
Serdica Journal of Computing 16(1), 2022, pp. 57-70, 10.55630/sjc.2022.16.57-70
Published by Institute of Mathematics and Informatics, Bulgarian Academy of Sciences

Walk on the Hypercube with Minimum
Similarities

Georgi Georgiev1, Nicola Yanev2, Emil Kelevedjiev2, Borislav Yurukov3

1Faculty of Mathematics and Informatics,
Sofia University “St. Kliment Ohridski”, Bulgaria

skelet@fmi.uni-sofia.bg

2Institute of Mathematics and Informatics,
Bulgarian Academy of Sciences, Bulgaria

choby@math.bas.bg
keleved@math.bas.bg

3Department of Informatics,
South-West University “Neofit Rilski”, Blagoevgrad, Bulgaria

bobyur@swu.bg

Abstract

An efficient scheduler (algorithm) as a part of batch processing, im-
plemented in a real warehouse management system is considered. The
goal is not completion time but rather the fairness of the schedule ex-
pressed as a minimal overload of working places (machines, workers, etc.)
used. As a combinatorial optimization problem, the objective is to find
the permutation of the rows of a n× k boolean matrix B that minimizes
the sum of the scalar products of each two consecutive rows. For the
above-mentioned warehouse, the size n of a batch is in thousands and the
number of working places is up to ten.

The problem is modeled as many visits traveling salesman problem
over the vertices of k dimensional unit hypercube with distances equal to
the scalar products of the coordinate vectors of the vertices.

The case n = 2k is proven NP-hard and for the needs of the practice,
where n >> k a heuristic greedy algorithm with a good, experimentally
proven precision is proposed.

Received: January 31, 2023, Accepted: February 27, 2023, Published: March 2, 2023
Citation: Georgi Georgiev, Nicola Yanev, Emil Kelevedjiev, Borislav Yurukov, Walk on the
Hypercube with Minimum Similarities, Serdica Journal of Computing 16(1), 2022, pp. 57-70,
https://doi.org/10.55630/sjc.2022.16.57-70

https://serdica-comp.math.bas.bg/
https://doi.org/10.55630/sjc.2022.16.57-70
mailto:skelet@fmi.uni-sofia.bg
mailto:choby@math.bas.bg
mailto:keleved@math.bas.bg
mailto:bobyur@swu.bg
https://doi.org/10.55630/sjc.2022.16.57-70

58 Georgi Georgiev, Nicola Yanev, Emil Kelevedjiev, Borislav Yurukov

Keywords: Scheduling, Travelling Salesman Problem, Transportation Prob-
lem, Integer Programming

ACM 2012 CCS Concepts: Mathematics of computing → Discrete mathe-
matics → Combinatorics → Combinatorial optimization; Applied computing →
Operations research → Transportation

Mathematics Subject Classification 2020: 90B35, 90B06

1 Introduction

Consider the following combinatorial optimization problem:

Find the reordering of the rows of a given n × k boolean matrix B that
minimizes the sum of the scalar products of each two consecutive rows. This is
a compact form of a new class of scheduling problems aiming at finding the s.c.
friendly schedule (see the definition below). We are given n tasks that need to
be scheduled on k unit time parallel machines. Each task j is done in unit time
on a subset of {1, 2, ..., k}, defined by the characteristic vector (row) rj of B.
The scalar product rj .rj+1 gives the number of loaded (active) machines for two
consecutive time periods. Thus, if the i−th bits of the strings rj , rj+1 are 11 the
i−th machine is considered overloaded. A schedule will be called friendly if the
sum of overloads for each machine is minimal. In bit strings terminology, the fair
schedule maximizes the number of 10 substrings or equivalently, minimizes the
number of 11 substrings. The difference is in the symmetry: for the min problem
both schedules, say prime and reverse are fair, while for the max problem, this
could not be the case.

The motivation comes from our involvement in the creation of an algorithm
to be used in the optimization module of a computerized system for the manage-
ment of a huge really existing warehouse. The n tasks are boxes to be filled with
the clients’ orders and the machines (workers) are k working places along the
conveyors used to convey the boxes. Since the completion time depends only on
the speed of the conveyor and the number of boxes, the goal is to schedule (or-
der) the batch of boxes (tasks) to reduce the workload of the worker(s) over short
periods of time, or in the context of the above-mentioned terminology, as much
as possible “work and then rest” phases. If we want to be consistent with the
scheduling theory terminology and call rj .rj+1 delay on task j, j = 1, ..., n− 1,
the problem is to find a schedule with minimum makespan.

Walk on the Hypercube with Minimum Similarities 59

2 Definitions

The problem we study: In what follows the task will be associated with
the set of vertices of k-dimensional hypercube Bk. What was called the delay
between tasks α and β is simply the scalar product of the corresponding vertices

d(α, β) =

k∑
i=1

αiβi.

A graph-theoretic view: By adding a null task (corresponding to the vertex
zero of Bk) we obtain an augmented tasks set. Clearly, any ordering of the
original task set corresponds bijectively to a circular ordering of the augmented
task set.

Let G = (V,E) be the complete undirected graph with edge weights such
that V is the augmented set of tasks and the edge weights are the distances. It
is easy to see that computing an optimal scheduling is the same as to solving
the Traveling Salesman Problem (see [1]) on G.

Let n and k be defined as above and l = 2k.
Let Ik = {0, 1, . . . , l− 1} be the set of integer numbers from 0 to l− 1. This

set equals the vector set of Bk.
Given a vertex set V = {v1, v2, . . . , vn} we call scalar graph the triple

〈V,E, f〉, where E is an edge set such that (V,E) forms a complete graph and
f : V → Ik is some function.

The scalar graph has both vertex weights defined by f and edge weights
defined by w(u, v) = d(f(u), f(v)). For brevity, we denote scalar graphs as
〈V, f〉.

With scTSP we denote TSP restricted to scalar graphs.

3 Complexity

Lemma 1. The problem scTSP is NP-hard.

Proof. We reduce the Hamiltonian Cycle problem, which is known to be NP-
complete (see [2]), to scTSP . Given an undirected graph G(V,E), let G1 be a
complete graph with vertices V and weight function w(u, v) = 0 if (u, v) ∈ E
and w(u, v) = 1 if (u, v) /∈ E. Obviously, the graph G has a Hamiltonian cycle
if and only if the optimal solution of the TSP for graph G1 has weight 0. Let
us denote with e1, e2, . . . , em the edges in G1 with weight 1.

Now we build a scalar graph G2 = 〈V, f〉, f : V → Im as follows. For any
v ∈ V , define f(v) = α1α2 . . . αm, where αi = 1 if and only if v is incident to
edge ei.

60 Georgi Georgiev, Nicola Yanev, Emil Kelevedjiev, Borislav Yurukov

Let for some other vertex u ∈ V f(u) = β1β2 . . . βm. The product αiβi is 1
only in the case when ei = (u, v). It follows that the scalar product (f(u), f(v))
for graph G2 is the same as the weight function w(u, v) in G1.

Thus the graph G has a Hamiltonian cycle exactly when the optimal solution
of the TSP for graph G2 has weight 0. We can construct G2 in time polynomial
in the size of G, which completes the proof.

scCSP is NP-hard too. The construction from Lemma 1 reduces HP
(Hamiltonian Path problem) to scCSP .

4 A case study – scalar hypercube

Consider the graph of all the vertices of k-dimensional hypercube with scalar
distances between the corresponding Boolean strings.

Let us call this graph SDk. Technically we can treat it as a scalar graph
〈Ik, I〉, where I : Ik → Ik is identity. Let v(scTSP) be the optimal objective
function value (the minimal length of the traveling salesman tour on SDk).
Then the following is true:

Lemma 2. v(scTSP) ≥ 2k−2.

Proof. Let 〈v1, v2, . . . , vn, v1〉 be an optimal solution, di be a distance between
vi and vi+1, and ei = |vi|+ |vi+1| − k, where |v| is the bits number of vertex v.

The following relations are obvious:

ei ≤ di (1)

n∑
1

ei = 0 (2)

Let E+, E0, E− be the sets of edges in the optimal cycle with positive, zero,
or negative value of ei resp. From (2) follows:∑

E0

ei = 0 (3)

∑
E−

ei +
∑
E+

ei = 0 (4)

∑
E−

|ei| =
∑
E+

ei (5)

Walk on the Hypercube with Minimum Similarities 61

Each sum in (5) is at least the cardinality of the set on which we sum up,
therefore:

max (|E−|, |E+|) ≤
∑
E−

|ei| =
∑
E+

ei (6)

But |E−|+|E+|
2 ≤ max (|E−|, |E+|), therefore:

|E−|+ |E+|
2

≤
∑
E−

|ei| =
∑
E+

ei (7)

We apply (1) on the elements of E+ and get:

|E−|+ |E+|
2

≤
∑
E+

di (8)

Let us consider the set E0. If |E0| ≤ n
2 , then |E−|+ |E+| ≥ n

2 = 2k−1 and from
(8) directly follows the statement of the lemma:

2k−2 =
n

4
≤ |E−|+ |E+|

2
≤

∑
E+

di ≤
n∑
1

di (9)

In the remaining case |E0| > n
2 . Let |E0| = n

2 + l, l > 0. It is easily seen that
at most n

2 edges in E0 have weight 0, and they are edges with opposite Boolean
vectors. Hence:

l ≤
∑
E0

di (10)

From (10) follows a weaker inequality:

l

2
≤

∑
E0

di (11)

We sum up (8) and (11):

l + |E−|+ |E+|
2

≤
∑
E0

di +
∑
E+

di (12)

But l + |E−|+ |E+| = n
2 = 2k−1 and still we get the assertion of the lemma:

2k−2 =
l + |E−|+ |E+|

2
≤

∑
E0

di +
∑
E+

di ≤
n∑
1

di. (13)

62 Georgi Georgiev, Nicola Yanev, Emil Kelevedjiev, Borislav Yurukov

Lemma 3. The bound 2k−2 is sharp.

Proof. In order to construct a cycle known as the Anti-Gray code (see [3]), the
set of vertices of SDk is partitioned into two parts I0k and I1k , containing vectors
with leading zero or one resp.

We interpret the set I0k as a set of vertices of a hypercube of dimension
k − 1 and build a Hamiltonian cycle in it (also known as Grey code). With the
convention l = 2k, let this cycle has the form Gr0 = 〈v1, v2, . . . , vl/2, v1〉. It is
Well known that successive Boolean vectors in this cycle differ in exactly one
position. If v′i = 1α2α3 . . . αk is put in correspondence to vi = 0α2α3 . . . αk then
obviously, Gr1 = 〈v′1, v′2, . . . , v′l/2, v

′
1〉 is a Hamiltonian cycle in I1k .

Now merge the two cycles in a cycle 〈v1, v′1, v2, v′2, . . . , vl/2, v′l/2, v1〉.
The resulting cycle has exactly l vertices. The l/2 edges 〈vi, v′i〉 have their

ends in opposite vectors and such edges have zero weight.
For edges 〈v′i, vi+1〉 there are two cases: When vi has one unit more than

vi+1, the weight of the edge will be 0; otherwise, when vi has one unit less than
vi+1, the weight of the edge will be 1.

In Gray code 〈v1, v2, . . . , vl/2, v1〉 the number of edges, when the bits increase,
match the number of reductions. Therefore, the edges of the kind 〈v′i, vi+1〉 with
unit weight, will be exactly l/4, or 2k−2.

An example of an anti-Gray code for k = 3 (not written the first vertex at
the end of the cycle):

First, build a Gray code for Boolean square – 00, 01, 11, 10 supplementing it
with a 0 in front.

We get Gr0 = 〈000, 001, 011, 010〉 and Gr1 = 〈111, 110, 100, 101〉. Merge
them and get cycle 〈000, 111, 001, 110, 011, 100, 010, 101〉 with weight 2.

5 Relaxation and approximation

5.1 Relaxation to transportation problem

Let l = 2k be the cardinality of Ik. For a scalar graph 〈V, f〉, let ai be the
number of vertices x ∈ V , such that f(x) = i.

The array A = (a0, a1, . . . al−1) fully defines the graph 〈V, f〉 and is conve-
nient for the presentation of practical tasks for which k is much smaller than
n.

Every Hamiltonian cycle in 〈V, f〉 corresponds to an Eulerian multigraph,
with vertices in Ik, so that for each vertex i, exactly ai edges entering it and
leaving it [4].

Walk on the Hypercube with Minimum Similarities 63

The scTSP is reduced to finding the shortest Eulerian multigraph with a
vertex set Ik, and such that for each vertex i the indegree d−(i) equals the
outdegreed+(i) and d−(i) = d+(i) = ai.

If the connectivity condition (for the Eulerian multigraph) is relaxed and
denote by xij the number of edges from i to vertex j, and by cij the scalar
product of the binary presentations of i and j, we get the following linear model:

min
∑

i,j∈Ik

cijxij (14)

subject to constraints: ∑
j∈Ik

xij = ai, i ∈ Ik, xij ≥ 0∑
i∈Ik

xij = aj , j ∈ Ik, xij ≥ 0
(15)

The model defines an instance of the transportation problem. This problem
is efficiently solvable by many existing polynomial algorithms, but its solution
is not necessarily transposable to an Eulerian walk. Similar relaxations are
considered in [5, p. 540] and [4].

To disable disconnectedness due to the subcycles, we need to add extra
constraints like: ∑

i∈T,j∈Ik/T

xij ≥ 1,∀T (Ik (16)

The number of constraints (16) is exponential and the matrix of constraints is
not unimodular, i.e. we should require xij to be integer.

The model given by (14), (15) and (16) will solve scTSP using an algorithm
for integer linear programming, but the running time is unpredictable even for
small tasks.

Assuming P 6= NP, any algorithm for exact solving of scTSP would be
unacceptable in terms of time complexity.

5.2 Greedy approximation

To solve practical problems, it is better to have an efficient algorithm, which
may give an approximate solution. The optimal solution xij of the transporta-
tion problem (14) – (15) is a good start for a greedy approach. It defines
multigraph X = {〈i, j, xij〉| i, j ∈ Ik, xij > 0}, set by multi-edges of the kind

64 Georgi Georgiev, Nicola Yanev, Emil Kelevedjiev, Borislav Yurukov

Algorithm 5.1 Component connection step

1: procedure JoinGreedy(X) . The multigraph X satisfies (15)
2: Find edges e1 and e2 from distinct connected components,

minimizing ∆ = min(δ+, δ−)
3: if ∆ is reached by δ+ then
4: Glue forward to edges e1 and e2
5: else
6: Glue backward to edges e1 and e2
7: end if
8: end procedure

〈i, j, xij〉, where xij is the number of parallel edges from vertex i to vertex j.
We denote by ZX the cost of X, ZX =

∑
i,j∈Ik cijxij .

Provided that X has at least 2 connected components (otherwise xij could
be transposed into an optimal Eulerian cycle), the main greedy step – gluing
is as follows: Let the multi-edges e1 = 〈i1, j1, c1〉 and e2 = 〈i2, j2, c2〉 belong to
different components C1 and C2.

Forward gluing of the edges e1 and e2 is the replacement of the edges 〈i1, j1〉
and 〈i2, j2〉 with two new edges 〈i1, j2〉 and 〈i2, j1〉. This replacement preserves
the feasibility of the transportation problem from above increasing transporta-
tion costs by δ+ = ci1j2 +ci2j1−ci1j1−ci2j2 and adding at most two multi-edges
to the corresponding multigraph X ′ .

Backward gluing of the edges e1 and e2 is the reversing of the direction in all
edges in C2, followed by the replacement of the edges 〈i1, j1〉 and 〈i2, j2〉 with
two new edges 〈i1, i2〉 and 〈j2, j1〉. This is again a feasible solution increasing
the transportation costs by δ− = ci1i2 + cj2j1 − ci1j1 − ci2j2 . As in Forward
gluing, the number of edges in the multigraph X ′ is increased by at most two.

Both kinds of gluing connect component C1 and C2 in a new component C ′,
which is an Eulerian subgraph of X ′.

The greedy step of our approximation for scTSP is Algorithm 5.1.

Let us use an adjacency list representation for multigraph X with vertices
V and multiedges E and simple mapping of the form 〈vertex, component〉.

The time complexity of step 2 in JoinGreedy is Θ(|E|2). The complexity
of step 4 is Θ(|V |), needed to remap merging components. The complexity of
step 6 is Θ(|V |+ |E|) (additional time of Θ(|V |+ |E|) to reverse edges in C2).
Thus, the complexity of JoinGreedy is Θ(|V |+ |E|2).

The main approximation for scTSP is Algorithm 5.2.

Walk on the Hypercube with Minimum Similarities 65

Algorithm 5.2 Greedy solver for scTSP

1: procedure scGreedy(A[0 . . . l − 1]) . A = (a0, a1, . . . , al−1)
2: X ← solution of the transportation problem, defined by A
3: Evaluate connected components in X
4: while X is not connected do
5: JoinGreedy(X)
6: end while
7: return Eulerian cycle in X
8: end procedure

Assuming the dimension of the matrix (cij) is l×l and
∑
ai = n, let us denote

time complexity of step 2 in scGreedy with T0(l, n). After step 2 number of
vertices in X is at most l and the number of multi-edges is at most 2l − 1 (the
size of the basis of the transportation problem we solve).

Step 3 is computed by algorithm BFS for time Θ(l). Step 4 is executed at
most l times, each call to JoinGreedy(X) will add at most 2 edges to X. At
any time the number of multi-edges in X will be less than 4l. This gives total
complexity O(l3) for the connectivity phase (steps 3 and 4).

Step 7 has time complexity Θ(n), giving total complexity T0(l, n)+O(n+ l3)
for scGreedy.

The step JoinGreedy(X) is the most trivial way for gluing components in
such a relaxation. In the general case of TSP it can generate a randomly large
increase in the objective function and deviation from the optimal solution. In
the special case of scTSP this step works well.

Explanation. The reasons for such behavior are not entirely clear. One pos-
sible explanation is by means of geometric interpretation. If we consider the
vertices as points of k-dimensional sphere, the cycles in the optimal solutions
(of the transportation problem and scTSP) alternate - each edge aims at be-
ing close to the diameter of the sphere. We can liken each connected compo-
nent in the solution of TP to a beam of edges, oriented around some diameter.
JoinGreedy(X) actually finds two strands with similar orientations and stitches
them together resulting in a larger bundle, but the cost of gluing is limited.

Example. The scalar hypercube SDk has 2k vertices and transportation prob-
lem for it creates 2k−1 cycles with cost 0 (each vertex makes a cycle with its op-
posite Boolean vector). The optimal solution of scTSP has cost 2k−2. scGreedy
solves it for k < 7 exactly, but for k = 7 the error is 1, and for k = 8 the error
is 2.

66 Georgi Georgiev, Nicola Yanev, Emil Kelevedjiev, Borislav Yurukov

5.3 Improvements

When the array A is sparse, we compact it as follows: Let A contains q
nonzero elements, q � l.

Let P = (p1, p2 . . . pq), B = (b1, b2 . . . bq), where P is an array of all indices of
nonzero members of A and B contains corresponding values B[i] = A[P [i]], 1 ≤
i ≤ q.

Tuple 〈P,B〉 is a dense record for A.
The compact representation 〈P,N〉 is a natural for scCSP . Through the

two arrays, we indicate which Boolean masks are used and how many tasks
correspond to each of these masks.

If we rewrite programs scGreedy to use 〈P,B〉 as an input, the resulting
program scGreedyC use P only in two steps:

In step 2 P is used to generate a compact version for transportation problem
matrix (c′ij = (P [i], P [j])) with size q × q.

In step 7 P is used to output the Eulerian cycle.
Muligraph X in this implementation has q vertices, less than 4q multi-edges

and time complexity of scGreedyC is T0(q, n) +O(n+ q3).
If we use binary heap to store the triples 〈∆, e1, e2〉 for all possible gluing in

the multigraph X, we can modify scGreedyC so that the step of gluing to have
complexity O(q2 lg q).

5.4 Exact solving for small k and a hypothesis

For solving the transportation problem we used the open-source program
lp solve [6]. Improvements for scGreedy, described in section 5.3 are not imple-
mented.

To conduct experiments we developed a computational Algorithm 5.3 for
exact solving of scTSP .

It is interesting that an unspecified part of the algorithms is step 4. Its
aim is to prohibit the appearance of several connected components in X. In all
cases, the matrix of constraints is not totally unimodular and we must add the
requirement to the lp solve for the variables to be integers.

Initially, we used constraints of the kind (16) by components obtained in
previous unconnected solutions for X. They are long inequalities and lp solve
is working hours even on examples in which k = 5.

Better results give a constraint of the type:∑
i,j∈C

xij <
∑
i∈C

ai (17)

Walk on the Hypercube with Minimum Similarities 67

Algorithm 5.3 Exact solver for scTSP

1: procedure scTSPsolver(A[0 . . . l − 1]) . A = (a0, a1, . . . , al−1)
2: X ← solution of the transportation problem, defined by A
3: while X is not connected do
4: Add new constraints to the LP model
5: X ← lp solve generated solution of the LP model
6: end while
7: return Eulerian cycle in X
8: end procedure

where C is a connected component in X, and the sum on the left side is taken
only from the non-zero variables in the solution of the model that gave rise to
the component. These constraints are shorter and the simplex method provides
a solution with a small number of non-integer variables. Using restrictions (17)
gives a quick solving (no more than within a minute) for tasks of size k ≤ 6.

For any scalar graph 〈V, f〉 we denote by ZTP the cost
∑

i,j∈Ik

cijxij of the

optimal solution of the transportation problem, and by ZTSP the cost of optimal
solution of scTSP , also by ZGreedy the cost of a solution, obtained by the
approximation algorithm.

There is an obvious chain of inequalities: ZTP ≤ ZTSP ≤ ZGreedy.

A large number of computational experiments give us reason to say that the
following conjecture is likely true:

Conjecture 1. Let 〈V, f〉 be a scalar graph, represented by the matrix A =
(a0, a1, . . . al−1), l = 2k.

For 〈V, f〉 the inequality ZTSP − ZTP ≤ l
4 = 2k−2 holds.

Equality is attained only when:

(a) For the elements of A is fulfilled the condition ∀i, ai = ai > 0, where i
is obtained by reversing the bits of i (i = 2k − 1− i).

(b) The multigraph X, defined by any solution to the transportation problem
for 〈V, f〉 has exactly l

2 connected components.

Statements (a) and (b) are equivalent.

For the scalar hypercube SDk, all the elements in A are equal to 1. The
hypothesis states that on fixed k the graph SDk is the worst case in terms of
the relaxation of scTSP to the transportation problem.

68 Georgi Georgiev, Nicola Yanev, Emil Kelevedjiev, Borislav Yurukov

k l = a P tests ave max ave max T T

2k max sparse (ZST) (ZST) (ZGS) (ZGS) Greedy TSP

4 16 1 0.20 1000 1.584 4 0.114 1 0.024 0.12
4 16 4 0.20 1000 0.266 2 0.105 1 0.026 0.054
4 16 1 0.50 1000 0.673 4 0.05 1 0.021 0.066
4 16 4 0.50 1000 0.129 2 0.026 1 0.021 0.042
4 16 9 0.50 1000 0.056 1 0.007 1 0.025 0.029
4 16 1 0.80 1000 0.181 3 0.004 1 0.019 0.038
4 16 4 0.80 1000 0.02 1 0 0 0.016 0.03

5 32 1 0.20 500 3.172 8 0.354 2 0.082 0.702
5 32 4 0.20 500 0.5 3 0.348 2 0.086 0.28
5 32 1 0.50 500 1.258 5 0.258 2 0.08 0.354
5 32 4 0.50 500 0.344 2 0.136 2 0.058 0.196
5 32 9 0.50 500 0.144 3 0.048 1 0.07 0.136
5 32 1 0.80 500 0.514 3 0.03 1 0.054 0.168
5 32 4 0.80 500 0.11 2 0.01 1 0.068 0.098

Table 1: Numerical experiments for small sizes of the problem (k = 4, 5).

6 Computational experiments

For small values of k were generated and solved groups of tasks. In every
generation with probability Psparse coefficients ai in A are equal to zero, and
non-zero coefficients accept a random value between 1 and amax.

In tables 1, 2, and 3, at fixed k, amax and Psparse are generated and solved
tests tasks.

We denote by ZST the difference ZTSP − ZTP for each generated task. Ac-
cordingly, ZGS = ZGreedy − ZTSP and ZGT = ZGreedy − ZTP .

ZGS is the difference between the cost of the solution found by scGreedy and
the optimal solution. Obvious relations are ZGT = ZGS +ZGT and ZGS ≤ ZGT .

TGreedy is the average running time in seconds for the work of the approxi-
mate algorithm, and TTSP is the average running time of the exact algorithm.

At k > 5, in search of the exact solution in some cases the software package
lp solve finds no integer solution of the linear model, or it finds very slow.
The reason for such behavior is not entirely clear, but in reducing the depth of
branching (starting with the option ”-depth 25” instead of the default value 50)
loops do not appear. Since that correction can cause skipping optimum, in the
Table 2 we present by T ∗TSP the average time to find the exact solution.

In tables 1 and 2, we present by ave(XST) the means average of ZTSP−ZTP ,

Walk on the Hypercube with Minimum Similarities 69

k l = a P tests ave max ave max T T

2k max sparse (ZST) (ZST) (ZGS) (ZGS) Greedy TSP

6 64 1 0.20 100 6.99 13 0.53 2 0.6 9.8
6 64 4 0.20 100 1.12 4 0.82 3 0.53 4.77
6 64 1 0.50 100 2.35 6 0.98 3 0.47 3.76
6 64 4 0.50 100 0.68 3 0.3 2 0.38 2.53
6 64 9 0.50 100 0.31 2 0.12 2 0.36 2.57
6 64 1 0.80 100 0.97 4 0.2 1 0.35 1.37
6 64 4 0.80 100 0.18 1 0.05 2 0.37 0.78

Table 2: Numerical experiments for k = 6.

k l = 2k amax Psparse tests ave(ZGT) max(ZGT) TGreedy

7 128 1 0.20 100 16.31 22 6.36
7 128 4 0.20 100 4.29 8 5.91
7 128 1 0.50 100 7.06 11 4.76
7 128 4 0.50 100 2.37 7 4.61
7 128 9 0.50 100 1 3 4.66
7 128 1 0.80 100 2.78 6 2.87
7 128 4 0.80 100 0.74 3 3.21

8 256 1 0.20 100 33.92 41 81.3
8 256 4 0.20 100 10.19 15 72.12
8 256 1 0.50 100 16.23 22 59.43
8 256 4 0.50 100 5.29 11 56.34
8 256 9 0.50 100 2.71 8 53.92
8 256 1 0.80 100 5.93 10 38.27
8 256 4 0.80 100 1.79 5 40.91

9 512 1 0.20 20 71.05 78 1204.45
9 512 4 0.20 20 23.45 28 1046.75
9 512 1 0.50 20 35.55 41 850.5
9 512 4 0.50 20 12.7 17 806.35
9 512 9 0.50 20 4.45 8 777.15
9 512 1 0.80 20 11.6 16 627.35
9 512 4 0.80 20 4.1 7 601.1

Table 3: Numerical experiments for middle size problems (k = 7, 8, 9).

70 Georgi Georgiev, Nicola Yanev, Emil Kelevedjiev, Borislav Yurukov

for all generated tasks and by ave(ZGS) the average inaccuracy of the greedy
algorithm. It is seen that the difference between the approximate and the exact
solution ZGS for small tasks (k < 7) is acceptable in the worst case and small
in the average case.

At k > 6 the time for finding the exact solution increases unacceptably. In
Table 3 we show using only the greedy algorithm. In this case, ZGS cannot be
evaluated, and ZGT = ZGreedy−ZTP is too rough an upper limit of inaccuracy.

We hope that in the majority of cases, the inaccuracy ZGS is acceptable for
tasks, in which finding the optimal solution is not critical.

At k = 9, scGreedy algorithm works slowly. If we make improvements in
Section 5.3, the same behavior will be observed when the number q of non-zero
elements of the matrix A increases over 500.

The reason is that the complexity of scGreedy is dominated by the com-
plexity of the transportation problem. To solve tasks quickly for q > 500, an
approximate algorithm is required, which does not use the solution of the trans-
portation problem.

Another option for an acceleration of scGreedy is to break solving the trans-
portation problem before reaching the optimal solution. We will get a faster,
but less accurate solution.

References

[1] C. H. Papadimitriou , K. Steiglitz, Combinatorial Optimization: Algorithms and
Complexity, Prentice Hall, Englewood Cliffs, New Jersey, 1982.

[2] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W. H. Freeman and Company, New York, 1979.

[3] M. Kurt, C. Atilgan, M. E. Berberler, “A Dynamic Programming Approach for
Generating N-ary Reflected Gray Code List”, Ege University, Journal of the Fac-
ulty of Science, 2013.

[4] S. S. Cosmadakis, C. H. Papadimitriou, “The Traveling Salesman Problem with
Many Visits to Few Cities”, SIAM Journal on Computing, 13(1):99-108, 1984.

[5] R. E. Burkard, V. G. Deineko, R. van Dal, J. A. A. van der Veen, G. J. Woegin-
ger, “Well-Solvable Special Cases of the Traveling Salesman Problem: A Survey”,
SIAM Review, 40(3):496-546, 1998.

[6] M. Berkelaar, K. Eikland, P. Notebaert, et al., “Lp Solve: Mixed Integer Linear
Programming (MILP) solver”, Eindhoven University of Technology, 2004.

https://books.google.com/books?id=cDY-joeCGoIC
https://books.google.com/books?id=cDY-joeCGoIC
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=M.+R.+Garey%2C+D.+S.+Johnson%2C+Computers+and+Intractability&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=M.+R.+Garey%2C+D.+S.+Johnson%2C+Computers+and+Intractability&btnG=
https://scholar.google.bg/scholar?hl=bg&as_sdt=0%2C5&q=M.+Kurt%2C+C.+Atilgan%2C+M.+E.+Berberler%2C+A+Dynamic+Programming+Approach+for+Generating+N-ary+Reflected+Gray+Code+List&btnG=
https://scholar.google.bg/scholar?hl=bg&as_sdt=0%2C5&q=M.+Kurt%2C+C.+Atilgan%2C+M.+E.+Berberler%2C+A+Dynamic+Programming+Approach+for+Generating+N-ary+Reflected+Gray+Code+List&btnG=
https://scholar.google.bg/scholar?hl=bg&as_sdt=0%2C5&q=M.+Kurt%2C+C.+Atilgan%2C+M.+E.+Berberler%2C+A+Dynamic+Programming+Approach+for+Generating+N-ary+Reflected+Gray+Code+List&btnG=
https://doi.org/10.1137/0213007
https://doi.org/10.1137/0213007
https://doi.org/10.1137/S0036144596297514
https://doi.org/10.1137/S0036144596297514
https://doi.org/10.1137/S0036144596297514
https://lpsolve.sourceforge.net/
https://lpsolve.sourceforge.net/

	Introduction
	Definitions
	Complexity
	A case study – scalar hypercube
	Relaxation and approximation
	Relaxation to transportation problem
	Greedy approximation
	Improvements
	Exact solving for small k and a hypothesis

	Computational experiments

