Activation Functions in Artificial Neural

Networks

Burak Nebioglu1, Alexander I. Iliev2

1School of Technology,
SRH Berlin University of Applied Sciences, Germany

buraknebioglu@gmail.com

2Institute of Mathematics and Informatics,
Bulgarian Academy of Sciences, Bulgaria

ailiev@berkeley.edu

Abstract

Activation functions are used in Artificial Neural Networks to provide
non-linearity to the system. Several different activation functions in use
are very well known by almost any AI practitioner however this is not the
case for polynomial activation functions. Increasing attention to these
valuable mathematical functions can encourage more research and help to
fill the gap. During this work, Chebyshev and Hermite orthogonal polyno-
mials were used as activation functions. Calculations were conducted on
3 different datasets with different hyperparameters. According to the re-
sults, calculations done by Chebyshev activation functions take less time,
but Chebyshev can be more fragile depending on the solved problem. On
the other hand, Hermite shows a more robust and generalized behavior,
it is less dependent on the problem type, and it improves by necessary
adjustments.
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1 Introduction

The idea of artificial intelligence (AI) is not new, it has roots going back
to 1950s with a bunch of enthusiastic scientists and the idea behind is simply
making machines that can learn the rules from data instead of hard coding.
The reason why it has become much more popular and widely used nowadays
is, mainly due to the improvements done in hardware and availability to reach
huge amount of data. Besides those reasons democratization of data science also
has a huge impact on improvements. By saying democratization, we imply the
reachability to data science tools and methods not only by academicians but also
by any discipline. AI is the most general term which includes machine learning
(ML) and deep learning (DL). Even it seems like a magic to the everyday user
AI code basically runs code which makes calculations and due to the nature
of calculations done in a digital environment by some approximations. We as
scientists face some bottlenecks depending on the conditions. Subject itself is
very broad and solutions can be very specific. As it is visible at Figure 1 AI is the
universal set which includes ML and DL, which also represents the development
of AI journey. Most of the time it is common to hear that if AI is the engine,
data is the fuel of this engine because of this we use tools related with this
description.

Let’s examine hardware such as Central Processing Unit (CPU), Graphical
Processing Unit (GPU) and Tensor Processing Unit (TPU). Numerical calcula-
tions are expensive and time consuming, so depending on the calculation power
GPU or TPU are preferred instead of CPU for heavy calculations. When we
consider Data part of this equation, ideas mainly from statistics opens the doors
for us. At the end of the day, all we want is to get a satisfying result from our
calculations. Sometimes we do achieve sometimes not, depending on our expec-
tations or criteria. This result depends on multiple factors that we choose even
before we start to run our calculations. First, we need to consider the nature
of the problem and focus on the methods we will apply to see whether it is
suitable or not. What kind of data is used? If it is a sequence of numbers such
as daily stock prices and we want to predict next day’s price a regression line
can be useful on the other hand if we are dealing with colored image dataset
which is represented by pixel values between (0, 255) for each channel (r, g, b),
Convolutional Neural Network (CNN) will be used.

Regarding to CNN solution other questions arise such as how deep the net-
work should be, which activation function should be used, dropout applied or
not, optimizer type. Such questions must be considered at the very beginning
of our work. There are already some ready to use approaches turned into best
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Fig. 1: AI, Machine Learning, Deep Learning relation

practices by the experiences of many experts. After all there is no magical for-
mula for absolute success rate, results are dependent on the elements and their
relation, in other words interaction between each other. Knowing and under-
standing the nature of the problem and related tools on our belt will improve
the expected results.

2 Activation functions

Widely used activation functions can be divided into two major groups:
gate like functions and non-saturating functions. In gate like functions input
is mapped into limited ranges such as [0, 1] or [−1, 1] – Sigmoid, Tanh and
Softsign are such functions. However, in non-saturating activation functions
when input value grows it does not approximate to a constant – ReLU, LReLU,
ELU and SELU are such functions [1]. As described in [2] another property
of activation functions is their monotonic or non-monotonic behavior. When
a function f is called monotonic that means it is either entirely increasing or
entirely decreasing. This predictable behavior of activation function results in
faster optimization. Non-monotonic activation functions can also be used in
this case it may take more time to train the network.

2.1 Linear activation function

Linear activation functions simply output a result which is a multiplication
of input with a constant. In Figure 3 we can see an example of a linear function
in this case our k value is equal to 2. As this is a linear function, we will get a
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Fig. 2: Monotonic functions taken from [3]

constant value because of the derivative.

f(xi) = kxi (1)

If all the activation functions used in the network are linear it does not
matter how deep the network is, the result will be just like a single-layered
network. The derivative of this function equals k which is a constant. Because
of this it does not hold a relationship with the input, consequently error cannot
be decreased by the gradient. Output can be any value between (−∞,∞).

Table 1: Advantage and disadvantage of primary activation functions from [4].

AFs Diminishing Limited Optimization Lack of Computational
gradients non-linearity difficulty adaptability inefficiency

Sigmoid Yes No Yes Yes Yes
Tanh Yes No Partial Yes Yes
ReLU Partial Yes Partial Yes No
ELU No Partial No Yes Partial
APL No Partial No No No
Swish No Partial No No Partial
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2.2 Sigmoid

This is an S-shaped monotonic function as seen in the below graph Figure
4. In sigmoid function values are bounded between upper and lower values
which are 1 and 0. And because this is not a linear function at each point,
we get different derivative results or slopes. As we can also see from the graph
while y axes values are approaching to both limit values, derivatives tend to
approach to zero. Because of this behavior, we start to face the problem called
vanishing gradients. When vanishing gradients occurs network’s learning will
be impossible because signal will not be passing through neuron to the weights
and to the data. Sigmoid function keeps its popularity in binary classification
where the output is either 0 or 1. If the value is greater than 0.5 result will be
1 else 0.

f(xi) =
exi

1 + exi
=

1

1 + e−xi
(2)

f ′(xi) =
e−xi

(1 + e−xi)2
(3)

2.3 Tanh

The main difference between sigmoid and tanh is in their bounding values
while sigmoid had values between 0 and 1 tanh has values between −1 and 1
and unlike sigmoid its output is zero-centered, it can be obtained from sigmoid
function. Just like sigmoid function tanh also suffers from vanishing gradients
problem. Mean of the outputs are 0 or very close to zero because of the range
[−1, 1]. Because learning is much easier ANN use it mostly in hidden layers.

tanh(xi) =
exi − e−xi

exi + e−xi
(4)

tanh′(xi) = 1− tanh(xi)
2 (5)

2.4 ReLU

ReLU which means rectified linear unit is a piecewise function that has 2
possible outputs. If the input value is positive, we get the input value back else if
the input is negative return value is always zero. This activation function is the
mainly used activation function on many models due to its efficiency and results.
The gradient value for negative values is 0 and for positive input, the value’s
gradient is 1. The negative side of this function is that values will be stuck in
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an inactive state and die when the inputs are negative which is called Dying
ReLU. It looks like a linear function but in fact it is nonlinear. In comparison
to the sigmoid and tanh it is easier to compute this function. It is also a very
popular choice in deep layers of CNN or DL.

f(xi) = max(0, xi) =

{
xi, xi > 0

0, xi < 0
(6)

f ′(xi) =

{
1, xi > 0

0, xi < 0
(7)

2.5 Leaky ReLU

Main difference between ReLU and LReLU is how they react to negative
values. While ReLU is returning zero for negative input values LReLU does
not return zero. Instead of this it returns the input value multiplied with a
constant. This is done for utilizing negative values against vanishing gradient
problem. One difficulty in this method is finding the best slope value which can
depend on problem and network type. Output range is between (−∞,∞).

f(xi) =

{
xi, xi > 0

αxi, xi < 0
(8)

f ′(xi) =

{
1, xi > 0

αxi, xi < 0
(9)

3 Polynomial activation functions in AI

Polynomials are heavily used in theory-based models for calculating numer-
ical approximations and dynamic system modeling. Researchers started to use
polynomial activation functions around the beginning of the 1990s. Recently
interest in those valuable functions decreased because of their fragile behavior
which we face while training them. One of its main difficulties is related to data
flow explosion problem. Due to this reason polynomial activation functions were
applied to single hidden layer networks [5–7]. Higher degree polynomials can be
represented by a single hidden layer perceptron by providing more hidden units
[8].
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Fig. 3: Linear activation function Fig. 4: Sigmoid activation function

Fig. 5: Sigmoid activation function derivative Fig. 6: Hyperbolic tangent activation function

Fig. 7: Hyperbolic tangent activation function
derivative

Fig. 8: Relu activation function



8 Burak Nebioglu, Alexander I. Iliev

Fig. 9: Relu activation function derivative Fig. 10: Leaky ReLU activation function

Fig. 11: Leaky ReLU activation function deriva-
tive

Fig. 12: Hermite polynomial graph adapted from
scipy.special.hermite

https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.hermite.html
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3.1 Orthogonal polynomial functions

Orthogonal polynomial functions are a special set of polynomials that have
the property of being orthogonal to each other over a certain interval. Specif-
ically, let’s say we have a weight function w(x) and we want to find a set of
polynomials Pn(x) that are orthogonal with respect to this weight function over
an interval [a, b]. That means we want to find a set of polynomials that satisfy
the following equation:∫ b

a

Pm(x)Pn(x)w(x)dx = 0, m 6= n. (10)

This means that the inner product of any two different orthogonal polyno-
mials is zero, when we multiply each by the weight function and integrate over
the interval [a, b]. There are several types of orthogonal polynomials, including
Legendre polynomials, Hermite polynomials and Chebyshev polynomials.

Now, let’s add a trigonometric identity to these orthogonal polynomial func-
tions to create orthogonal trigonometric polynomial functions.

As [9] explains in detail, we can start explaining orthogonal polynomial func-
tions first by adding a trigonometric identity 2 cosmθ cosnθ = cos (m+ n)θ +
cos (m− n)θ which will be used in the next step.

For m 6= n we have that cosmθ and cosnθ are orthogonal in (0, π) interval:∫ π

0

cosmθ cosnθ dθ = 0, m 6= n m, n = 0, 1, 2... (11)

This fact shows the vanishing of (11) {1, cos θ, cos 2θ, .... cosnθ, ....} is orthogonal
for (0, π).

The Legendre polynomials are another example of orthogonal polynomial
functions. They are defined over the interval [−1, 1] and are orthogonal with
respect to the weight function w(x) = 1. By using x = cosθ we can write (11)
as: ∫ 1

−1
Tm(x)Tn(x)(1− x2)−1/2 dx = 0, where m 6= n (12)

Tn(x) = cosnθ = cos(n cos−1 x) − 1 ≤ x ≤ 1

T0(x) = 1

T1(x) = cos θ = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x
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Tn(x) are orthogonal polynomials with regard to (1− x2)−1/2,

{Pn(x)}∞n=0,∫ b

a

Pm(x)Pn(x)w(x)dx = 0 m 6= n,
(13)

where w is the weight function.

3.1.1 Hermite polynomial

Hermite polynomials are used in different areas because of their orthogonal-
ity in (−∞,∞). In [10] it is mentioned that networks that are based on Hermite
have nice noise stability.

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

(14)

The polynomials Hn are orthogonal over (−∞,∞) with weight function e−x
2

.

3.1.2 Chebyshev polynomial

First kind of the Chebyshev polynomials are extremal polynomials as stated
in [11]:

(1− x2)
d2

dx2
Tn − x

d

dx
Tn + n2Tn = 0 (15)

The polynomials Tn are orthogonal over [−1, 1] with weight function (1−x2)−1/2.
Many mathematical functions are shown in [12].

Chebyshev polynomial degree of n shown as Tn:

T0(x) = 1

T1(x) = x

Tn+1 = 2xTn(x)− Tn−1(x)

(16)

4 Results

During the experiment Python programming language is used for numerical
calculations with helper libraries such as NumPy, scikit-learn, PyTorch, SciPy,
matplotlib and pandas for data analysis. Hermite and Chebyshev orthogonal
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polynomials are selected as activation functions. Three different functions were
calculated to represent the synthetic dataset.

f1(x) = x2

f2(x) = sin 4x · e
−x
4

f3(x) = (x− 10)4 + x3

(17)

Each generated function has 1000 sample points. Datasets were split into 2
groups for training and testing purposes as 80% and 20%. Torch linear layer was
used while constructing the network. Adam and SGD optimizers were selected
for use and MSE was chosen as the loss function. Learning rates were 0.1 and
0.01. A list of values [8, 16, 32, 128] were chosen as network unit values. Three
were 3 different epoch values [100, 500, 1000]. The list of values [2, 3, 4, 10, 20, 40]
was representing polynomial degrees used by polynomial activation functions.

While Hermite polynomial’s domain exists between (−∞,∞) Chebyshev
polynomials domain is [−1, 1]. Because of this, all of the calculated synthetic
datasets were normalized to stay inside this domain before being fed into net-
work.

MAE, max error and MSE were 3 different error metrics which were selected.

At some points calculations failed and thrown exceptions because of the
selected parameter’s effect of gradients.

Calculations were conducted on a laptop running Linux operating system
with a memory size of 16 Gb & Nvidia Geforce GTX 950M graphics card.

Total runtime for all calculations is 314 minutes and 28.7 seconds.

Calculations were repeated multiple times with different hyperparameters.

The list of values [2, 3, 4, 10, 20, 40] was used as the degree of activation
functions used in the network. However during the inspection of results it
was visible that best fitting results which have minimum error value had a
polynomial degree at most up to 10, and 10th-degree polynomial activation
function was the highest degree that could give the minimized error through
all possible parameters space, there were no results for 20th and 40th-degree
solutions inside the best fitting values. During the experiment, it was observed
that calculations that were conducted using Chebyshev activation functions were
completing the calculations in a shorter period than the ones which had used
Hermite polynomials as activation functions except for a few exceptions. One
of the other findings is increasing the number of units of the network improves
the fitting capability of the Hermite activation function on datasets defined as
f1 and f3. For the dataset created by using a damped sine function defined as
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Fig. 13: Result (a)
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Fig. 14: Result (b)
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Fig. 15: Result (c)
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f2, the Hermite activation function fits better than the Chebyshev activation
function even starting from a low number of network units. In the damped sine
dataset case or f2 case depending on the parameters Chebyshev’s calculations
failed or generated enormous error results.

5 Conclusion

As a result of this experiment, it is seen that both activation functions have
advantages and disadvantages depending on the nature of the problem. In
general, it is observed that calculations done by Chebyshev activation function
takes less time, but Chebyshev can be more fragile depending on the solved
problem. On the other hand, Hermite shows a more robust and generalized
behavior, it is less dependent on the problem type, and it improves by necessary
adjustments. Increasing the number of units used in the network increases the
computation time. Chebyshev can converge with fewer iterations and a smaller
number of network units. On the other hand Hermite converges with more
iterations and more network units. Because of this there is a visible computation
time difference between these activation functions.
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