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Abstract
A vector space partition P of the projective space PG(v — 1,¢q) is a
set of subspaces in PG(v — 1,¢q) which partitions the set of points. We
say that a vector space partition P has type (v — 1)™v=1...2m21™1 if
precisely m; of its elements have dimension 7, where 1 < ¢ < v — 1. Here

we determine all possible types of vector space partitions in PG(7,2).
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1 Introduction

We call the i-dimensional subspaces of the projective space PG(v — 1, q) i-
spaces using the geometric names points, lines, planes, solids, and hyperplanes
for 1-, 2-, 3-, 4-, and (v — 1)-spaces, respectively. A wvector space partition P
of PG(v — 1,q) is a set of subspaces in PG(v — 1, ¢) which partitions the set
of points. For a survey on known results we refer to [1]. We say that a vector
space partition P has type (v —1)™v=1 ... 2™2]1™1 if precisely m; of its elements
have dimension i, where 1 < ¢ < v — 1. The classification of the possible types
of a vector space partition, given the parameters v and ¢, is an important and
difficult problem. Based on [2], the classification for the binary case ¢ = 2 was
completed for v < 7 in [3]. Under the assumption m; = 0 the case (q,v) = (2, 8)
has been treated in [4]. Here we complete the classification of the possible types
of vector space partitions in PG(7,2). We will also briefly discuss the feasible
types of vector space partitions in PG(v — 1,q) for all field sizes ¢ and all
dimensions v < 5.
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Setting [k], := q;fll we can state that every k-space in PG(v — 1, q) consists

of [k], points. So, counting points gives the packing condition

S mi iy = bl o

Another well-known condition uses the fact that an a-space and a disjoint b-
space span an (a + b)-space. So, we have

m1;~mj:O (2)

foralll1 <i<j<wv—1withi+j>jandm; <1 foralli>wv/2. These
two conditions are sufficient to characterize all feasible types of vector space
partitions in PG(v — 1, ¢q) for v < 4.

Another condition stems from the fact that for an index 2 < j < v — 1 with
m; > 0 the set of points contained in the subspaces of dimension strictly less
than j corresponds to a ¢/ ~!-divisible linear code over F, of length

n=7 m-[i, (3)

see e.g. [5], where a linear code is called A-divisible if all of its codewords have
a weight that is divisible by A. Non-existence results for ¢"-divisible projective
codes are e.g. discussed in [6]. A recent survey can be found in [7]. Some of these
conditions are already contained in [8] and used under the name tail condition
in the literature on vector space partitions.

A few more necessary conditions for the existence of vector space partitions
are stated in [9].

The notion of a vector space partition can be generalized in several directions.
A M-fold vector space partition of PG(v—1, q) is a (multi-) set of subspaces such
that every point P is covered exactly A times, see e.g. [10]. Another variant
considers sets of subspaces such that every t-space is covered exactly once, see
[11]. Vector space partitions of affine spaces have been considered in [12].

The remaining part of the paper is structured as follows. In Section 2 we
introduce the necessary preliminaries. We deduce our main result — the classifi-
cation of all possible types of vector space partitions of PG(7,2) — in Section 3.
While several of the presented non-existence results for vector space partitions
have purely theoretical proofs, others rely on extensive computer computations.
It would be nice to see some of these calculations be replaced by pen-and-paper
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proofs. To top the paper off, we discuss the possible types of vector space par-
titions in PG(v — 1,¢) for arbitrary field sizes ¢ and dimensions v < 5 of the
ambient space in Section 4.

2 Preliminaries

A vector space partition P of PG(v— 1, q) is called reducible if there exists a
proper subset Q of the elements of P whose points partition a proper subspace
of PG(v — 1,¢q). If P is not reducible we also speak of an irreducible vector
space partition. We can easily construct reducible vector space partitions by
starting from an arbitrary vector space partition and replacing an element with
dimension at least 2 by its contained points.

A multiset of points in PG(v — 1, q) is a mapping x from the set of points in
PG(v — 1,q) to N, so that x(P) is the multiplicity of the point P. If x(P) <1
for all points P, then we also speak of a set (of points) x in PG(v — 1, ¢q). The
support of a multiset of points is the set of all points with non-zero multiplicity.
We say that x is A-divisible if } 5 x(P) =0 (mod A) for each hyperplane
H of PG(v — 1,q) and points P. In other words, the Hamming weights of the
codewords of the F,-linear code Cy, associated with x are divisible by A. By #M
we denote the cardinality of M, i.e., the sum ), M(P) of the multiplicities of
all points P. If S is an arbitrary subspace, then by M(S) we denote the sum
> p<g M(P) of the point multiplicities of the points contained in S. For each
U € PG(v — 1,q) we denote by xp its characteristic function, i.e., xy(P) =1
ifft P < U and xy(P) = 0 otherwise. It is an easy exercise to show that xy is
q@m(U)—1_djvisible, which extends to multisets of subspaces:

Lemma 1 ([5, Lemma 11]). Let U be a multiset of subspaces in PG(v — 1,q)
with dimension at least k. Then xy 1= ) ¢y XU 15 q" ' -divisible.

If y is A-divisible and x(P) < A for some constant A € N and all points P,
then the A-complement %, defined by X(P) = A — x(P) for all points P, is also
A-divisible.

Corollary 2. Let P be a vector space partition of PG(v — 1,q) of type (v —
1)me-1. .. 2M21™1 then the set of points Hy such that the corresponding element
A € P, that contains the point, has dimension at most k is ¢*-divisible if P
contains an element with dimension strictly larger than k.

An exemplary implication is that no vector space partition of type 3%3221' in
PG(5,2) exists since there is no 2-divisible multiset of points of cardinality 1,
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i.e., no 2-divisible binary code of effective length 1. In our setting of vector
space partitions the maximum possible point multiplicity is 1, so that the corre-
sponding codes are projective, i.e., generator matrices do not contain repeated
columns. The possible effective lengths of projective binary A-divisible linear
codes have been completely characterized for all A € {2,4, 8}, see e.g. [6,13] for
proofs and further references:

Proposition 3. Let n € Ny be the effective length of a A-divisible binary
projective linear code.

(a) If A =2, thenn > 3.

(b) If A =4, then n € {7,8} orn > 14.

(c) If A =8, then n € {15, 16,30, 31, 32, 45, 46, 47, 48, 49, 50, 51} or n > 60.
All those effective lengths can indeed be attained.

Definition 4. We say that a vector space partition P has an s-supertail of type
aitay? ... a4, where a1 > az > ...as > 1, if P contains exactly m; elements
of dimension a; for all 1 < j <'s, there exists at least one element A € P with
dim(A) > a1, and for all elements B € P with dim(B) < a; there exists an

index 1 < j < s with dim(B) = a;.

For the ease of notation we also allow the choice of m; = 0 and just speak
of a supertail of a certain type. From Proposition 3 we can directly conclude
that certain types of supertails are impossible:

Corollary 5. Let P be a vector space partition of PG(v — 1,2), then P cannot
have a supertail of one of the following types:

° 11’ 12’.

o 291 forie {1,...,6,9,...,13},
21 fori € {0,...,3,6,...,10},
2211 fori € {0,3,...,7},
231% fori € {0,...,4}, 2*1% fori € {0,1}; and

o 322°1¢ where Ta + 3b+ ¢ < 60 and
Ta+ 3b+ c ¢ {0, 15,16, 30,31, 32, 45,46, 47, 48,49, 50, 51}.

For literature on the supertail we refer e.g. to [14,15].
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For small n the projective A-divisible F,-linear codes of effective length n
can be exhaustively generated with software packages like e.g. Q-Extension [16]
or LinCode [17]. Having the point sets at hand, we can check whether they can
be partitioned into a certain number of planes, lines, and points, which excludes
a few further supertail types. E.g. one can easily show that each ¢2-divisible
multiset of cardinality ¢>4¢+1 over F has to be the characteristic function of a
plane, so that there is no supertail of type 2219° =41 gyer F,. For enumeration
results of projective binary A-divisible codes for A € {2,4,8} we refer to [18].
Since the corresponding codes are computationally shown to be unique we have:

Lemma 6. Let S be a A-divisible set of cardinality n over Fs.
(a) If (A,n) = (2,3), then S is the characteristic function of a line.
(b) If (A,n) = (4,7), then S is the characteristic function of a plane.

(c) If (A,n) = (4,14), then S is the sum of the characteristic functions of two
disjoint planes.

(d) If (A,n) = (8,15), then S is the characteristic function of a solid.

(e) If (A,n) = (8,30), then S is the sum of the characteristic functions of two
disjoint solids.

Theoretical proofs and generalizations can e.g. be found in [7, Section 11]
or [6]. For ¢ > 2 a much stronger result is known. [19, Theorem 13| directly
implies:

Theorem 7. Let M be a q"-divisible multiset of cardinality ¢ - q:;r_l;l over Fg,
where 1 € Nsg. If g > 2 and 1 < § < e, where q + € is the size of the smallest
non-trivial blocking sets in PG(2,q), then there exist (r + 1)-spaces S1,...,Ss

such that 5
M=>"xs.,
i=1

i.e., M is the sum of (r 4+ 1)-spaces.

Using dimension arguments, c.f. the proof of Lemma 15, we conclude from
Lemma 6.(c)-(e):

Corollary 8. Let P be a vector space partition of PG(v — 1,2), then P cannot
have a supertail of one of the following types:
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o 2315;
o 312115; and
° 3221113 3222110 322317 322414 312615'

Lemma 6.(a) yields the fact that every vector space partition of PG(v—1, 2)
of type (v—1)mv-1...2™m213 is reducible (assuming v > 2), i.e., the three points
have to form a line. Similarly, from Lemma 6.(b) we an conclude that every
vector space partition of PG(v — 1,2) of type (v — 1)™v-1...3™317 is reducible
(assuming v > 3), i.e., the seven points have to form a plane.

While Lemma 6 discusses the parameters of (repeated) simplex codes, i.e.,
duals of Hamming codes, there are also known uniqueness results for the pa-
rameters of first order Reed-Muller codes, see e.g. [20]. Translated to geometry
we have:

Lemma 9. Let S be a 2"-divisible set of 2"+ points in PG(v — 1,2), where
r € Nug. Then, S is the characteristic function of an affine (r + 1)-space.

In our context an important implication is that such a set S does not contain
a line, so that we conclude:

Lemma 10. Let P be a vector space partition of PG(v — 1,2), then P cannot
have a supertail of one of the following types:

e 211% gnd
e 3091113 3092110 309317 309414

For larger field sizes there exist examples different to affine subspaces. They
can be obtained by the so-called cylinder construction, see e.g. [21], and share
the property that those point sets also do not contain a line. A few parameters
where ¢"-divisible sets of ¢"*! points in PG(n — 1, ¢) have to be obtained by the
cylinder construction are recently discussed in [20].

We say that a multiset of points M in PG(v — 1, ¢) is spanning if the points
P with non-zero multiplicity M(P) > 0 span the entire ambient space. For
a given multiset M of points in PG(v — 1,¢) we denote by a; the number of
hyperplanes H such that M(H) = i. The vector (a;);cy is called the spectrum
of M. If M is spanning, then we have axx = 0. By considering M restricted
to K 2 PG(k — 1,q) we can always assume that M is spanning if we choose a
suitable integer for k. For the ease of notation we assume that M is spanning in
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PG(k—1, q) in the following. Counting the number of hyperplanes in PG(k—1, q)

gives
k
-1
D=y @)

and counting the number of pairs of points and hyperplanes gives

k—1 1

(5)

%

For the third equation we assume M(P) € {0,1} for every point P, i.e., there
is no point with multiplicity at least 2. Double-counting the incidences between
pairs of elements in M and hyperplanes gives

() () ®

2

We call the equations (4)-(6) the standard equations for sets of points.

3 Vector space partitions in PG(7,2)

For each dimension v of the ambient space and each field size ¢ the packing
condition in Equation (1) combined with the dimension condition in Equa-
tion (2) leave over a finite list of possibly types of vector space partitions in
PG(v—1,q). The conditions on the supertail mentioned in the previous section
eliminate a few more cases. Here we will treat the case of PG(7, 2), which is quite
comprehensive compared to the case PG(6,2). In the end it will turn out that
there are more than ten thousand different possible types of vector space parti-
tions in PG(7,2). E.g. there are vector space partitions of type 4431261—#15+3
for each integer 0 < ¢ < 61. Of course it is sufficient to give constructions for
the “irreducible cases” only. IL.e., in our example it suffice to give an example
of type 43126115 and then to replace i lines by its three contained points each.
We have utilized the following general reduction rules:

Lemma 11. Let P be a vector space partition (vsp) of type (v—1)"v-1 .. . 2m2]1™
in PG(v —1,2).

o [fmg > 0, then there also exists a vsp of type
(v —1)me-r . 3magma—lymats,
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If ms > 0, then there also exists a vsp of type
(v —1)mw-1,  4magms—lgmemitT

If mz > 0, then there also exists a vsp of type
(v —1)me-1,  gmagms—lometlimi+a,

If my > 0, then there also exists a vsp of type
(v —1)me=1  Hmsgma=igmsgma]mitls,

If myq > 0, then there also exists a vsp of type
(v —1)mv-1 Hmsgma—lgmsometSim

If my > 0, then there also exists a vsp of type
(v —1)me=1 . BMsgma=lgmstlgmamits

Nevertheless, still a lot of examples of vector space partitions need to be
constructed. To this end we utilize integer linear programming (ILP) formula-
tions. For each i-space S we introduce the binary variable z% € {0,1} with the
meaning % = 1iff S is contained in the vector space partition P in PG(v—1, q).
The partitioning condition is modeled by

z_: Z rh =1 (7)

=1 S :dim(S)=:,P<S

for each point P. Introducing the counting variables

m; = Z z’S (8)

S :dim(S)=i

for each dimension 1 < i < v — 1, we can prescribe the type or maximiz-
ing/minimizing certain values m; while prescribing the others. Of course this
general ILP has a huge number of variables and constraints. E.g. there are
200787 solids in PG(7,2). Luckily enough we can use the collineation group of
PG(7,2) to reduce the search space a bit. It is well known that the collineation
group acts transitively on i-spaces as well as pairs of disjoint - and j-spaces,
including the case ¢ = j. For triples of disjoint i-spaces A, B, C the orbits have
dim((4, B,C)) as invariant that can vary between 2¢ and min{v,3i}, where
v = 8 in our situation. So, we can prescribe up to three elements of the vector
space partition and search for the others.

In the special case where my is relatively large, we have considered a De-
sarguesian spread for solids in PG(7,2), see e.g. [22]. So, let S be such a set
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of 17 pairwise disjoint solids in PG(7,2) (that form a vector space partition of
type 4'7). We can restrict the search space for the ILP by forcing the used
solids to be contained in S, i.e., we set xfé = 0 for every solid S that is not
contained in §. Another starting point for vector space partitions are so-called
lifted MRD (maximum rank distance) codes, see e.g. [23], that e.g. give vector
space partitions of types 6'254, 51332, and also 4'7.

For ILP formulations of search problems in incidence structures there is a
general (heuristic) method to reduce the search space — the so-called Kramer—
Mesner method [24]. Here a suitable subgroup G of the automorphism group of
the desired object is assumed. The action of the group G partitions the variables
into orbits and we assume that variables in the same orbit have the same value.
Le., in our context the vector space partition consists of entire orbits of solids,
planes, and so on. This approach reduces the number of variables in terms of
the order of G. Also the number of constraints is automatically reduced since
usually several constraints become identical if we use orbit variables. For a more
detailed and precise description of the method we refer e.g. to [25] where sets of
subspaces in PG(v—1, ¢) with restricted intersection dimension were considered.
Via this method we can, of course, find examples whose automorphism group
contains G as a subgroup only. So, as mentioned, the method is heuristic, but
quite successfully applied in the literature. In our context we have used groups
G with orders up to 16.

As our setting is quite comprehensive we refrain from stating the explicit
details for the cases. However, explicit vector space partitions for specific types
in PG(7,2) can be obtained from the author upon request. While it took quite
some time to compute an example for each feasible case, we now focus on the
complementary non-existence results.

Lemma 12. Let P be a vector space partition of PG(v — 1,2), then P cannot
have a supertail of type 241°.

Proof. There are three different 4-divisible sets of cardinality 17, one for each of
the dimensions k € {6,7,8}, see [18]. Ounly the 6-dimensional point set admits
three disjoint lines and there cannot be four disjoint lines. O

As a consequence, there does not exist a vector space partition of type
3342415 of PG(7,2) but there exist vector space partitions of type 33423-918+3
for all integers 0 < ¢ < 3. A set of 34 pairwise disjoint planes in PG(7,2) was
constructed for the first time in [26]. Now several thousand non-isomorphic
examples are known, see [6].
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Lemma 13. For k > 3 let K1, Ko, K3 be three pairwise disjoint k-spaces in
PG(v —1,2) and L be the set of lines that intersect each K; in exactly a point.
Then, the lines in L are pairwise disjoint and {LNK; : L € L} forms a sub-
space for each index 1 <1 < 3.

Proof. First we show that the lines in £ are pairwise disjoint. To the contrary
we assume that that £ contains two lines Ly = (A, B) and Lo (A, B’), where we
assume w.l.o.g. that A < K; and B,B’ < Ky. Then A+ B,A+ B’ < K3, so
that B + B’ € Ko N K3, which is a contradiction.

For the second part we show the statement for K; and assume that L; =
(A1,B1) and Ly = (Ag, Bs) are two different lines in £ with A7, 42 < K;
and By, Bs < Ks. Then also (41 + Aa, By + Bs) is in L since 41 + Ay < Kj,
Bl+BQSK2,aHdA1+A2+B1+BQSKg. O

Lemma 14. For k > 3 let K1, Ko, K3 be three pairwise disjoint k-spaces in
PG(2k —1,2) and L be the set of lines that intersect each K; in exactly a point.
Then, #L£ = 2F — 1 and the pairwise disjoint lines in L partition the point set
Ky UKy UKs3.

Proof. We have already mentioned that there is a unique isomorphism type un-
der the operation of the collineation group of PG(2k—1, 2) since dim((k;, K;)) =
2k for all 1 < i < j < 3. W.lo.g. we choose K1 = (e1,...,ex), Ko =
(kt+1,---+€2k), and Kz = (e1 + €x41,..., ek + e2), where e; denotes the ith
unit vector. Let P, = <Zf:1 a;e;) be the unique point of such a line in K;
and Py = (Zle biei+x) be the unique intersection of the line with K5, where
a1,...,0ak,b1,...,0p € {0,1}. Since the third point of the line is given by
P; = Zle (aze; + biejrx) € K3, we conclude a; = b; for all 1 < i < k. More-
over, we have to exclude the case a; = --- = ag, so that 2F — 1 possibilities
remain. O

Lemma 15. Let P be a vector space partition of PG(v — 1,2), then P cannot
have a supertail of one of the following types: 3*241°, 342318, 3422111 3421114
3420117 qnd 3'2'115.

Proof. The stated types for supertails all consist of 45 points. The 8-divisible
sets S of cardinality 45 in PG(v — 1,2) have been computationally classified in
[18]. Either S is the sum of the characteristic functions of three pairwise disjoint
solids or § is isomorphic to the points Py, ..., Py of a projective base in PG(7,2)
and the (g) = 36 remaining points on the lines P;P;.
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We can easily check that the latter case does not contain a plane in its sup-
port. Thus, we can assume that S = xs, + Xxs, + Xs,, Where 51,55, 53 are
pairwise disjoint solids. Each plane E contained in the support of S has to in-
tersect each of the solids S; in a d;-dimensional subspace where d; € {0, 1,2, 3}.
Since two lines contained in a plane have to intersect in a point, the only possi-
bility is that one of the solids S; completely contains the plane E. However, this
is impossible for four pairwise disjoint planes. So, let us finally assume that S
has type 3'2'11° and that the unique plane E is contained in S;. The five points
form a 2-divisible set, so that they have to be isomorphic to a projective base
B of size 5, see e.g. [18]. So, at most four of these five points can be contained
in S7. Denoting the set of lines that intersect S1, Sa, and S3 in exactly a point
by £ and setting o := #L, we observe @ > 4. So, S5 and S3 can contain at
most three lines each and a > 5. Since B is 2-divisible we have « # 8, so that
5 <a<T.

Note that no three points in Py := {L NS} : L € L} can form a line, so that
Lemma 13 yields that also no three points in P; :={LNS; : L € L} can form
a line for all 1 <4 < 3. Thus the a > 5 points in P3 have to span a solid that
is also contained in (S, S2), so that we conclude n = 8 for the dimension of
the ambient space. Note that for ¢ = 2,3 the points of S; are partitioned by
the lines contained in S; and the points P; U (BN S;). Note that the points in
P; U (BNS;) form a 2-divisible set in PG(3,2) whose cardinality is a multiple
of three. For cardinality three we can apply Lemma 6 to conclude that those
points form a line. If # (P; U (BN S;)) = 33, where 2 < 8 < 5, then there exists
a unique 2-divisible set of 33 points in PG(3,2), see [18]. In all cases the span
of the points has dimension 3 and an example is given by (8 disjoint lines. Thus,
for i = 2,3 the points in P; U (BN S;) can be partitioned into lines, so that
a=#P; <28=2(a+#(BNS;)), which is equivalent to v < 2# (BN S;).
Since # (BN S3) + # (BN S3) = #B =5 and « > 5 this is impossible. O

So, especially there does not exist a vector space partition of type 41434117

or 4143121115 in PG(7,2). (We remark that we have also checked the more
involved second part of the proof of Lemma 15, i.e., that the set of points of
three disjoint solids cannot be partitioned in a plane, eleven lines, and five points
computationally using an ILP formulation.)

Lemma 16. In PG(7,2) no vector space partitions of types 4133626=113% for
0 <1 <6, types 4133527114431 for 0 <5 < 7, and type 413342°1° exist.

Proof. Assume that P is a vector space partition of one of those types and
observe that the set H of points that are not covered by the 13 solids of P forms
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an 8-divisible set of 60 points. Let k be the dimension of the span of . For the
ease of notation we assume that H is embedded in PG(k — 1,2) and denote by
a; the number of hyperplanes containing exactly ¢ points from H, so that the
standard equations are given by

6
Za4+sz = 281, (9)
=0
6
> (4+8i)-assi = 60- (287" —1), and (10)
1=0
6
D (4+8i)(3+8i) ass; = 60-59- (2872 —1). (11)

i=0
Using Equation (9) and Equation (10) we conclude

6

D icass =13-282 -7 (12)
=0

Equation (11) minus 56 times Equation (10) minus 12 times Equation (9) gives

6
D i agys = 6912870 — 49 (13)
=0

after a final division by 64. Now, Equation (13) minus seven times Equation (12)
plus twelve times Equation (9) yields

6

D (i =3)(i —4)ass =3-2"0 —12. (14)
=0

Since (i — 3)(4 —4) > 0 and aaqs; > 0 for all ¢, we have k > 8. Due to the
ambient space PG(7,2) for P we are only interested in the case k = 8 where
ZZ:O(i —3)(i — 4)asts; = 0. Thus, the unique solution is given by aszs = 60,
asg = 195, and a; = 0 otherwise.

We have used LinCode, see [17], to enumerate all projective [60, 8, {24, 32}]2
codes. There are exactly 12 non-isomorphic such codes, c.f. [27]. We have
computationally checked that the corresponding sets of points contain at most

five disjoint planes. Five disjoint planes can be obtained in just one of the
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twelve cases. However, we have computationally checked that in this case no 13
pairwise disjoint solids can be chosen outside this point set. Four planes and
nine lines that are pairwise disjoint can occur in two of the twelve cases. Again,
we have computationally checked that in those two cases no 13 pairwise disjoint
solids can be chosen outside the point set. O

Lemma 17. If P is a vector space partition of type 42381 in PG(7,2), then
the point set of the points in the subspaces of dimension at most 3 is isomorphic
to the columns of

111111111111111111111111111111100000000000000000000000000000000000010000000
000000000000000111111111111111111111111111111100000000000000000000001000000
000000011111111000000001111111100000001111111111111110000000000000000100000
000111100001111000011110000111100011110000111100011111110000000000000010000
001001100110001000100110000011101100010001001100100111111111111000000001000 |

010010100010000001001010111100110111100011010001101000010001111111000000100
110111101010110110011110011100100001100110010110100110110110011011100000010
000100100010010010110010001101111010101000111000100010111010101101100000001

111111111111111111111111111111100000000000000000000000000000000000010000000
000000000000000111111111111111111111111111111100000000000000000000001000000
000000011111111000000001111111100000001111111111111110000000000000000100000
000111100001111000011110000111100011110000111100011111110000000000000010000
011000000110011001100110011000001100110000001101100110111111111000000001000 |
101000001010101010101010101000010101010000010110101011010001111111000000100
011001100111010100110010101001100010100011000001100001100110011011100000010
101010100000101011000000110010101100110101000011001010111010101101100000001

or
111111111111111111111111111111100000000000000000000000000000000000010000000
000000000000000111111111111111111111111111111100000000000000000000001000000
000000011111111000000001111111100000001111111111111110000000000000000100000
000111100001111000011110000111100011110000111100011111110000000000000010000
011000000110011001100110011000001100110000001101100110111111111000000001000
101000001010101010101010101000010101010000010110101011010001111111000000100
011001100111010100110010101001100010100011000001100001100110011011100000010
110010101101100101010101100010100000110101111111011111011010101101100000001

Proof. Observe that the set H of points that are not covered by the 12 solids of P
forms an 8-divisible set of 75 points. Let k be the dimension of the span of H. For
the ease of notation we assume that A is embedded in PG(k—1, 2) and denote by
a; the number of hyperplanes containing exactly ¢ points from H. Similar as in
the proof of Lemma 16 we use the so standard equations Z?:o azyg; =28 — 1,
% o3+ 80) azrss = 75 (2871 —1), and 5 (3 + 8)(2 + 8i) - azis =
75-74 - (2]“_2 — 1) to conclude

8
Zi~a3+gi = 69.2F*_9
1=0
8
> i -aszes = 1209-2°76—81, and
=0

8

> (i —4)(i—5azis; = 4-287°-20.
1=0
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Since (i —4)(i — 5) > 0 and az4s; > 0 for all ¢, we have k > 8. Due to the
ambient space PG(7,2) for P we are only interested in the case k = 8 where
Z?:O(i — 4)(i — 5)az+s; = 0. Thus, the unique solution is given by a43 = 75,
azs = 180, and a; = 0 otherwise.

Using the notation [n, k]z-code for a binary k-dimensional code of effective
length n, H is given by the columuns of a projective [75, 8]o-two-weight code C'
with weights 32 and 40. Since H contains a plane C' can be obtained recursively
by lengthening [74, 7]a, [72,6]a, and [68,5]2 codes with maximum possible col-
umn multiplicities at most 2, 4, and 8, respectively, where all non-zero weights
are contained in {32,40}. Using LinCode, see [17], we enumerated 38 [68, 5],
4286 [72,6]2, 245736 [74,7]2, and 9964 [75,8]2 codes. The complete enumera-
tion took 85 hours of computation time. Checking which of those 9964 point
sets allow eight disjoint planes leaves just seven possibilities. Using an ILP for-
mulation for a partition of the complement into 12 solids leaves just the three
mentioned cases. 0

Lemma 18. In PG(7,2) no vector space partition of type 4123825=114+3% for
2 <4 <5H exists.

Proof. Assume that P is a vector space partition of one of those types. Replacing
the lines by their contained three points gives a vector space partition P’ of type
41238119 50 that we can apply Lemma 17. Let H be the corresponding point set
of the points in the subspaces of dimension at most 3. Using an integer linear
programming formulation we have checked that we can pack at most one line if
we also pack eight disjoint planes into . O

We remark that from the three 4-divisible projective binary linear codes of
length 19, see e.g. [18], one contains five disjoint lines and the other two contain
no pair of disjoint lines.

Lemma 19. Let § be a 4-divisible multiset of points of cardinality 20 and
dimension at most 8 that contains five disjoint lines, then, up to symmetry, S
is given by the columns of

10000011101000010110
01000000011101101100
00100011110110000010
00010010011010001110
00001001100001111100
00000101111001001010
00000000110000000101
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Moreover, we have dim(S) = 7 and the spectrum is given by (as,a12,a16) =
(67,59, 1).

Proof. The projective 4-divisible binary linear codes of cardinality 20 have been
classified in [18]. Their counts per dimension are given by 728*9'. By a di-
rect enumeration we have checked which corresponding point sets contain five
disjoint lines. O

Lemma 20. In PG(7,2) no vector space partition of type 4*3%252515 exists.

Proof. Assume that P is a vector space partition of this type and observe that
the set ‘H of points that are not covered by the 4 solids and the 25 planes of P
forms an 4-divisible set of 20 points that contains five disjoint lines. The unique
possibility up to symmetry is determined in Lemma 19. It turns out that the
ILP formulation for a vector space partition of type 443252515 is infeasible when
prescribing these 20 points. O

Lemma 21. In PG(7,2) no vector space partition of type 4113102515 epists.

Proof. Assume that P is a vector space partition of type 4'13192%1% and observe
that the set H of points that are not covered by the 11 solids of P forms an
8-divisible set of 90 points. Let k be the dimension of the span of . For the
ease of notation we assume that H is embedded in PG(k — 1,2) and denote by
a; the number of hyperplanes containing exactly ¢ points from H. Similar as
n the roof of Lemma 16 we use the standard equations Zzio asys; = 28 — 1,
Yito(2 + 8i) - agisi = 90+ (2871 —1), and 331 (2 + 8i)(1 + 8i) - azisi =
90 -89 - (Zk_2 — 1) to conclude

11

E - a248;
i=0
11

E -2
7 ag_,_gl'

1=0

43 .23 _ 11

)

3743 .27 — 121, and

11

> (i =5)(i — 6)ass;
i=0
Since (i — 5)(i — 6) > 0 and az4s; > 0 for all ¢, we have k > 8. Due to the
ambient space PG(7,2) for P we are only interested in the case k = 8 where
Z;-Lio(i —5)(i — 6)azt+s; = 0. Thus, the unique solution is given by aso = 90,
a4so = 165, and a; = 0 otherwise.

15- 257 _ 30.
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If ‘H contains a solid S in its support, then there are 75 points in H that
are not contained in S and each hyperplane contain either 35 or 43 points of
these. Via projective [75, 8]o-two-weight codes C' with weights 32 and 40 such
point sets have already been enumerated in Lemma 18. Via ILP computations
we have filtered out which of the corresponding point sets can be completed by
12 solids to a vector space partition of PG(7,2).

Only 42 codes remain and we extended them in all possible ways by a four-
dimensional simplex code such that the code remains projective. After filtering
out isomorphic codes we have again used an ILP formulation to check which
point sets can be completed by 11 solids to a vector space partition of PG(7,2).

For the remaining 245 point sets we have checked which allow to pack 10
disjoint planes into them via ILP computations. This was possible in 10 cases
only and we finally have checked using ILP computations that we can pack at
most 4 disjoint lines when we also pack 10 disjoint planes into the point set.
In other words, the 20 points that are not covered by the 11 solids and the 10
planes do not form a 4-divisible point set as specified in Lemma 19.

These computations show that in the remaining part we can assume that
‘H does not contain a full solid in its support. Now we have enumerated the
possibilities of four pairwise disjoint solids in PG(7,2) up to symmetry. By
exhaustive enumeration we have extended the four prescribed solids to 11 solids
in total that are pairwise disjoint and discarded all cases that allow the addition
of a 12th such solid. For all of these cases we have exhaustively enumerated all
vector space partitions of type 411319120 and determined the maximum number
of disjoint lines that we can pack into the remaining 20 points. In all cases the
answer was at most 4. O

We remark that we have also tried to enumerate the projective [90, 8]-two-
weight codes C' with weights 40 and 48 directly. However, we stopped the
computations after having reached more than 1.5 million different codes.

For every type satisfying the numerical conditions of Equation (1) and Equa-
tion (2) that is not excluded by one of the previous lemmas there indeed exists
a corresponding vector space partition of PG(7,2). We summarize the set of
feasible parameters as follows:

Theorem 22. Let P be a vector space partition of PG(7,2), then P has one of
the following types:

° 721128,

o 622647113 ywhere 0 < i < 64;
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51332

533 -3IQLIHTIAN3E yphere 0 < i < 1+ 77 and 0 < j < 10;
5132973197+ T1 130 where 0 < i <7+ 7j and 0 < j <9;
51327’3j210’i+7j15+3i, where 0 < <104+ 77 and 0 < j <9;
417

4163118

41625=1131 yhere 0 < i < 5;

41532116,

4153125—118+31 yphere 0 < 4 < 5;

415210-413¢ phere 0 < ¢ < 10;

4143337 28= 471130 yhere 0 < i < 8+ Tj and 0 < j < 1;
4143229=014431 qphere 0 <1 < 9;

41431210-118+30 " yphere 0 < i < 10;

4133498118431 yhere 0 < i < 8;

41333=372183—i47713¢ yphere 0 < § < 13+ 75 and 0 <5 < 1;
4133221401443 yphere 0 < 4 < 14;

4133121615430 here 0 < § < 16;

4123891—1116431  yhere 0 <4 < 1;

412373727+ TI 15431 here 0 < i < 7+ 7j and 0 < j < 2;
41236=30911=i+7513¢ yphere 0 <i < 11+ 75 and 0 < j < 2;
41235-3712=4TJ1443¢ yphere 0 < i < 11+ 75 and 0 < j < 1;
4131024711843 where 0 < § < 4;

41139-3399= 475130 here 0 < i< 9+T7j and 0 < j < 3;
41138=33910—-+ 714431 yyhere 0 <4 <10+ 75 and 0 < j < 2;

AH3T=8712= 4T 15430 yphere 0 < i < 12475 and 0 < j < 2;

87
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410315

410314=3791=i47j 14431 hhere 0 <1 <1475 and 0 < j < 4;
4103139218431 yhere 0 < 4 < 2;

410312=352T=1+7513¢ yphere 0 <i < T+ 7j and 0 < j < 4;
410310=3j910—i+75 15431 yyhere 0 <4 < 10475 and 0 < j < 3;
4931618,

49315=3125= 1475130 yhere 0 < i <5+ 7j and 0 < j < 5;
49314-3796—477 14431 phere 0 <5 <6+ 77 and 0 < j < 4;
493133798477 15431  hhere 0 <5 <8+ 77 and 0 < j < 4;
4831737 4= 4TI 14431 phere 0 <1 <4 +7j and 0 < j < 5;
48316=3796—i477 15431 yyhere 0 < i <6+ 7j and 0 < j < 5;
48315=31210=1+7513¢ yphere 0 <i <10+ 75 and 0 < j < 5;
4731923=118+31 " yhere 0 < i < 3;

47318308 = +Ti131 yhere 0 < i < 8+ 7§ and 0 < j < 6;
47373729 = 4 TI14438  phere 0 < i <9+ 75 and 0 < j < 5;
4731637911 —i+Tj 15431 yhere 0 <4 <11+ 7j and 0 < j < 5;
46321=3726=477 131 yhere 0 <i <6+ 7j and 0 < j < 7;
46320=3797—i47j 14431 here 0 < i < 7+ 7j and 0 < j < 6;
46319=3799=477 15431 yphere 0 < i <9+ 7j and 0 < j < 6;
453233725+ TI 14431 phere 0 < i <5+ 7j and 0 < j < 7;
453227337 — 1115431 here 0 < i < T+ 7j and 0 < j < 7;
45321-37911=477131  hhere 0 <3 <11+ 7j and 0 < j < 7;
4432524118431 yphere 0 <4 < 4;

44324=3799= 477131 where 0 <31 <9477 and 0 < j < §;

44323=35910—477 14431 hhere 0 <1 <10+ 7j and 0 < j < 7;
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4432237912=HTi 15431 yhere 0 < i < 12475 and 0 < §j < 7;
4332921114 4 34, where 0 <4 < 1;

4332822711343 yhere 0 < i < 2;

43330=33975=113% ywhere 0 < i < 7§ and 0 < j < 10;
433263798477 14431 here 0 <5 <8+ 77 and 0 < j < §;
43325=3710— 47115431 yphere 0 < i <10+ 77 and 0 < j < 8;
4233118,

423303795477 131 here 0 <3 <5477 and 0 < j < 10;
4232937 26— 147114431 phere 0 < i <6+ 75 and 0 < j < 9;
4232837987 1543 yhere 0 < i <8+ 7j and 0 < j < 9;
41332737 94= 47714431 yhere 0 < i <4+ 75 and 0 < j < 10;
4133137 26=1+7515+3¢ yphere 0 < i < 6+ 75 and 0 < j < 10;
41330819104 Ti13i phere 0 < i< 10+ 7j and 0 < j < 10;
4033493=118431  phere 0 <4 < 3;

4033337981477 131 here 0 <3 <8477 and 0 < j < 11;
40332-3799= 47714431 where 0 < i <9+ 75 and 0 < j < 10;

4033137911 —i+Tj 15437 yphere 0 < i < 11475 and 0 < j < 10.

In Proposition 27 in the appendix we also give a more explicit and extensive
variant of the list of feasible types of vector space partitions of PG(7,2). A more
compact variant is stated in Theorem 26.

4 Vector space partitions in PG(v — 1,q) for v <5

The aim of this short section is to discuss the possible types of vector space
partitions of PG(v — 1,¢) for all dimensions v < 5 and arbitrary field size q.
For v = 1 the ambient space consists of a single point itself, so that no vector
space partition exists since we assume a maximum dimension of v — 1 for the
elements of a vector space partition. For the same reason all elements of a vector
space partition of PG(1, q) have dimension 1. I.e., the only possible type is 1™
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where m; = [2], = ¢+ 1. For v = 3 the dimension condition yields that all
elements of a vector space partition P of PG(2, ¢) have either dimension 1 or 2
and that dimension 2 can occur at most once. If P does not contain an element
of dimension 2, then its type is given by 1™ where m; = 3], = ¢*> + ¢ + 1.
In that case P is reducible since we may choose any line and choose it as an
element of the vector space partition instead of its ¢ + 1 contained points. If P
is of type 211", then we have m; = [3], — [2], = ¢°.

Proposition 23. The possible types of vector space partitions of PG(3,q) are
given by 2013115 where 0 < j < ¢2 + 1, and 3119,

Proof. Directly implied by the packing and the dimension condition in equa-
tions (1) and (2). O

All of the mentioned types can indeed be attained. A Desarguesian line
spread in PG(3, q) yields a vector space partition of type 20°+1 where we may
replace arbitrary j lines by their contained points. Choosing an arbitrary plane
in the ambient space leaves ¢> uncovered points. The latter vector space par-
tition is irreducible. For vector space partitions of type 29 +1=91(@+1i it is an
interesting question which values of j do allow an irreducible vector space parti-
tion of that type. This problem is equivalent to the classification of the possible
sizes of (inclusion) maximal partial line spreads in PG(3, q), see e.g. [28].

For vector space partitions of type 2™21™1 of PG(4, ¢) the packing condition
in Equation (1) only implies ms = ¢ + ¢ —j and m; = 1+ j(¢ + 1) for
0 < j < ¢+ q. However, the 1 + j(q + 1) points that are not covered by
the lines have to correspond to a (projective) g-divisible linear codes over F, of
effective length 1 + j(¢ + 1). Using the characterization result for the possible
length of ¢"-divisible codes over F, from [5] we can conclude j > g — 1. Using
this and the packing and the dimension condition in equations (1) and (2), we
conclude:

Proposition 24. The possible types of vector space partitions of PG(4,q) are
given by 411(14, 3194’ —i1i(a+1) for 0 < j < ¢3, and 20’ +1-714"+i(a+1) for 0 <
Ji<q+1.

All of the mentioned types can indeed be attained. Choosing an arbitrary
solid in the ambient space leaves ¢* uncovered points. A lifted MRD code gives
rise to a vector space partition P of type 312¢°, In P we can either replace j
lines by their contained points or replace the plane by a line and ¢ points to
obtain a vector space partition P’ of type 20°+114° In P’ we can then replace
replace j lines by their contained points.
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Using the same methods one can easily characterize all feasible types of
vector space partitions in PG(5, ¢) that do not contain a plane:

e 5114°;
o 41209130+ for 0 < j < ¢
o 20" +a*+1=313(a+D) for 0 < j < ¢* + ¢% + 1.

A plane spread in PG(5, q) is a vector space partition of type 37°+1. From there
we can easily obtain vector space partitions of type 3¢° 192111+ for all
0<j<¢+1andall 0<i<j. However, also vector space partitions of other
types do exist. With increasing dimension of the ambient space the problem
of the classification of all feasible types of vector space partitions gets harder
and harder. We would like to mention that in PG(7,3) the maximum number
A3(8,6;3) of pairwise disjoint planes is unknown. The currently best known
bounds are 244 < A3(8,6;3) < 248, see e.g. [6]. If 248 such pairwise disjoint
planes exist in PG(7,3), then the 56 uncovered points have to form a so-called
Hill cap [29] corresponding to a two-weight code. Since the support of this
object does not contain a line, there is e.g. no vector space partition of type
324821152 in PG(7,3).
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A A more explicit variant of the main theorem

During the paper we have concluded several forbidden supertails. For the
ease of the reader we summarize those that have been necessary in the classifi-
cation of the feasible types of vector space partitions of PG(7, 2):

Proposition 25. No vector space partition of PG(v — 1,2) exists if it has a
supertail of one of the following types:

o 1¥ for1 <4 <2;

o 2014,

o 227112431 for 0 < < 1;

o 237113 for qll0 <5 < 3;

o 24713 for all 0 < i < 4;

o 24711131 for gll 0 < 5 < 4;

o 2315;

o 2415;

o 33237913 for 0 < i < 3;

o 32257011431 for all 0 < i < 4;
o 312615;

o 3121115,

With this we can reformulate Theorem 22 as follows:

Theorem 26. Let P be a vector space partition of PG(7,2) of type 7mTima
satisfying the packing condition in Equation (1) and the dimension condition in
Equation (2) as well as the special tail conditions from Proposition 25. Then,
the type of P is not contained in the following exhaustive list:

o 41336261131 for 0 < i < 6;

o 413352714430 for 0 < i < 7;
o 413342915,

o 4123825—11443i for 0 < j < 5.
4113102515’.

443252515,
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space partition of PG(7,2), then P has
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one of the following types:

721128,

62264113 where 0 < i < 64;
51332

5133121414431 yphere 0 <4 < 1;
5132927113 where 0 < i < 7;
5132898114431 yhere 0 < i < 8;

51327910—=i154+3¢ " yyhere 0 < ¢ < 10;

513262141130 " yhere 0 < i < 14;

51325215=114431 yhere 0 < i < 15;
51324917=1154+3¢ " yhere 0 < § < 17;

51323221=1137 where 0 < § < 21;

5132292241443t yphere 0 < 4 < 22
5132192441543 yphere 0 < 4 < 24;

51320228—413 yphere 0 < 4 < 28;

5131922941443 yphere 0 < 4 < 29;
51318231=415+31 yyhere 0 < 4 < 31;

51317935113 where 0 < i < 35;

513162367i14+3i, where 0 < i < 36,
51315938=1154+3¢ " yyhere 0 < § < 38;

51314242=1130 " yphere 0 < i < 42;

5131324341443t yphere 0 < 4 < 43;
5131224541543 yphere 0 < 4 < 45;

51311249413 yphere 0 < 4 < 49;

5131025041443 yphere 0 < 4 < 50;

5139252-i15+31  yhere 0 < 4 < 52;

5138256-1137 where 0 < i < 56;
5137257=11443¢ yhere 0 < i < 57;
5136259=115+37 yhere 0 < § < 59;
5135263—113 where 0 < i < 63;
5134204=114431 phere 0 < i < 64;
5133266415431 yyhere 0 < 4 < 66;
5132270=1137 " where 0 < i < 70;
5131271=114437  yhere 0 < ¢ < 71;
51278=115437 where 0 < 4 < 73;
417

4163118,

41625113 yphere 0 < i < 5;
41532116,

4153125118431 yyhere 0 <4 < 5;
415210=1131 “yphere 0 < i < 10;
4143328-1131 yhere 0 <4 < 8;
4143229=114431 yhere 0 < 4 < 9;
41431910=118+31 " yhere 0 < 4 < 10;
41430915-1131 yphere 0 < 4 < 15;
4133428=118+431 " yhere 0 < i < 8;
41333213=1131 yphere 0 < 4 < 13;
4133221414431 yphere 0 < 4 < 14;
41331216=i15+31here 0 < § < 16;
41330920—i131 yphere 0 < 4 < 20;
4123821-1116431 yphere 0 < i < 1;
4123797115431 yhere 0 <4 < T;
41236211=i131 yphere 0 < 4 < 11;
41235212=114431 yyhere 0 < 4 < 11;
4123491411543 phere 0 < 4 < 14;
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41233218=1131 phere 0 < 4 < 18;
41232919-114430 yphere 0 < i < 19;
41231921=115+31 yphere 0 < 4 < 21;
412925-113% yhere 0 < i < 25;
4113102471843 where 0 < 4 < 4;
41139297113%  where 0 < i < 9;
41138210-114430 " yphere 0 < i < 10;
41137212=115431 yphere 0 < 4 < 12;
41136216103 where 0 < i < 16;
411 3521T=114431 phere 0 < i < 17;
41134219=115+31 yphere 0 < 4 < 19;
41133223=1131 yphere 0 < 4 < 23;
41132924=114431 yphere 0 < 4 < 24;
41131926—115+31 yyhere 0 < 4 < 26;
411230=1131 yphere 0 < 4 < 30;
410315

41031491=114431 yphere 0 < i < 1;
41031392=118431 yyhere 0 < 4 < 2;
410312971131 yphere 0 <4 < 7;
41031198=114431 yphere 0 < i < 8;

410310910—=i15+431  yyhere 0 < 4 < 10;

410399141131 " yyhere 0 < 4 < 14;
41038915-114431 yphere 0 < 4 < 15;
4103721711543 yphere 0 < 5 < 17;
41036921=1131 " yyhere O < 4 < 21;
41035922=114+431 yphere 0 < 4 < 22
41034924=115+31 yphere 0 < i < 24;
41033228*i13i, where 0 < i < 28;
41032929—114431 yphere 0 < 4 < 29;

41031931=115+31 yyhere 0 < 4 < 31;
4102359137 " yhere 0 < i < 35;
4931618 .

49315251131 yhere 0 <4 < 5;
4931426=114431 " yhere 0 < i < 6;
4931328=115431  yhere 0 < 4 < 8;
493122121131 yphere 0 < 4 < 12;
4931213711443 yyhere 0 < 4§ < 13;
49310915—115+31 yphere 0 < 4 < 15;
4939219=1131  yhere 0 < i < 19;
4938920114431 yhere 0 < 4 < 20;
4937222=115+31 yhere 0 < i < 22;
49369261137 yyhere 0 < 4 < 26;
4935227—114431  yhere 0 < 4 < 27;
4934229=115+31 " yhere 0 < i < 29;
493323371131 yhere 0 < 4 < 33;
4932234=114431 yhere 0 < i < 34;
4931236=115431 yphere 0 < 5 < 36;
49240-913¢ wphere 0 < § < 40;
4831724114431 yhere 0 < i < 4;
4831626—115+31 yyhere 0 < 4 < 6;
48315210—1131 yphere 0 < 4 < 10;
48314911=114431 yyhere 0 < 4 < 11;
48313213—115+31 phere 0 < 4 < 13;
48312217=1131 yhere 0 < i < 17;
48311918=i14+31 yhere 0 < 4 < 18;
48310920—i15+31 yphere 0 < 4 < 20;
48392241131 yhere 0 < 4 < 24;
4838925114431 yhere 0 < 4 < 25;
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4837227115431 yhere 0 < 4 < 27;
4836231=1131  yhere 0 < 4 < 31;
4835232714431 yphere 0 < 4 < 32;
4834234115431 yhere 0 < 4 < 34;
4833238=113" yhere 0 < 4 < 38;
483292397114431  yhere 0 < 4 < 39;
4831241115431 yhere 0 < i < 41;
48302451131 yhere 0 < 4 < 45;
4731993=118+431 yhere 0 < i < 3;
4731828=113" yphere 0 <4 < 8;
4731729711443 where 0 < i < 9;

47316211=115+30 yphere 0 < i < 11;

473152151103 where 0 < i < 15;

47314916=114431 phere (0 < 4 < 16;
47313218=1154+31 yphere 0 < i < 18;

47312922=1131 yphere 0 < 4 < 22;

47311923=114431  yphere 0 < 5 < 23;
47310925-115+31 yphere 0 < 4 < 25;

4739229=1130 yphere 0 < 5 < 29;
4738230—114431  yphere 0 < 4 < 30;
4737232715431 here 0 < 4 < 32;
4736236=113" yphere 0 < 7 < 36;
4735237114431 yhere 0 < i < 37;
4734239=115431 yhere 0 < 4 < 39;
47332431131 where 0 < i < 43;
4732244114430 here 0 < 4 < 44;
4731246=115431  yphere 0 < 5 < 46;
479501137 where 0 < § < 50;
4632126—1131 yhere 0 < i < 6;

4632097114431 phere 0 <4 < T;
4631929=115431 yphere 0 <3 < 9;
46318213_i13i, where 0 < i < 13;

4631791417443 phere 0 < 4 < 14;
46316916=115431 yyhere 0 < 4 < 16;

46315920—i131 yphere 0 < 4 < 20;

46314921=114431 yphere 0 < 4 < 21;
46313923=115431 yyhere 0 < 4 < 23;

463129271131 yphere 0 < 4 < 27;

46311928=114431 yyhere 0 < 4 < 28;
46310930—i15+31 yphere 0 < 4 < 30;

4639234=1131 yhere 0 < i < 34;
4638235=114431  yphere 0 < 4 < 35;
46379237=115431  yhere 0 < 4 < 37;
4636241=1131 yhere 0 < i < 41;
4635942114431 here 0 < 4 < 42;
4634944—115+31 yhere 0 < i < 44;
4633248-1131 yhere 0 < 4 < 48;
4632949114431 yhere 0 < 4 < 49;
4631251=115+31 yphere 0 < i < 51;
463092551131 yyhere 0 < 4 < 55;
4532395=114431  yhere 0 < 4 < 5;
4532297115431 where 0 <4 < 7;
453219111931 phere 0 < 4 < 11;

4532021271443 yphere 0 < 4 < 12;
45319914=115+31 yphere 0 < 4 < 14;

45318218=17131 phere 0 < 4 < 18;

4531719711443 yyhere 0 < 4 < 19;
4531692111543t yphere 0 < 4 < 21;
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45315925-1131 yphere 0 < 4 < 25;

45314926=114431 yphere 0 < i < 26;
45313928=115+31 yyhere 0 < 4 < 28;

453129321131 phere 0 < 4 < 32;

45311233=114431 yphere 0 < i < 33;
45310935-115+31 yphere 0 < 4 < 35;

4539239=1131 yhere 0 < i < 39;
4538240114431 yhere 0 < 4 < 40;
4537242115431 yhere 0 < 4 < 42;
4536246=1131 yhere 0 < i < 46;
4535247114431 yhere 0 < 4 < 47;
4534249115431 yhere 0 < i < 49;
453325371131 yhere 0 < ¢ < 53;
4532254114431 yhere 0 < 4 < 54;
4531256=115+31 " yhere 0 < i < 56;
45260-913¢ wphere 0 < i < 60;
4432524118431 yhere 0 < i < 4;
443242971131 here 0 < 4 < 9;

44323210—114431 yyhere 0 < 4 < 10;
44322212-115+31 yphere 0 < i < 12;

44321216—1131 yphere 0 < 4 < 16;

44320217=17443 phere 0 < 5 < 17;
44319919=115+31 yphere 0 < 4 < 19;

443189231131 yphere 0 < 4 < 23;

44317924=114431 phere 0 < i < 24;
44316926—115+31 yphere 0 < 4 < 26;

44315930=1131 phere 0 < 5 < 30;

44314931=114431 phere 0 < 4 < 31;
443139233-115+31 yyhere 0 < 4 < 33;

443129371131 phere 0 < 4 < 37;
44311238=114431 yphere 0 < i < 38;
44310940—i15+3% yphere 0 < 4 < 40;
44392441130 here 0 < < 44;
4438245—114431 yhere 0 < i < 45;
4437947115431 yhere 0 < 4 < 47;
44362517131 yhere 0 < i < 51;
4435252114431 here 0 < 4 < 52;
4434954115431 yhere 0 < 4 < 54;
4433258=1131 where 0 < i < 58;
4432259114431 yhere 0 < 4 < 59;
4431261115431 " yyhere 0 < i < 61;
4430265=1131 yphere 0 < 5 < 65;
43330.

4332921114 4 34, where 0 <14 < 1;
4332822118431 yhere 0 <4 < 2;
4332727’i13i, where 0 < < 7;
4332698=114431 yyhere 0 <4 < 8;
43325210—115+31 yphere 0 < 4 < 10;
433242141131 yhere 0 < i < 14;
43323215—114431 phere 0 < 4 < 15;
4332221711543 phere 0 <4 < 17;
43321221”13", where 0 <4 < 21;
4332092211443 phere 0 < 4 < 22;
43319924=115+31 yhere 0 < i < 24;
43318928—1131 yphere 0 <4 < 2
43317929=11443 yhhere 0 < 4 < 29;
43316931=115431 yyhere 0 < 4 < 31;
433159235—1131 yphere 0 < 4 < 35;
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433149236—114+431 yyhere 0 < 4 < 36;
43313238=115+31 yyhere 0 < 4 < 38;

43312942=1131 yphere 0 < 4 < 42;

43311943=174+431 phere 0 < 4 < 43;
43310245=115+31 yphere 0 < i < 45;

43392491131 where 0 < 4 < 49;
4338250’i14+3i, where 0 < 1 < 50;
4337252715431 yphere 0 < 4 < 52;
43362561131 yhere 0 < 4 < 56;
4335257114431 yphere 0 < 4 < 57;
4334259115431 yhere 0 < 4 < 59;
4333263=1131 where 0 < i < 63;
4332264=114431 yphere 0 < 4 < 64;
43319266—115+431 yhere 0 < 4 < 66;
4330270=1137 4phere 0 < 5 < 70;
4233118

42330251131 where 0 <4 < 5;
4232996=114431 yhere 0 < i < 6;
4232898—115431 yhere 0 < i < 8;
4232721271131 phere 0 < 5 < 12;

42326913-114431 phere 0 < 4 < 13;
42325915—115+31 yyhere 0 < 4 < 15;

42324219-1131 yphere 0 < 4 < 19;

42323920—114431 yphere 0 < 4 < 20;
42322922=115431 yhere 0 < i < 22;

423219261131 yphere 0 < 4 < 26;

4232092711443 yphere 0 < 5 < 27;
42319929-115+31 yphere 0 < 4 < 29;

4231892331131 phere 0 < 4 < 33;

42317934=114431 phere 0 < 4 < 34;
4231693611543t yyhere 0 < 4 < 36;
42315240_i13i, where 0 < i < 40;
42314941 =114431 phere O < 4 < 41;
4231394371543 yhere 0 < 4 < 43;
423129471131 phere 0 < 4 < 47;
42311248=114431 phere 0 < i < 48;
42310250=115+3i " yphere 0 < i < 50;
42392541131 where 0 < 4 < b4;
4238255=114431  yphere 0 < 5 < 55;
42379577115431 yhere 0 < 4 < B7;
42369261=1131 yhere 0 < 4 < 61;
4235262=114431  yphere 0 < 5 < 62;
4234964115431 yhere 0 < 4 < 64;
4233208=1131 phere 0 < 5 < 68;
4232969114431 yhere 0 < 4 < 69;
4231271’i15+3i, where 0 <1 < 71;
4230275=1131 phere 0 < 5 < 75;
4133224114431 yhere 0 < 4 < 4;
4133196=115+31 yphere 0 < 5 < 6;
41330210—113 yphere 0 < 4 < 10;
4132991117443 phere 0 < 4 < 11;
4132821371543 yyhere 0 < 4 < 13;
413272171131 phere 0 < 4 < 17;
41326218=114431 yyhere 0 < 4 < 18;
41326920—i15+31 yphere 0 < 4 < 20;
41324924=1131 yphere 0 < 4 < 24;
41323925=114431 yyhere 0 < 4 < 25;
41322927—115+31 yphere 0 < 4 < 27;
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413212311131 yphere 0 < 4 < 31;

41320932=114431 phere 0 < 5 < 32;
41319234=115431 yphere 0 < 4 < 34;

413189238=1131 phere 0 < 4 < 38;

41317239=114431 yphere 0 < i < 39;
41316941-115+31 yyhere 0 < 4 < 41;

41315245-1131  yhere 0 < i < 45;

41314946—114+431 phere 0 < 4 < 46;
41313948—115+31 yyhere 0 < 4 < 48;

4131225271131 phere 0 < 5 < 52;

41311953=114+431 yphere 0 < 4 < 53;
41310955—115+31 yphere 0 < 4 < B5;

413925971131 yphere 0 < 5 < 59;
41389260—114431  yyhere 0 < 4 < 60;
4137262=115431  yphere 0 < 4 < 62;
413692661131 yhere 0 < i < 66;
4135267114431 yphere 0 < 4 < 67;
4134269=115431 yphere 0 < 5 < 69;
41332731131 where 0 < 4 < 73;
4132274114431 where 0 < 4 < 74;
4131276115431 yyhere 0 < 4 < 76;
4130980—1131 yhere 0 < 4 < 80;
4033493=118+431 yhere 0 < i < 3;
4033328—1131 yhere 0 <4 < 8;
4033299=114431  yyhere 0 <4 < 9;

40331911=115+31 yyhere 0 < 4 < 11;

40330915—1131 yphere 0 < 4 < 15;

40329916-i14+431 ypyhere 0 < 4 < 16;
40328918—115+31 yyhere 0 < 4 < 18;

40327922=1131 yphere 0 < 4 < 22;
40326223=114431 yphere 0 < i < 23;
40325925—115+31 yphere 0 < 4 < 25;
40324229”13", where 0 < 4 < 29;
4032323017443 phere 0 < 4 < 30;
40322932=115431 yyhere 0 < 4 < 32;
403219236—1131 yphere 0 < 4 < 36;
4032093711443 phere 0 < 4 < 37;
40319939=115+31 yphere 0 < 4 < 39;
40318943—1131 yphere 0 < 4 < 43;
4031744114431 qphere 0 < i < 44;
40316946—115+31 phere 0 < 4 < 46;
40315250-1131 " yhere 0 < i < 50;
40314951=114431 phere 0 < 4 < 51;
403139253=115+31 yphere 0 < 4 < 53;
40312257%13", where 0 < 1 < 57,
40311958=i14+31 yphere 0 < 4 < 58;
40310960=115+3% " yyhere 0 < 4 < 60;
403992641131 yyhere 0 < 4 < 64;
4038265—114431 yphere 0 < 5 < 65;
4937967=115+31 yphere 0 < 5 < 67;
40362711131 yphere 0 <4 < 71;
4935272=114431  yphere 0 < 4 < 72;
4034974115431 yhere 0 < 4 < 74;
4933278=1131 phere 0 < 5 < 78;
4032979114431 yhere 0 < 4 < 79;
4031981=115431 yphere 0 < 5 < 81;
40309851131 yyhere 0 < 4 < 85.
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