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Abstract

Attribute reduction is a key problem in the process of data mining and
knowledge discovery. Up to now, many attribute reduction algorithms in
incomplete decision tables have been proposed. However, the research results
related to conditional attributes and reduct of incomplete decision tables are
still limited. By relational database approach, this paper investigates some
properties of conditional attributes and proposes an algorithm to determine
all reductive attributes of consistent incomplete decision tables in polynomial
time. The proposed algorithm is an effective tool to eliminate all redundant
attributes in data pre-processing in order to improve the efficiency of data
mining models.
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1 Introduction

One of the most important technique in data preprocessing in data mining
and machine learning is attribute reduction or feature selection. The attribute
reduction process objectives are removing unnecessary and redundant attributes
and keep the attribute reduction set (called as reduct). The objective of attribute
reduction is to improve the data mining models efficiently. Pawlak [1] was in-
troduced traditional Rough Set (RS), which is considered as an effective tool for
discover the reduct of decision tables. Based on RS theory or expanded modeling
of RS, various methods have been introduced to find the reduct of decision tables
recently. However, these algorithms are heuristic based algorithms which finds
the best reduct regarding the classification quality of the attribute set. In fact,
studying properties of reducts and conditional attributes plays an important role
in eliminating redundant attributes in decision tables.

In consistent complete decision tables, many scientist proposed new methods
related to the properties of reduct and inferring knowledge by relational database
theory approach in recent years [2–9]. In paper [2], authors proved that the time
complexly of calculating all reducts is exponentials in the number of conditional
attributes. In paper [3], authors proved some properties related to the time com-
plexity of relatively reduced set search. In paper [4], the algorithm was proposed
to find a set of entire reducts in a complete decision consistency table in polyno-
mial time. Based on the proposed algorithm, an algorithm is constructed for a
complete decision consistency table to inferring knowledge in term of functional
dependencies. Furthermore, authors in paper [5] solved the inverse problem, they
recommend an algorithm which propose a complete decision table based on a tra-
ditional of knowledge in term of functional dependencies. This result allows us to
generate data for knowledge systems to improve the efficient training and testing
knowledge models. In paper [6], authors discovered some properties related to
conditional attributes and reduct. A polynomial algorithm was introduced in
order to construct a novel reduction decision table from an already build decision
table and also presented another new method to extract entire the functional
dependencies from the consistent decision table. Authors in paper [7] proposed
some algorithms to decrease the quantity of objects in consistent complete de-
cision tables by discovering some features of reduct and reductive attributes in
regard to relational database theory approach. The proposed algorithms can
be effectively applied in the data preprocessing phase to improve data mining
efficient and machine learning models.

In research [8] authors discovered some properties of reduct related to Sperner-
system and state that the study of some properties on reduct is equivalent to the
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study of some properties on the Sperner-system. This result opens a new research
direction on building efficient attribute reduction models based on research on
Sperner-system. On the problem related to reductive attributes, in paper [9],
authors proposed two algorithms in polynomial time: the first algorithm to find all
reductive attributes by relational database theory approach; the second algorithm
also to find all reductive attributes by rough set theory. The authors also proved
that the results of two algorithms are the same.

In practical problems, decision tables often miss values in the attribute value
domain, known as incomplete decision tables. On these tables, Kryszkiewicz in
paper [10] constructed a tolerance relationship on the attribute value domain
and proposed tolerance RS model. From the modeling of tolerance RS, various
heuristic algorithms about feature reduction have been proposed so far. However,
studies refereed to reduct properties of incomplete decision tables are still lim-
ited. In the paper [11] authors discover some properties of reducts in incomplete
decision tables and prove that the properties of reducts in incomplete decision
tables are equivalent to properties of the Sperner-systems in the theory of rela-
tional database. By extending the results in the paper [9, 12], in this paper we
developed an algorithm to find all reductive attributes of consistent incomplete
decision tables in polynomial time. The proposed algorithm let us to eliminate
all redundant attributes in incomplete decision tables before performing attribute
reduction and rule extraction algorithms. The structure of this paper is as fol-
lows. Section 2 describes the basic definitions related to RS theory and relational
database. Section 3 provides some combinational results in relational database.
Section 4 proposes an algorithm to find all reductive attributes of consistent
incomplete decision tables in polynomial time. The last section addresses the
concluding and further research.

2 Basic Concepts

2.1 The basic concepts in rough set theory

Some basic concepts in the rough set theory are performed in this paper
[1]. The decision table is a set of four DT = (U,C ∪D,V, f), in which U =
{u1, u2, . . . , un} is non-empty set, containing finite objects; C = {c1, c2, . . . , cm}
is a gathering of condition attribute; D is a set of decision attributes where C
and D are two separated sets, and V =

⋃
Va where Va is the value set of the

attribute a ∈ A = C ∪ D; f : U × (C ∪ D) → V is the information function.
For any a ∈ C ∪ D,u ∈ U , function f has the value f(u, a) ∈ Va. Not losing
the comprehensive characteristics, hypothesis D only has one decision attribute
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is d (If D has many attributes, it can be reduced to an attribute by using an
encryption [10]). From this, we consider the decision table DT = (U,C ∪d, V, f),
in which {d} /∈ C.

Each subset P ⊆ C ∪ {d} defines an indistinguishable relation, called equiva-
lence relation: IND (P ) = {(x, y) ∈ U × U |∀a ∈ P, f (x, a) = f (y, a)}. IND(P )
defines a partition on U , denoted by U/P = {P1, P2, . . . , Pm}. One element in
U/P is called an equivalence class. For any B ⊆ C and X ⊆ U , B− upper approx-
imation of X is set BX = {u ∈ U | [u]B ∩X 6= ∅}, B− lower approximation of X
is set BX = {u ∈ U | [u]B ⊆ X}, B− boundary region of X is set BX\BX and
B− the positive region of {d} is the set POSB({d}) = ∪X∈U/D(BX). The deci-
sion table DT is consistent only when POSC ({d}) = U , or function dependency
C → d is true, whereas DT is inconsistent. If DT is inconsistent, POSC({d}) is
maximum subset of U that satisfies the function dependency C → d.

Definition 2.1. Let the decision table DT = (U,C ∪ d, V, f). If B ⊆ C satisfies:

(1) POSB({d}) = POSC({d}),

(2) ∀B′ ⊂ B(POSB′({d}) 6= POSC({d})),

then B is a reduct of C. If DT is consistent, the above definition shows that B
is a reduct of C if it satisfies B → d and ∀B′ ⊂ B, B′ 9 {d} .

Definition 2.2. Let R = {o1, o2, . . . , on} be a finite set of attributes and let
D (oi) be the set of all possible values of attribute oi. A relation r over R is the
tuples’ rally {b1, . . . , bm} where bj : R →

⋃
oi∈RD (oi) , 1 ≤ j ≤ m is a function

that bj (oi) ∈ D (oi).

Let r = {b1, . . . , bm} be a relation over R = {o1, o2, . . . , on}. Any pair of
attribute sets X ,Y ⊆ R is called the functional dependency (FD for short) over
R, and denoted by X → Y, if and only if

(∀bibj ∈ r) ((∀b ∈ X ) (bi (x) = bj (x))) =⇒ ((∀y ∈ Y) (bi (y) = bj (y))) .

The set Fr = {(X ,Y) : X ,Y ⊆ R,X → Y} is called the full family of func-
tional dependencies in r.

Definition 2.3. Let DT = (U,C ∪ {d}) be a decision table where {d} /∈ C. DT is
consistent if and only if the functional dependency C → {d} is true, it means that
for any s, t ∈ U , if C(s) = C(t) then d(s) = d(t). Otherwise, DT is inconsistent.

Definition 2.4. Let DT = (U,C ∪ {d} , V, f) be a consistent decision table and
an attribute set R ⊆ C. R is called a reduct of DT if:
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(1) For each s, t ∈ U , if R(s) = R(t) then d(s) = d(t).

(2) For each G ⊂ R, there exists s, t ∈ U in which G(s) = G(t) and d(s) 6= d(t).

The above reduct is called Pawlak reduct.

Definition 2.5. Let r = {b1, . . . , bm} be a relation on R = {o1, . . . , on}. If
∀oi ∈ R has Doi and ∗ ∈ Doi where ∗ is “missing value”:

bj : R→ ∪Doi so bj(oi) ∈ Doi .

Definition 2.6. Let r is the relation on R = {o1, o2, . . . , on} and A ⊆ R. In the
case, we denote bi ∼ bj(A) if each o belongs to A: bi (o) = bj (o) or bi (o) = ∗ or
bj (o) = ∗.

Definition 2.7. Let r = {b1, . . . , bm} on R = {o1, o2, . . . , on}. Then X ,Y ⊆ R

and X tolerance determines Y denoted by X t−→ Y if:

(∀bi, bj ∈ r) (if bi ∼ bj(X ) then bi ∼ bj(Y)) .

Set Tr =
{

(X ,Y) : X ,Y ⊆ R and X t−→ Y
}

. It is easy to see that:

(1) (X ,X ) ∈ Tr∀X ⊆ R,

(2) (X ,Y) ∈ Tr then X ⊆ C,D ⊆ Y has (C,D) ∈ Tr,

(3) (X ,Y) ∈ Tr, (Y, C) ∈ Tr =⇒ (X , C) ∈ Tr.

Set X+ =
{
o ∈ R : X t−→ {o}

}
.

Definition 2.8. Incomplete decision table IDT = (U,C ∪ d, V, f) with ∗ /∈ Dd

(it means that the value domain of the decision attribute d does not include ∗).
C is the set of condition attributes. DT is the incomplete decision table which is

consistent if C
t−→ {d}.

We can see that if IDT is inconsistent, we can test by using a polynomial time
algorithm on elements of U to eliminate the elements, making DT consistently.
After the elimination, we have the set U then DT = (U, C ∪ d, V, f) is consistent.

Definition 2.9. Let IDT = (U,C ∪ d, V, f) be a consistent incomplete decision

table. B is a reduct of IDT if: B ⊆ C : B
t−→ {d} and ∀B′ ( B then B′ 6 t−→ {d}

(it means that B′ is a proper subset of B then B′ does not tolerance determine
d). Set PRED(C) = {B : B is reduct of IDT}.
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Definition 2.10. Suppose that R = {o1, o2, . . . , on}. K = {A1,A2, . . . ,Am} is
the Sperner-system on R if

Ai * Aj ∀i, j.
Definition 2.11. Suppose that K = {A1,A2, . . . ,Am} is the Sperner-system on
R. Set K−1 = {B ( R : (A ∈ K =⇒ A * B and B ( C) then ∃A ∈ K : A ⊆ C}.
Then K−1 is called the anti-key of K.

Definition 2.12. Suppose that IDT = (U,C ∪ d, V, f) is a consistent incomplete
decision table. Set r = u = {u1, . . . , um}, R = C ∪ d. It is easy to see that

PRED(C) = Kt
d = {A ⊆ C : A t−→ {d} and @B : B

t−→ {d} and B ( A} and
PRED(C) is the Sperner-system.

Definition 2.13. Suppose that IDT = (U,C ∪ d, V, f) is the consistent incom-
plete decision table. Let r = U = {u1, . . . , um}, R = C ∪ d.

1. From r we calculate the equivalent sets: εr = {Eij : 1 6 i 6 j 6 m} with

Eij = {o ∈ R : o(ui) = o(uj) or o(ui) = ∗ or o(uj) = ∗} .

2. From εr, set

Md = {A ∈ εr : A 6= R, d /∈ A and @B ∈ εr : d /∈ B and A ( B} .

Definition 2.14. Suppose that IDT = (U,C ∪ d, V, f) is the consistent incom-
plete decision table. Attribute a ∈ C is referred to as a reductive attribute if there
is a reduct A ∈ PRED(C) such that a ∈ A.

Set REAT (DT ) = {a ∈ C : a is reductive attribute}.
It is easy to see that REAT (C) = ∪A∈PRED(C)A.

3 Some Results in Relational Database

3.1 Algorithm finding the minimum key set from the set of anti-keys

Algorithm 3.1 ([13,14]). Find the minimum key set from the set of anti-keys.
Input: Let K be the Sperner-system playing the role of an anti-key set,

C = {b1, . . . , bn } ⊆ R and H is the Sperner-system playing the role of key set(
K = H−1

)
for ∃B ∈ K : B ( C.

Output: D ∈ H.
Step 1: Set t (0) = C.
Step i+1: Set t (i+ 1) = t (i) − bi+1 if ∀B ∈ K without t (i+ 1) ⊂ B; in the

opposite case, set t (i+ 1) = t (i).
Finally we set D = t (n).
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It is noticeable that the above algorithm’s time complexity is polynomial with
n and |K|.

Theorem 3.1 ([13,15]). Let K = {A1, . . . , Am} be the Sperner-system on R =
{o1, . . . , on}. Suppose K−1 = {B1, B2, . . . , Bk} then ∪Ai∈KAi = R \ ∩Bi∈K−1 Bi.

3.2 Algorithm finding the set of anti-keys from given Sperner-system

Algorithm 3.2 ([13,15]). Finding K−1 from a given Sperner-system K.
Input: Let K = {B1, . . . , Bm} be a Sperner-system over R = {a1, . . . , an}.
Output: K−1.
Step 1: We set K1 = {R− {a} : a ∈ B1}. It is obviously that K1 = {B1}−1.
Step q+1: (q < m). Assume that Kq = Fq∪{X1, . . . , Xtq}, where X1, . . . , Xtq

are elements of Kq containing Bq+1 and Fq = {A ∈ Kq : Bq+1 * A}. For all i
(i = 1, . . . , tq), we compute {Bq+1}−1 on Xi in the same way as K1, which are
the maximal subsets of Xi not containing Bq+1. We denote them by Ai

1, . . . , A
i
ri.

Let:
Kq+1 = Fq ∪

{
Ai

p : A ∈ Fq ⇒ Ai
p 6⊂ A, 1 ≤ i ≤ tq, 1 ≤ p ≤ ri

}
Finally, let K−1 = Km.

Theorem 3.2 ([13, 15]). For any q (1 ≤ q ≤ m), Kq = {B1, . . . , Bq}−1, that is
Km = K−1. It is clear that K, K−1 are unique and it is drawn the definition of
K−1 that the order of the sequence B1, . . . , Bm does not influence the Algorithm 1.
Set Kq = Fq ∪ {X1, . . . , Xtq} and lq (1 ≤ q ≤ m − 1) is the number of elements
of Kq.

Proposition 3.1 ([13,15]). In the worst case, the Algorithm 3.1’s is

O

|R|2 m−1∑
q=1

tquq


where uq = Iq − tq if Iq > tq and uq = 1 if Iq = tq.

It is apparent that in each step of the algorithm we have Kq is a Sperner-
system over R. It is known that the size of any Sperner-system on R is not

greater than C
[n/2]
n , where n = |R|. We can see that C

[n/2]
n is roughly equal to

2n+1/2/(Π .n1/2). Consequently, the time complexity of the algorithm can not
be more than exponential in n. In cases of Iq ≤ Im (∀q : 1 ≤ q ≤ m− 1), the

Algorithm 1’s time complexity is not more than O
(
|R|2 |K|

∣∣K−1∣∣2). Therefore,

in those cases the algorithm finds K−1 in polynomial time in |R| , |K| and |K|−1.
Notably, when |K| , |K|−1 is small, Algorithm 3.4 works.
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Example 3.1. Let

K = {{o1, o2, o3} , {o2, o3, o5} , {o2, o3, o6} , {o2, o5, o7, o8}}

be the Sperner-system on R = {o1, o2, o3, o4, o5, o6, o7, o8}, anti-keys set of K is
determined as follows:

Step 1:

K1 = {{o2, o3, o4, o5, o6, o7, o8} , {o1, o3, o4, o5, o6, o7, o8} , {o1, o2, o4, o5, o6, o7, o8}} .

Step 2: K1 = F1 ∪X

F1 = {{o1, o3, o4, o5, o6, o7, o8} , {o1, o2, o4, o5, o6, o7, o8}}
X = {{o2, o3, o4, o5, o6, o7, o8}}

It can be seen anti-keys of {o2, o3, o5} on set X = {{o2, o3, o4, o5, o6, o7, o8}} are
{o3, o4, o5, o6, o7, o8}, {o2, o4, o5, o6, o7, o8}, {o2, o3, o4, o6, o7, o8}. From it we have:

K2 = {{o1, o3, o4, o5, o6, o7, o8} , {o1, o2, o4, o5, o6, o7, o8} , {o2, o3, o4, o6, o7, o8}} .

Step 3: K2 = F2 ∪X

F2 = {{o1, o3, o4, o5, o6, o7, o8} , {o1, o2, o4, o5, o6, o7, o8}}
X = {{o2, o3, o4, o6, o7, o8}}

It can be seen anti-keys of {o2, o3, o6} on set X = {{o2, o3, o4, o6, o7, o8}} are
{o3, o4, o6, o7, o8}, {o2, o4, o6, o7, o8}, {o2, o3, o4, o7, o8}. From it we have:

K3 = {{o1, o3, o4, o5, o6, o7, o8} , {o1, o2, o4, o5, o6, o7, o8} , {o2, o3, o4, o7, o8}} .

Step 4 : K3 = F3 ∪X

F3 = {{o1, o3, o4, o5, o6, o7, o8} , {o2, o3, o4, o7, o8}}
X = {{o1, o2, o4, o5, o6, o7, o8}}

It can be seen anti-keys of {o2, o5, o7, o8} on set X = {{o1, o2, o4, o5, o6, o7, o8}}
are

{o1, o4, o5, o6, o7, o8} , {o1, o2, o4, o6, o7, o8} ,
{o1, o2, o4, o5, o6, o8} , {o1, o2, o4, o5, o6, o7} .
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From it we have:

K4 = {{o1, o3, o4, o5, o6, o7, o8} , {o2, o3, o4, o7, o8} ,
{o1, o2, o4, o5, o6, o8} , {o1, o2, o4, o5, o6, o7}} .

From it we have a set of anti-keys of K is:

K−1 = {{o1, o3, o4, o5, o6, o7, o8} , {o2, o3, o4, o7, o8} ,
{o1, o2, o4, o5, o6, o8} , {o1, o2, o4, o5, o6, o7}} .

Example 3.2. Let R = {o1, o2, o3, o4, o5, o6, o7, o8} and the set of antikeys

K−1 = {{o1, o3, o4, o5, o6, o7, o8} , {o2, o3, o4, o7, o8} ,
{o1, o2, o4, o5, o6, o8} , {o1, o2, o4, o5, o6, o7}} .

Consider C = {o1, o2, o3, o4, o5, o7, o8}. Then the minimum key set is determined
as follows:

Step 1 : Set t (0) = C = {o1, o2, o3, o4, o5, o7, o8}.
Step 2 : Set t (1) = t (0) \ {o1} = {o2, o3, o4, o5, o7, o8}.

∀B ∈ K−1 without t (1) ⊂ B → t (1) = {o2, o3, o4, o5, o7, o8} .

Step 3 : Set t (2) = t (1) \ {o2} = {o3, o4, o5, o7, o8}. Because

{o1, o3, o4, o5, o6, o7, o8} ∈ K−1

and
t (2) ⊂ {o1, o3, o4, o5, o6, o7, o8} → t (2) = {o2, o3, o4, o5, o7, o8} .

Step 4 : Set t (3) = t (2) \ {o3} = {o2, o4, o5, o7, o8}.

∀B ∈ K−1 without t (3) ⊂ B → t (3) = {o2, o4, o5, o7, o8} .

Step 5 : Set t (4) = t (3) \ {o4} = {o2, o5, o7, o8}.

∀B ∈ K−1 without t (4) ⊂ B → t (4) = {o2, o5, o7, o8} .

Step 6 : Set t (5) = t (4) \ {o5} = {o2, o7, o8}.

∀B ∈ K−1 without t (5) ⊂ B → t (5) = {o2, o7, o8} .

Step 7 : Set t (6) = t (5) \ {o7} = {o2, o8}. Because {o2, o3, o4, o7, o8} ∈ K−1
and

t (6) ⊂ {o2, o3, o4, o7, o8} → t (6) = {o2, o7, o8} .
Step 8 : Set t (7) = t (6) \ {o8} = {o2, o7}. Because {o2, o3, o4, o7, o8} ∈ K−1

and
t (7) ⊂ {o2, o3, o4, o7, o8} → t (7) = {o2, o7, o8} .

Hence, D = {o2, o7, o8} is a minimum key set from the set of anti-keys.
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4 Propose an Algorithm for Finding all Reductive Attributes in
an Incomplete Decision Table

The results of reductive attributes in the incomplete decision table are demon-
strated in this section.

Theorem 4.1. Suppose that IDT = (U,C ∪ d, V, f) is a consistent incomplete
decision table. Set r = U = {u1, . . . , um}, R = C ∪ d.

• From r we calculate the same set εr = {Eij : 1 ≤ i ≤ j ≤ m} with
Eij = {o ∈ R : o(ui) = o(uj) or o(ui) = ∗ or o(uj) = ∗}.

• From εR we set Md = {A ∈ εr : A 6= R, d /∈ A and @B ∈ εr : d /∈
B and A ( B}.

Kt
d = {A ⊆ C : A t→{d} and @B : B

t→{d} and B ( A}.

Then Md = (Kt
d)
−1

.

Proof. If ∀A ∈ Md, we can see that A = A+ because if A ( A+ then there is
e ∈ A+ and e /∈ A. Because A is the equivalent maximum set then ∃i, j (1 ≤ i <
j ≤ m) for Eij = A and according to the definition of set A+, we have A t→{e}
and from the definition of set Eij then e ∈ Eij . Therefore, A = A+ and d /∈ A
then d /∈ A+. Thus, A6 t−→{d} (A does not tolerance determine d).

If we have B with A ( B, based on the definition of set A if d /∈ B then
∀i, j (1 ≤ i < j ≤ m) we have bi ∼ bj (B), which is incorrect. Therefore,

according to the definition of tolerance determination, we have B
t→R. The

case d ∈ B then it is easy to see that d ∈ B+. Therefore, both cases have

∀B : A ( B ⇒ B+ t→{d}. Therefore, according to the definition of Kt
d then

C∈ Kt
d so C ⊆ B. According to the definition of set (Kt

d)
−1

we have A ∈ (Kt
d)
−1

.

Oppositely, if A ∈ (Kt
d)
−1

then A+ = A. Because if A ( A+ then according

to the definition of anti-key set we have C ∈ (Kt
d) for C ⊆ A+, means A+ t→{d},

leading to A t→{d}. According to the definition of (Kt
d)
−1

then A does not

tolerance determine {d} (A6 t−→{d}). Thus A+ = A.

The definitions of setsMd and (Kt
d)
−1

(is the set of largest sets do not tolerance

determine d), means A ∈Md. Therefore Md = (Kt
d)
−1

.

Based on Theorem 4.1 and Theorem 3.2, the proposed algorithm is described
as follows:
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Car Price Mileage Size Max-speed Decision

u1 H H ∗ ∗ P
u2 L ∗ F L G
u3 L L C H P
u4 M H C H G
u5 M H C ∗ G

Table 1: The first example of incomplete decision table.

Algorithm 4.1. The algorithm for finding all reductive attributes in an incom-
plete decision table.

Input: Let DT = (U,C ∪ d, V, f) be the consistent incomplete decision table.
Set r = U = {u1, . . . , um}, R = C ∪ d.

Output: REAT (DT ).
Steps:

1. From r we calculate the equivalent sets: εr = {Eij : 1 ≤ i ≤ j ≤ m} with
Eij = {o ∈ R : o(ui) = o(uj) or o(ui) = ∗ or o(uj) = ∗}.

2. From εR we set

Md = {A ∈ εr : A 6= R, d /∈ A and @B ∈ εr : d /∈ B and A ( B}.

3. Suppose Md = {A1,A2, . . . ,Ak}. Let G = ∩Ai∈Md
Ai.

4. Let REAT (DT ) = C\G.

Remark 4.1. Because all steps are calculated using a polynomial-time algorithm.
Therefore, Algorithm 4.1 has polynomial time complexity with m and |C|. Based
on Algorithm 4.1 and Theorem 4.1 we have the consequent below:

Corollary 4.1. Let IDT = (U,C ∪ d, V, f) be an incomplete decision table, then
there is one algorithm for finding all reductive attributes of IDT with polynomial
time complexity.

Example 4.1. Suppose that IDT = (U,C ∪ d, V, f) is an incomplete decision
table as Table 1 where U = {u1, u2, . . . , u5, u6}, C = {o1, o2, . . . , o4}.

• According to Algorithm 4.1, we need to do the following steps to find all
reductive attributes:
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1. Calculate Md:

E12 = {o2, o3, o4}, E13 = {o3, o4, d}, E14 = {o2, o3, o4}, E15 = {o2, o3, o4},

E23 = {o1, o2}, E24 = {o2, d}, E25 = {o2, o4, d},

E34 = {o3, o4}, E35 = {o3, o4}, E45 = {o1, o2, o3, o4, d}.

2. According to the step condition of Algorithm 4.2, there are A1 = {o2, o3, o4}
and A2 = {o1, o2} satisfy the condition of Md. Thus,

Md = {{o2, o3, o4}, {o1, o2}}.

3. Calculate G = ∩Ai∈Md
Ai, G = {o2, o3, o4} ∩ {o1, o2} = {o2}.

4. Calculate REAT (DT ) = C\G = {o1, o2, o3, o4}\{o2} = {o1, o3, o4}.

Thus, the set of reductive attributes in Table 1 is REAT (DT ) = {o1, o3, o4}.

• According to Algorithm 4.1 and the result Md calculated from Step 2 above,
consider C = {o1, o2, o3, o4}, the set of reductive attributes is determined as the
follows:

Step 1: Set t (0) = C = {o1, o2, o3, o4}.
Step 2: Set t (1) = t (0) \ {o1} = {o2, o3, o4}. Because {o2, o3, o4} ∈Md and

t (1) ⊂ {o2, o3, o4} → t (1) = {o1, o2, o3, o4}.

Step 3: Set t (2) = t (1) \ {o2} = {o1, o3, o4}.

∀B ∈Md without t (2) ⊂ B → t (2) = {o1, o3, o4} .

Step 4: Set t (3) = t (2) \ {o3} = {o1, o4}.

∀B ∈Md without t (3) ⊂ B → t (3) = {o1, o4} .

Step 5: Set t (4) = t (3) \ {o4} = {o1}. Because {o1, o2} ∈Md and

t (4) ⊂ {o1, o2} → t (1) = {o1, o4} .

Hence, D = {o1, o4} is a reduct in Table 1.

• We already know that K1 = {o1, o4} ∈ K. Set D1 = {{o1, o4}}. Then we
have D−11 = {{o1, o2, o3} , {o2, o3, o4}}.
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Name Years
(exp)

Employed Pre-
employ

Level Top-
tier
school

Interned Hired

o1 ∗ Y ∗ BS N N Y

o2 2 N 1 BS ∗ Y Y

o3 7 N ∗ ∗ N ∗ N

o4 2 ∗ 1 MS Y N Y

o5 ∗ N 2 PhD Y ∗ N

Table 2: The second example of incomplete decision table’s sample.

Because {o1, o2, o3} ∈ D−11 and {o1, o2, o3} * Mdj for all Mdj ∈ Md we
consider C = {o1, o2, o3}. Then by Algorithm 4.1, we obtain:

t (0) = C = {o1, o2, o3} , t (1) = {o1, o2, o3} , t (2) = {o1, o3} , t (3) = {o1, o3} .

• Thus, K2 = {o1, o3} ∈ K. We set D2 = D1 ∪ K2 = {{o1, o4} , {o1, o3}}.
Then we have D−12 = {{o2, o3, o4} , {o1, o2}} = Md.

• Because there isn’t any X ∈ D−12 , in which X * Mdj so we set K = D2.
Therefore, the set of all reductive attributes in Table 1 is:

D = {{o1, o4} , {o1, o3}} .

Example 4.2. Let IDT = (U,C ∪ d, V, f) be an incomplete decision table as
Table 2 where U = {u1, u2, . . . , u5, u6}, C = {o1, o2, . . . , o6}.

According to Algorithm 4.1, we need to do the following steps to find all
reductive attributes of Table 2:

1. Calculate Md:

E12 = {o1, o3, o4, o5, d}, E13 = {o1, o3, o4, o5, o6}, E14 = {o1, o2, o3, o6, d},
E15 = {o1, o3, o6}, E23 = {o2, o3, o4, o5, o6}, E24 = {o1, o2, o3, o5, d},
E25 = {o1, o2, o5, o6}, E34 = {o2, o3, o4, o6}, E35 = {o1, o2, o3, o4, o6, d},
E45 = {o1, o2, o5, o6}.

2. According to the step condition of Algorithm 4.1, there are:

A1 = {o1, o3, o4, o5, o6}, A2 = {o2, o3, o4, o5, o6} and A3 = {o1, o2, o5, o6}
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satisfy the condition of Md. Thus

Md = {{o1, o3, o4, o5, o6}, {o2, o3, o4, o5, o6}, {o1, o2, o5, o6}} .

3. Calculate G = ∩Ai∈Md
Ai:

G = {o1, o3, o4, o5, o6} ∩ {o2, o3, o4, o5, o6} ∩ {o1, o2, o5, o6} = {o5, o6}.

4. Calculate

REAT(DT ) = C\G = {o1, o2, o3, o4, o5, o6} \ {o5, o6} = {o1, o2, o3, o4} .

Thus attribute reductions in Table 2 is REAT (DT ) = {o1, o2, o3, o4}.

5 Conclusions

In the context of growing on the current data volume, it is urgent to research
and propose efficient algorithms for eliminating redundant attributes to improve
the efficiency of data mining or machine learning models. Up to now, there have
been many heuristic algorithms to find reducts of incomplete decision tables.
However, the research results related to conditional attribute and reduct are still
limited. In this paper, we discovered some properties of conditional attribute and
proposed an algorithm to determine all reductive attributes of consistent incom-
plete decision tables in polynomial time. The proposed algorithm is an effective
tool to eliminate all redundant attributes in incomplete decision tables before
performing attribute reduction and rule extraction algorithms in data mining
and machine learning. Further research is to study more properties on reducts
to propose more efficient attribute reduction models.

References

[1] Z. Pawlak, Rough Sets: Theoritical Aspets of Reasoning about Data, Kluwer Aca-
demic Publishers, Dordrecht, 1991.

[2] J. Demetrovics, N.L. Giang, V.D.Thi, “On Finding All Reducts of Consistent De-
cision Tables”, Cybernetics and Information Technologies, 14(4), 2014, pp. 3-10.

[3] J. Demetrovics, V.D. Thi, N.L. Giang, T.H. Duong, “On the Time Complexity of
the Problem Related to Reducts of Consistent Decision Tables”, Serdica Journal of
Computing, 9(2), 2015, pp. 167-176.

https://books.google.bg/books?id=MJPLCqIniGsC
https://books.google.bg/books?id=MJPLCqIniGsC
https://cit.iict.bas.bg/CIT_2014/CIT_14-4.html
https://cit.iict.bas.bg/CIT_2014/CIT_14-4.html
https://serdica-comp.math.bas.bg/index.php/serdicajcomputing/article/view/253
https://serdica-comp.math.bas.bg/index.php/serdicajcomputing/article/view/253
https://serdica-comp.math.bas.bg/index.php/serdicajcomputing/article/view/253


38 Janos Demetrovics, Nguyen Long Giang, Vu Duc Thi, Pham Viet Anh

[4] V.D. Thi, N.L. Giang, “A Method for Extracting Knowledge from Decision Tables
in Terms of Functional Dependencies”, Cybernetics and Information Technologies,
13(1), 2013, pp. 73-82.

[5] V.D. Thi, N.L. Giang, “A Method to Construct Decision Table from Relation
Scheme”, Cybernetics and Information Technologies, 11(3), 2011, pp. 32-41.

[6] N.L. Giang, V.D. Thi, “Some Problems Concerning Condition Attributes and
Reducts in Decision Tables”, Proceeding of the fifth National Symposium “Funda-
mential and Applied Information Technology Research” (FAIR), 2011, pp. 142-152.

[7] J. Demetrovics, H.M. Quang, V.D. Thi, N.V. Anh, “An Efficient Method to Reduce
the Size of Consistent Decision Tables”, Acta Cybernetica, 23(4), 2018, pp. 1039-
1054.

[8] N.L. Giang, J. Demetrovics, V.D. Thi, P.D. Khoa, “Some Properties Related to
Reduct of Consistent Decision Systems”, Cybernetics and Information Technologies,
21(2), 2021, pp. 3-9.

[9] L.G. Nguyen, H.S. Nguyen, “Searching for Reductive Attributes in Decision Tables”,
Transactions on Rough Sets XIX, Lecture Notes in Computer Science, Springer,
2015, pp. 51-64.

[10] M. Kryszkiewicz, “Rough set approach to incomplete information systems”, Infor-
mation Sciences, 112, 1998, pp. 39-49.

[11] D.T. Khanh, V.D. Thi, N.L. Giang, L.H. Son, “Some Problems Related to Reducts
of Consistent Incomplete Decision Tables”, International Journal of Mathematical,
Engineering and Management Sciences, 7(2), 2022, pp. 288-298.

[12] J. Demetrovics, V.D. Thi, N.L. Giang, “An Efficient Algorithm for Determining
the Set of All Reductive Attributes in Incomplete Decision Tables”, Cybernetics
and Information Technologies, 13(4), 2013, pp. 118-126.

[13] V.D. Thi, “Minimal keys and antikeys”, Acta Cybernetica, 7(4), 1986, pp. 361-371.

[14] J. Demetrovics, V.D. Thi, “Some remarks on generating Armstrong and inferring
functional dependencies relation”, Acta Cybernetica, 12(2), 1995, pp. 167-180.

[15] J. Demetrovics, V.D. Thi, “Relations and minimal keys”, Acta Cybernetica, 8(3),
1988, pp. 279-285.

https://cit.iict.bas.bg/CIT_2013/CIT_13-1.html
https://cit.iict.bas.bg/CIT_2013/CIT_13-1.html
https://cit.iict.bas.bg/CIT_2013/CIT_13-1.html
https://cit.iict.bas.bg/CIT_2011/CIT_11-3.html
https://cit.iict.bas.bg/CIT_2011/CIT_11-3.html
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=N.L.+Giang%2C+V.D.Thi%2C+Some+problems+concerning+condition+attributes+and+reducts+in+decision+tables&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=N.L.+Giang%2C+V.D.Thi%2C+Some+problems+concerning+condition+attributes+and+reducts+in+decision+tables&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=N.L.+Giang%2C+V.D.Thi%2C+Some+problems+concerning+condition+attributes+and+reducts+in+decision+tables&btnG=
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/4033
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/4033
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/4033
https://cit.iict.bas.bg/CIT-2021/CIT-2021-2.html
https://cit.iict.bas.bg/CIT-2021/CIT-2021-2.html
https://cit.iict.bas.bg/CIT-2021/CIT-2021-2.html
https://doi.org/10.1007/978-3-662-47815-8_4
https://doi.org/10.1007/978-3-662-47815-8_4
https://doi.org/10.1007/978-3-662-47815-8_4
https://doi.org/10.1016/S0020-0255(98)10019-1
https://doi.org/10.1016/S0020-0255(98)10019-1
https://doi.org/10.33889/IJMEMS.2022.7.2.019
https://doi.org/10.33889/IJMEMS.2022.7.2.019
https://doi.org/10.33889/IJMEMS.2022.7.2.019
https://cit.iict.bas.bg/CIT_2013/CIT_13-4.html
https://cit.iict.bas.bg/CIT_2013/CIT_13-4.html
https://cit.iict.bas.bg/CIT_2013/CIT_13-4.html
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3305
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3455
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3455
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3342
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3342

	Introduction
	Basic Concepts
	The basic concepts in rough set theory

	Some Results in Relational Database
	Algorithm finding the minimum key set from the set of anti-keys
	Algorithm finding the set of anti-keys from given Sperner-system

	Propose an Algorithm for Finding all Reductive Attributes in an Incomplete Decision Table
	Conclusions

