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Abstract

We will reduce the task of creating AI to the task of finding an appro-
priate language for description of the world. This will not be a programing
language because programing languages describe only computable func-
tions, while our language will describe a somewhat broader class of func-
tions. Another specificity of this language will be that the description will
consist of separate modules. This will enable us look for the description
of the world automatically such that we discover it module after module.
Our approach to the creation of this new language will be to start with a
particular world and write the description of that particular world. The
point is that the language which can describe this particular world will be
appropriate for describing any world. This is the first part of the paper.
In this part we will define the basic theoretical concepts which will we will
need when creating the language we are looking for.
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1 Introduction

This paper presents a new approach to the exploration of AI. This is the
Event-Driven (ED) approach. The underlying idea of the ED approach is that
instead of absorbing all input/output information, the model should reflect only
the events which matter (“important events”).

Every action is an event. Every observation is an event, too. If the model
were to reflect each and every action and observation, it would end up overloaded
with an enormous amount of information. The overloaded situation can however
be avoided when the model is limited only to certain important events. This
leads us to the idea of Event-Driven models.

A disadvantage (or perhaps an advantage) of the ED model is that it does
not describe the world completely, but only partially. More precisely, the ED
model describes a certain class of worlds (the worlds which comply with a certain
pattern).

What makes this paper different? The mainstream approach to dealing
with multi-agent systems is based on the assumption that the world is given
(known) and what we need to find is a policy. In other words, the world is part
of the known terms of the problem while the policy is the unknown part. This
paper is different because we will assume that instead of being given, the world
is unknown and has to be found.

The assumption that the world is given implies that we have a relation which
provides a full description of the world. Conversely, in this paper we will try
to provide partial descriptions of the world and will do so by employing ED
models.

Structure of the language: The description of the world will not be
similar to a homogenous system consisting of one single layer. Our description
of the world would rather be structured as a multilayer system. Figure 1 presents
our multilayer structure as a pyramid where the first layer is the base of the
pyramid.

Thus, events will form the first layer of our system. We will use these events
in order to describe the Event-Driven (ED) models. Importantly, the states
of the ED models must not be the same (some states must be different). For
this condition to be fulfilled, there must be at least one state with a special
occurrence in it so that the state can be distinguished from other states. We
will name this special occurrence distinction. The set of the distinctions we will
designate as trace.

Our first idea about the trace is that it is fixed. (For example, let us have a
state in which it is always cold.) Then our notion of a trace will evolve and we



Language for Description of Worlds. Part 1: Theoretical Foundation 103

Figure 1: Structure of the language

will have a moving trace which can appear and then disappear or move from
one state to another. (In our example the chill could move to the room next
door.)

The next layers of the pyramid will consist of various patterns (we will
present all of them by ED models). We will begin with the permanent patterns,
i.e. those which are observed all the time. While most authors assume that
all patterns are permanent, in this paper we reckon that in addition to the
permanent ones there are other, impermanent patterns which are observed only
from time to time. We will name these impermanent patterns phenomena.
In other words, just as traces can be fixed or moving, patterns can also be
permanent or phenomena.

Algorithms are also impermanent patterns (observed only when an algorithm
is being executed). We will present algorithms as sequences of events. Typically,
algorithms are understood as sequences of actions on the basis of the assumption
that the protagonist is always the one who executes the algorithm. In this paper
the algorithm will be any pattern and if the actions of an agent are aimed at
maintaining the pattern, then we will say that the agent is the one who executes
the algorithm.

When a phenomenon is associated with the observation of an object, we
will call that phenomenon a property. This takes us to an abstraction of a
higher order, namely the abstractive concept of object. Objects are not directly
observable, but are still identifiable through their properties.

The next abstraction we get to will be agents. Similar to objects, we cannot
observe agents directly, but can still gauge them on the basis of their actions.



104 Dimiter Dobrev

In order to describe the world, we have to describe the agents which live that
world and explain what we know about these agents. The most important thing
to describe about agents is whether they are our friends or foes and accordingly
what will they try to do to us by their actions – help us or disrupt us?

The descriptions above relate to computable worlds (ones that can be emu-
lated by a computer program). While any presence of a non-computable agent
in the world would make the world itself non-computable, there is another way
to make non-computable worlds. We may add a rule which depends on the
existence of some algorithm (more precisely, on the existence of an execution of
that algorithm). The question “Does an execution of the algorithm exist?” is
non-computable (halting problem [1]).

Contributions

1. Event-Driven model. (The concept has already been introduced by [2],
but that paper did not provide an interpretation of the ED model. This is
important, because interpretations are what makes models meaningful and dis-
tinguish between adequate and inadequate models.)

2. This paper proves that Markov Decision Process (MDP) is a special case
of an ED model and that an ED model is the natural generalization of MDP.

3. Simple MDP. We will simplify the MDP to obtain a more straightforward
model which can describe more worlds.

4. Extended model. This is the model in which the state knows everything.
We will use this model in order to introduce an interpretation of events and ED
models. (Although the Extended model was introduced in [3], in that version
of the model the state knows only what has happened and what is going to
happen, but does not know what is possible to happen. Therefore, the state of
the Extended model in [3] knows nothing about the missed opportunities. In
[3] the Extended model is referred to as “maximal”.)

How is this paper organized. Sections 2 to 7 will provide the theoretical
foundation of the paper. We will define the concepts lived experience, life,
Event-Driven model, phenomena, event and world. We will give meaning to
these concepts by defining interpretation. We will prove that MDP is a special
case of an ED model.

2 Lived experience

The task is to describe the world on the basis of our lived experience. This
means we are looking for a model which provides the best explanation of what
has happened until the present moment. Hence the first question we will address
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is “What is lived experience?”.

The common assumption is that we have only one life and lived experience
comprises everything that has happened in that life until now. However, in
this paper we will assume that we have more than one life and lived experience
comprises everything that has happened both in the current life and in all
previously lived lives. We will go even further and assume that we may have
more than one current life.

Why do we make this assumption? From the individual’s perspective each
individual has only one life, but from a population perspective there are many
lives. In our case we have an artificial agent living in an artificial world. We can
let the agent live many times in the world and will thus obtain many lives from
which we can collect observations and try to identify patterns. We can even let
multiple agents live in the world concurrently. Then will have multiple current
lives.

Definition 1. Lived experience is a finite sequence of lives.

This takes us to the next question: “What is life?”

2.1 Life

Life will be a finite sequence of actions and observations. Life is what we
see, but are there things in life which we do not see?

Let us imagine we have had two lives. In the first life we walked past a pot
full of gold coins, but did not bother to open it and went on. In the second life
we walked past an empty pot which we did not open either and again went on.
In terms of actions and observations the two lives are fully identical, but they
are still two different lives because in the first one we had the chance to find
plenty of gold coins while in the second life we never had that chance.

That is why our description of life will consist of two determinants. The first
one is what we have seen (the sequence of actions and observations). We will
label this sequence as the trace of life.

Note: In this paper we use the terms trace of live and trace of the ED model.
These are different things.

The second determinant of life is everything that was possible to happen in
that life (regardless of whether it actually happened). The possible past and the
possible future are described by the state of the world. Knowing what the state
has been at each moment of time is important. That is why to the description
of life we will add the sequence of states which the world has been through. We
will label this sequence as the backbone of life.
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The trace and the backbone describe life from the perspective of the world.
If we look at the world from the agent’s perspective, life will be described by
the trace and by the guesses which the agent can make at any given moment.
For example, at a given moment we can assume that after two steps we will see
a certain observation. (The moment of the guess is the moment at which we are
able to make that guess rather than the moment which the guess relates to).

Two things are important for each guess. First, the antecedents which must
be true at the moment when we make the guess. The second one is the rule
(heuristic) on the basis of which the guess can be made. We will assume that
heuristics are derived from our entire lived experience (including the future lived
experience). Hence, the addition of more lived experience leads to a change
of heuristics and thereby to a change of guesses (even previous guesses). For
example, there comes a moment when we realize that the sound produced by a
fire weapon signifies some danger. Then we review our past and find out that
every time we heard a fire shot we had been in trouble.

2.2 Heuristic

We said that in life there are things we do not see but which are still impor-
tant enough for us to try predicting them. For example, “Are there gold coins
in the pot?” We may try to predict this through our intuition or on the basis
of some heuristics which we derive by collecting statistics from our lived expe-
rience. An example of such heuristic is “If the pot looks ancient, then it is full
of gold coins”. Certainly, each heuristic comes with some confidence coefficient.
Let this coefficient be as low as 2%. Even with such a low confidence coefficient,
if it appears to be an ancient pot it is worth the effort to open it and check for
gold coins.

An heuristic will consist of antecedent, consequent and confidence coefficient.
We will suppose that the consequent is an atomic formula, while the antecedent
is a conjunction of atomic formulas. (We will define atomic formulas later.)

Definition 2. An heuristic is a material implication with confidence coeffi-
cient

A1 & A2 & . . . & An ⇒ A0 (per cent) (1)

Here is an example of a heuristic:

Ob(t−1)=o1 & Act(t)=a ⇒ Ob(t+1)=o2 (10%) (2)

Here Ob(t) = o means that the observation at moment t is o and Act(t) = a
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means that the action at moment t is a. (We have expressed this as an equality
because the action and the observation depend unambiguously on moment t.)

The event Ob(t) makes sense only at even-number moments, while Act(t)
makes sense only at odd-number moments because we alternate actions and
observations. The heuristic is valid for any t. That is why we will assume that
the antecedent is known at moment t and this is the first moment in which the
antecedent becomes known. (We can achieve this by replacing t with t + i for
some i.)

The consequent here relates to a future visible event (predicting past visi-
ble events does not make sense). The consequent might also be related to an
invisible events (past or future). For example:

Ob(t)=o1 ⇒ PossNext(o2, t−2) (some per cent) (3)

Here the invisible event PossNext(o, t) means it is possible that the next
observation is o, i.e. it is possible that Ob(t + 2) = o. (In this expression we
have not used equality because the possible next observations are more than
one, while an equality implies one possibility.)

For o1 = o2 the above heuristic will be meaningless because it will be tauto-
logically true, while o1 6= o2 will make sense.

We will consider heuristics as rules which are always valid, but might also
assume that a rule is valid only sometimes. In this case one impermanent rule
will define one invisible event. That event will be True when the rule is valid
and False when the rule is invalid. Let us consider the following rule:

∅ ⇒ Ob(t+2) 6=o (4)

The antecedent here is the empty set, i.e. without antecedent or always.
This rule tells us that the next observation cannot be o. This is sometimes
True and sometimes False, but we do not see whether this is True (unless the
next observation is o, but generally we cannot see that). Therefore, this is one
invisible event and its negation is exactly PossNext(o, t).

2.3 Atomic formula

The agent cannot observe all events and will have to stay with some finite
number of events. The agent will assign a name to each observed event and we
will call these events atomic formulas.

Definition 3. An atomic formula is an event to which we have assigned a
name.
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For example, Ob(t) = o is an atomic formula. (More precisely, these are
multiple atomic formulas, one for each o.)

When observing some event we will actually be observing its negation as
well. Thus, the negation of an atomic formula is also an atomic formula.

A conjunction of atomic formulas can also be an atomic formula if we have
decided to observe it and provided that we have assigned a name to it. These
conjunctions of course will be infinitely many and we would not be able to
observe them all.

From event A(t) we can make countably many events A(t+ i), which will be
the same event shifted in time. It does not make much sense to observe all these
events because they are almost the same. Therefore we will observe only one of
them. For example, if we have a conjunction of atomic formulas, we will decide
to observe the event at the moment which is the maximum of the moments of
the atomic formulas included in the conjunction.

In most cases the moment at which an observed event occurs is not impor-
tant, but there are some exceptions. With ED models for example the exact
time at which each of the observed events occurs is important (it is important
whether an event occurs several steps earlier or several steps later).

2.4 Single-moment event

Definition 4. A single-moment event is one which depends only on one
moment.

Let that moment be t. Then, a visible single-moment event is an event which
depends only on one observation or only on one action (only on Ob(t) or only
on Act(t) ). An invisible single-moment event is one which depends only on one
state of the world (st).

A conjunction of single-moment events can also be a single-moment event
if all atoms in the conjunction are single-moment events and relate to one and
the same moment.

The visible single-moment events are finitely many and there are as many
invisible single-moment events as are the subsets of the states of the world (finite
or continuum).

An atomic formula may or may not be a single-moment event.

2.5 The guess

At certain moments of time the agent will apply heuristics in order to derive
some guesses. Each guess will consist of some consequent and some confidence
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coefficient. The consequent will be an atomic formula and that formula will
relate to a concrete moment of time t (which can be in the past or in the
future). Hence, unlike the heuristic which applies to any t, the guess will apply
to a particular t.

Definition 5. A guess is expressed as follows:

A(t) (per cent) (5)

The set of guesses (heuristic applications) will be called Guesses.
Let us have another heuristic: “If the pot is full of gold coins, then we can

buy an aircraft”. Let the confidence coefficient of this heuristic be 50%. Then
as soon as we see a pot which appears ancient we apply the first heuristic and
get “the pot is full of gold coins” (with a confidence coefficient of 2%). Now we
can buy an aircraft (with a confidence coefficient of 1%).

The important takeaway from this example is that heuristics can be cascaded
and that heuristic antecedents may include an invisible event. The cascade
application of two heuristics can be considered as new one. However, it will
take a lot of lived experience to find this new heuristic. The better way is to
find more simple heuristics and combine them in more complex ones. We can
find many heuristics which indicate that the pot is full of gold coins and their
cascade application will lead to the consequent that in all these cases we can buy
an aircraft. If we do not use cascade application then for every particular case
we should collect individual statistics which will prove that in that particular
case we can buy an aircraft.

2.6 The definition of life

In this definition life will be presented as a game between two players. The
first player will be the agent (the protagonist), the second player will be “nature”
and it will be the world itself. The agent called “nature” is not free to do
whatever she likes. She operates to some rules, although she may have some
freedom of choice (free will). Further down we will try to obtain an explanation
of the world and will replace “nature” with a group of agents. That group will
consist of zero, one, two or more agents. When dealing with the empty group
we will reckon that in the world there are not any agents except the protagonist.

Life will consist of two things: trace and backbone.
Definition 6. Life is:

a1, o2, a3, o4, . . . , ak−1, ok, where ai∈Σ, oi∈Ω. (6)
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u0, w1, u2, w3, . . . , wk−1, uk, where ui∈U, wi∈W. (7)

Here Σ are the possible actions, Ω are the possible observations of the agent,
U are the states of the world when it is the agent’s turn to make a move and
W are the states of the world when it is nature’s turn to make a move. The
symbol k stands for the length of life (if life is L, then its length is |L|).

If we write the trace and the backbone in one line we get this:

u0, a1, w1, o2, u2, a3, w3, . . . , ak−1, wk−1, ok, uk (8)

From the perspective of the world life consists of a trace and a backbone,
from the agent’s perspective life consists of a trace and guesses and from their
joint perspective life is life with guesses.

Definition 7. Life with guesses:

• trace

• backbone

• agent’s guesses (heuristic applications):

g0, g1, g2, . . . , gk, where gi⊆Guesses. (9)

The set gi consists of the guesses which the agent can make at moment i
(not earlier, but exactly at that moment). All valid guesses at moment t are:

Gt =
⋃
i≤t

gi (10)

In some cases the set of guesses Gt may be contradictory. The guesses for some
j can be both A(j) and ¬A(j) (perhaps with different confidence). The guesses
A(j) and ¬A(j) may occur at the same moment (in one gi), but can also occur
at two different moments.

The agent exercises thinking only when it is her turn to make a move, there-
fore only at even-number moments. If t is an even-number moment, the agent
cannot choose the guesses gt because they are defined by the past, but she can
choose the guesses gt+1 because they are defined by the past plus the agent’s
next action. (In other words, the agent will run all possible actions and will
choose the one which gives her the best gt+1.)
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3 Event-Driven models

Now we will sort of jump the gun and say what is an Event-Driven (ED)
model before we even say what is an event per se. Roughly, an ED model is a
directed graph where the nodes represent the states of the world and the arrows
are labeled with events. We assume that the world keeps staying in the same
state until some observed event occurs. Then the world shifts to another state
by making a move over the arrow labeled with the event which has just occurred.

Distinctions are important elements of the ED model. A distinction in our
language will mean that in a certain state a given event occurs with a probability
different from the expected (average) probability. Distinctions will help us in
two ways: i) understand in which state of the world we are in right now and
ii) predict what is going to happen and what has happened. By trace we will
mean the set of distinctions.

All arrows and distinctions in the ED model will have some probability.
Instead of exact probabilities we will use probability intervals. First, we will
explain why we prefer to use probability intervals. Second, we will explain why
we make a distinction between things which are impossible and things which
are possible but improbable. Third, we will introduce the statistics which will
give meaning to these probabilities. And only then we will be able to provide
the definition of ED models.

3.1 The probability interval

In basketball, when you through the ball at the hoop, what is the probability
of success? We may try 100 shots and calculate that probability by statistics.
Other factors may also have some impact on that probability, such as the light
conditions in the basketball hall or how fatigued you are. We may construct a
more complex model which captures those factors as well, but some factors will
always fall through the cracks and remain unaccounted for. These unaccounted
factors will induce a degree of volatility meaning that the probability will not
be an exact value but some interval.

The most important one of these additional factors is our freedom of choice
(free will). When we shoot the ball, it matters a lot whether we want or do not
want to score a goal. Let us assume that when we do not want the probability
of scoring a goal by error is a and when we really want the probability of scoring
(by intent) is b. Thus, each time we shoot at the hoop the probability of scoring
a goal will be in the interval [a, b].



112 Dimiter Dobrev

3.2 Possible but improbable

Can there be some difference between the impossible and the improbable?
We will make a distinction between a missing arrow and an arrow with a prob-
ability of zero (i.e. the interval [0, 0]).

The probability of a given event may tend to zero. This for example is the
case when an event occurs once in ten instances, then once in the next one
hundred instances, etc. This kind of event is possible, but its probability is zero
(or tends to zero).

When looking at the actions of the world (the observations of the agent)
the difference between the impossible and the improbable is minor, but when
looking at the agent’s actions the difference becomes essential because this is
the way to define the concept incorrect move.

When the arrows are labeled with actions and when an arrow is missing,
then we will assume that the corresponding action is an incorrect move. This
will be a separate event which we will designate as semivisible. An arrow with
a probability of zero will mean that the action is correct but for some reason
our agent will never (or almost never) execute that action.

3.3 Statistics

Statistics is the main tool which the agent uses in order to understand the
world. Here we will deal with two types of statistics. The first one is the
statistics of the agent and is based only on actions and observations. These are
the real statistics available to the agent.

We will examine the second type of statistics. We will name them statistics
of the world. In addition to actions and observations, these statistics capture
the states of the world. We can imagine them as statistics created by some
super agent who is capable of monitoring the state of the world. Certainly such
a super agent does not exist. We assume that the world knows the state it is
in. That is why the world will be able to create these statistics but will not be
willing to share them with the agent.

Thus, the statistics of the world are something abstract which the agent
cannot see. Nevertheless, we will use these statistics in order to define and
give meaning to some of the introduced concepts. For example, what is the
probability of moving from one state to another over a given arrow?

Note: We will use statistics of the world to determine the probabilities
of arrows in the world and in the ED models. The problem is that we may
have two different ED models that differ only in their probabilities. We assume
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that the world has chosen one of these different ED models and determines its
probabilities based on statistics.

Let us assume that the probabilities are fixed and we will calculate these
fixed probabilities using the statistics of the world. We will make N steps and
will count how many times we have been through each state and each arrow (for
the case of ED models: the number of times we have been in the state and the
event which labels the arrow has occurred). If we have been k times through
a given arrow and m times through the tail (the state from which this arrow
departs), then the probability of going through the arrow will be approximately
k/m. Certainly, when the N value is low the error will be large, but when the
N value is high we can assume that the probability is exactly k/m. Thus, the
probability will be the limit value of k/m when N tends to infinity.

This is how we used the statistics of the world in order to give meaning to
the probability of the arrows. Can we also use these statistics in order to define
the probability intervals? This will be a bit more difficult. Let us again make N
steps. Let n be the largest integer for which n2 ≤ N . We will break the interval
N into n intervals such that in each interval there are at least n steps. We will
derive statistics for each of these n intervals and will obtain some probability
pi. The probability interval of the arrow will be [min(pi),max(pi)]. When N
tends to infinity we should obtain the exact value, but for this to be true we
will make one assumption.

The assumption will be that the world and the agent change their fixed
policies but do that only seldom, therefore any changes of the fixed policy of
the ED model are also seldom (see below what is a fixed policy). When the
world and the agent execute a fixed policy, then the probability of all arrows in
the ED model will also be fixed. If the world and the agent change their policies
too often, then this statistical method will not give us the result we need (i.e.
will produce intervals which are shorter than the actual ones).

3.4 The ED model definition

Definition 8. An Event-Driven model consists of three parts:

Topology:

• S – the set of the states of the model (finite or countable, i.e. most
countable).

• E – the set of the observed events (a limited number of events).
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• R ⊆ S × E × S – relation between the states, labeled with the observed
events.

• Collision reconciliation rule.

Partial trace:

• Trace ⊆ Distinctions – the set of distinctions.

Probabilities:

• Probability: R→ [0, 1]× [0, 1] – a function which at each arrow returns a
probability interval.

• Backward Probability: Same as Probability, but related to the past (when
we move against the direction of the arrow).

Note: We have too many things in this definition. For each arrow we have
some probability and even backward probability. In the cardinality of cases
these probabilities will be absent. More precisely, the probability will be the
interval [0, 1] which means that the probability is unknown.

Definition 9. Distinction is a 3-tuple consisting of state, event and prob-
ability. The probability is either a probability interval or the constant never.
The probability must be different from the average probability of the event (the
expected value). If the average probability of event e is [a1, b1] and the proba-
bility of the distinction is [a2, b2], then [a1, b1] * [a2, b2]. (If [a1, b1] ⊆ [a2, b2],
then 〈s, e, [a2, b2]〉 is not a distinction because, rather than being specified, the
probability falls in an even broader range.)

We will assume that an arrow is missing then and only then when a dis-
tinction in the trace indicates that a given event cannot occur in a given state.
Thus:

∀s1∈S ∀e∈E
( (
¬∃s2∈S 〈s1, e, s2〉∈R

)
⇔ 〈s1, e, never〉∈Trace

)
(11)

The observed events are those which sit over the arrows of the model. The
events involved in the trace will be referred to as additional events. There may
or may not be some intersection between the observed and the additional events.

A trace in our discussion is a partial trace because we assume that it contains
only part of the distinctions of the model. If we assume that the trace holds
all distinctions of the model, then it would be a full trace. (If the model has
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more than one interpretation then we should be dealing with the trace of the
interpretation rather than with the trace of the model.)

The collision reconciliation rule tells us which is the next state of the ED
model in case that events a and b of E occur at the same time.

The rule can be deterministic, e.g.:
1. Event a has priority over event b and in this case the executed event will

be a.
2. In this case the two events will be executed sequentially – first a and then

b.
3. A separate arrow tells us where to go if a& b occurs.

The rule can also be non-deterministic, e.g.:
4. We select a with a probability of p (or with a probability within the

interval [p1, p2]).

3.5 Interpretation

When is the ED model a model of the world? To answer this question, we
will define the concepts interpretation and characteristic. For this definition
we will use the statistics of the world. In other words, we will use the information
about the state of the world – something which the agent does not know.

For the ED model to be a model of the world there must be a link between
life and the state of the model. We will term this link an interpretation which,
for any moment of life, will tell us (exactly or approximately) the state in which
the ED model is. Hence, interpretation is a function which for each moment of
life returns a state of the ED model (or a set of states or some belief ).

An interpretation may not be unique, but if we expand the partial trace it
will become unique. (We may expand the trace a little bit or expand it all the
way to a full trace.)

Of course, interpretation is not an arbitrary function. It must be consistent
with the ED model. When none of the observed events occurs in several consec-
utive moments, the interpretation function must return one and the same state
for all these moments. If one of the observed events occurs, in the next moment
the interpretation function must return a new state, provided that in the ED
model there is an arrow over this event leading from the previous state to the
new state.

We will consider several types of interpretations:
1. Simple interpretation. This is a function which for each state of the world

returns a state of the ED model.
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2. Unambiguous interpretation. This is a function which for each moment
of an infinite life returns a state of the ED model. Each simple interpretation
is unambiguous, but not vice versa.

3. Set-based interpretation. Same as the unambiguous interpretation, but
returns a set of states of the ED model instead of a single set.

4. Belief -based interpretation. Same as the set-based interpretation, but
returns some belief of states of the ED model (i.e. a set with probabilities).

In order to simplify the discussion, we will not deal with interpretations type
3 and 4. So, when we refer to an interpretation, we will mean an unambiguous
interpretation.

The functions over the moments of life will be referred to as multi-value
events. The usual events are two-value – they either occur or do not occur.
If an event is n-value, we will present it as n two-value events which do not
intersect (cannot occur at the same time). The interpretation is therefore a
multi-value event. We will assume that the interpretation is defined for any
infinite life. With finite lives we may have a problem defining some events.
If we do not have information about the past or future of a certain life, the
value of the event can be “I do not know”. For this reason, we assume that
interpretations are defined over infinite lives.

Definition 10. An infinite life consists of an infinite trace and an infinite
backbone (infinity is in both directions):

. . . , o -2, a -1, o0, a1, o2, a3, . . . (12)

. . . , u -2, w -1, u0, w1, u2, w3, . . . (13)

In one line it looks like this:

. . . , o -2, u -2, a -1, w -1, o0, u0, a1, w1, o2, u2, a3, w3, . . . (14)

An interpretation described by visible events will be referred to as a visible
interpretation. Each visible interpretation is unambiguous.

We assume that the ED model is described by its topology and its partial
trace. On the basis of this description we look for an interpretation (one of the
possible interpretations). Then, from the interpretation we can obtain the full
trace and the probabilities.

3.6 Characteristic

Thus, an ED model must have an interpretation in order to be a model of the
world, but this is not enough. That interpretation must have some meaningful
characteristic.
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Each event has its characteristic – this is a fuzzy set of the states of the
world in which the event occurs.

Definition 11. The characteristic of an event is a function which for each
state of the world gives the probability of that event to occur in that state.

The difference between belief and characteristic is that belief describes a
single state while a characteristic describes set of states. The sum of the proba-
bilities in belief is one, while in the case of a characteristic that sum is between
zero and infinity.

An interpretation is a multi-value event, i.e. it consists of multiple events,
each one with its own characteristic. The characteristic of an interpretation will
be the set of all those characteristics. For the characteristic of an interpretation
to be meaningful, all these characteristics must not be the same.

Note: We will assume that everything which the states of the world “re-
member” and “know” is important. (This is the assumption that the model of
the world is minimal. Later on we will add this assumption.) Therefore, if the
characteristics of two events are different there is something important which
makes that difference.

Note: When the characteristic of an ED model is not meaningful, then the
full trace is the empty set. That is, nothing interesting is going on.

The best case is when the characteristics are sets (rather than fuzzy sets). In
this case we will have a simple interpretation and a meaningful characteristic.

It is important to know whether the model “remembers” important things.
If it remembers only important things, then we will have a simple interpreta-
tion. If the model remembers only unimportant things, then we will not have
an interpretation or will end up with an interpretation with a meaningless char-
acteristic.

For example, let us take a Fully observable MDP (FOMDP). This ED model
“remembers” the last observation. Let us assume that in our world this is some-
thing unimportant. The FOMDP interpretation is visible, but the characteristic
of this unique interpretation will be meaningless because whatever the last ob-
servation is, the expected state of the world will be one and the same (due to our
assumption that in our world this information is unimportant). If in our world
the last observation carries some important information, then the characteristic
of the FOMDP interpretation would be meaningful.

Let us now assume that the last observation is remembered by the state of the
world (i.e. this is important information and each symbol in this information is
important). Now that the world “remembers” the last observation, we can sort
the states on the basis of this observation and obtain an equivalence relation.
Then the FOMDP has a simple interpretation and it coincides with the visible
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one.
Note: The above description applies to permanent patterns with a perma-

nent trace. The pattern can also be transient (phenomenon) and in that case
the interpretation will not apply to the full life, but only to certain parts of that
life. (Phenomena do not occur all the time but only from time to time.) The
moving trace also complicates the model.

3.7 Examples

Let us have event a and the ED model which remembers whether the occur-
rences of a add up to an even or odd number (Figure 2).

Figure 2: Count the event a

Let us then assume that the odd or even number of occurrences of a is
something important in our world. Then each state of the world “knows” this
and we can sort the events in two sets (a set of even-number occurrences of a
and all the rest). This gives us two simple interpretations of the ED model. We
can relate the set of states in which the count of the occurrences of a is an even
number to s1 or to s2. Each of these two interpretations will give us a trace.
We can take the full trace, but to distinguish the two interpretations it would
be sufficient to take a random, non-empty part of the full trace. The arrow
probabilities are also determined by the interpretation, but in this case all these
probabilities are 1.

Now let us assume that the odd or even number of occurrences of a is some-
thing completely unimportant in our world. In this assumption the model in
Figure 2 remembers only unimportant things. In this case the model will not
have any interpretation because the interpretation needs something to start
with. Neither does the state of the world know the state of model (s1 or s2),
nor can we derive this information from the past and the future. Thus, there is
not any function out there which can unambiguously tell between s1 and s2.

If we waive the requirement that the model of the world remembers only
important things, we may obtain a new model which will provide some inter-
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pretation, however, that interpretation will tell us nothing (will not give us a
trace). Let us expand the model of the world by adding that unimportant in-
formation (whether a occurred an even number of times). We will replace each
state s with the states 〈s, even〉 and 〈s, odd〉. If state s “remembers” that the
count of a occurrences is an even number, then state 〈s, even〉 will be reachable,
while state 〈s, odd〉 will be unreachable (as if it does not exist). If none of the
states remembers that fact, then all these new states will be reachable. In this
case s1 will relate to all states 〈s, even〉 or to all states 〈s, odd〉. In both cases
there will be no trace because the probability of each event will be the average
probability.

For example, let us imagine our world in which we have the event “new
day”. Sure the event is important, but whether it is an even-number day or an
odd-number day is not important at all. What matters in this case is which day
it is over a module of seven because this is the day of the week. The state of
our world “remembers” which day it is over a module of seven. This gives us
an ED model with seven states which has a trace. The trace is that Sunday is a
non-working day. Thanks to this trace we can synchronize any life which is long
enough and say, for any moment of time, which day of the week it is (which state
the ED model is in). Although the ED model has seven possible interpretations,
the partial trace “Sunday is a non-working day” helps us capture one of these
possible interpretations.

Another example in which the model has more than one interpretation: Let
us have an ED model in which there is some non-deterministic transition to
states s1 and s2. Let us split the set of states of the world which correspond to
s1 or s2 in two groups on the basis of various properties. We can group them
in “blue” and “green” or in “big” and “small”. A simple interpretation will
correspond to each splitting. These interpretations can be many (if the set is
countable the subsets will be a continuum). Certainly, the more distinctions are
there in the partial trace, the less interpretations will be possible, while for a
full trace we will have only one possible interpretation.

4 Phenomena

As we said previously, phenomena are impermanent patterns. For the de-
scription of permanent patterns we used ED models. In the description of imper-
manent patterns we will add trigger points and terminal conditions. A trigger
point will consist of a given event, probability and state of the ED model. That
is, the occurrence of the given event will trigger the phenomenon with the given
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probability, and that phenomenon will begin from the given state of the ED
model. A terminal condition will consist only of a given event and probability:
the occurrence of the given event will lead to a termination of the phenomenon
with the given probability. (In the terminal conditions we have not included a
state of the ED model, but we do not need to because if we wish we can always
add it to the terminating event.)

Definition 12. A phenomenon will be the 3-tuple 〈Triggers,Model, Condi-
tions〉. Here Triggers is the set of trigger points, Model is an ED model, and
Conditions is the set of terminal conditions.

Definition 13. A trigger point will be the 3-tuple 〈e, [a, b], s〉. Here e is an
event, [a, b] is a probability (probability interval) and s is state of the ED model
in which the phenomenon will begin.

Definition 14. A terminal condition will be the 2-tuple 〈e, [a, b]〉. Here e is
an event and [a, b] is a probability (probability interval).

Note: This definition implies that the trigger points and the terminating
events of a phenomenon are unrelated. If we wish to relate them, we can define
several different phenomena (one for each trigger point). These phenomena will
have the same ED model and different terminating events.

Definition 15. A manifestation of a phenomenon is a segment of life which
starts with a trigger point and ends in a terminal condition. In addition, the
ED model pattern has to be fulfilled within that segment.

When the probability of a trigger point is 1 (e.g. 〈e, [1, 1], s〉), then the
occurrence of event e will always trigger a manifestation of the phenomenon.
Conversely, when we have some segment of life which might be a manifestation
of a phenomenon, that segment would not necessarily be a manifestation of the
phenomenon since it may well be some haphazard occurrence (this may be the
case only if the probability of the trigger point is lesser than 1).

5 Events

This paper does not provide a formal definition of the term event. Thus,
that the formal definition of this concept remains an open issue. Instead of a
formal definition of what is an event, we will give many examples which will
provide an informal understanding of that term. Although we have not arrived
at a definition of an event, we will use this term for defining more complex
objects such as ED models.

We will examine two types of events: relevant and irrelevant, and three
groups of relevant events: visible, invisible and semi-visible.
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5.1 Visible events

These will be the events which depend only on the trace of life (the actions
and observations). They depend on what we have already seen and on what we
are going to see.

Note: Why do we say that an event may depend on the future? Because
there will come a moment when the future becomes part of the past and because
future can be predicted. Thus, a visible event will become a seen event at some
later moment and can be predicted with a certain degree of confidence even
before we have seen it. The future is unknown from the perspective of the
current moment, but from the perspective of another moment it may already
be known. For example, from the perspective of the endpoint of life, all future
will already be part of the past and will be known.

Let us have the set All of all infinite sequences of actions and observations:

. . . , at−3, ot−2, at−1, ot, at+1, ot+2, at+3, . . . (15)

These sequences are infinite in both directions (towards the past and towards
the future). Important here is which is the current moment (where does the zero
stand). Thus, each infinite sequence can be regarded as a function: Z→ Σ∪Ω.

Definition 16. Any subset of All is a visible event.
In other words, for each infinite sequence of actions and observations and

for each particular moment t we can say whether the event occurs or not.
Now, with this definition the visible events have become too many. The

members of All are continuum many meaning that the visible events are two to
the power of continuum.

We do not have the infinite sequence of actions and observations, but only
a finite segment (we have the trace of a concrete life). We want visible events
to be determined only by this finite segment. Then the visible event will have
three possible values: True, False or “Do not know”.

Definition 17. A visible event over a segment:
1. Will be True if each and every continuation of the segment to an infinite

sequence results in a sequence for which the event is True;
2. Will be False if each and every continuation of the segment to an infinite

sequence results in a sequence for which the event is False; and
3. Will be “Do not know” otherwise.
By reducing the visible events to segments we strongly reduced the number of

these events. From two to the power of continuum the number is now continuum
many. What kind of events were dropped out? Example: “Event A will occur
infinite number of times”. If we reduce this event to a finite segment, it will
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always be “Do not know” because we can continue the sequence either way.
Certainly, these events are not interesting because we are interested only in
those events which we can understand at a given moment.

We will not examine all visible events. Instead, we will examine only the
computable ones, withal not all computable ones but only a small part of them.
The most important visible events are the atomic ones: Ob(t) and Act(t). Com-
posite events which are composed of visible events will also be visible events.

5.2 Composite events

We can combine a certain number of atomic events into composite events.
The conjunction of atomic events is a composite event.

If we choose to assign a name to the conjunction and convert it into an
atomic formula, we will introduce an abbreviating symbol and it will be the
name of the conjunction. (We will not observe a disjunction, but can observe
the conjunction of negations which is the same thing.) For any composite event
we can introduce an abbreviating symbol and start observing it.

We will introduce the conjunction abbreviation symbols by special heuristics
which have a confidence coefficient of 100%. The form of these heuristics will
be:

A1(t− i1) & A2(t− i2) & . . . & An(t)⇒ Abbreviation(t), ij≥0, in =0. (16)

We will add n more heuristics for the negations:

¬Aj(t− ij)⇒ ¬Abbreviation(t) (100%) (17)

Thus, a conjunction of atomic events will become an atomic event after we
determine an abbreviating symbol which designates that conjunction.

Typically, heuristics are obtained through statistics and their confidence
coefficient is less than 100%. That is why we will assume that the heuristics
introduced here have been added by default.

Another composite event is “A will occur before B”. We will express this
event as follows: exist A after t before B in our case. This event is visible when
A and B are visible. If in some infinite life events A and B do not occur after
t, this composite event will be False.

5.3 Invisible events

Here we will discuss Invisible Single-Moment Events (ISME). Certainly, from
ISMEs we can obtain other invisible events (e.g. by conjunction).
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An ISME is an event which reflects the possible past and the possible future
at a particular moment t. It will depend on only one state of the world. The
interpretation of an ISME will be a set of states of the world.

Note: Why is the interpretation of an ISME a set of states of the world
rather than a characteristic? Because we consider that the model of the world
is fixed and for each state of the world an ISME is either True or False. If we
change the model of the world then some of the states of the new world may
correspond to a belief of states of the previous world. Once we change the world
we will also change the interpretation. For each ISME we can choose a model
of the world in which the interpretation of this ISME is a set.

The interpretation explains the meaning of an ISME in a concrete world,
but we are going to describe ISMEs in any world. Therefore, we will look at the
things from the perspective of the agent, not from the perspective of the world.

The possible future can be presented as the tree of all possible developments.
We will assume that the possible past can also be presented as a tree. Then the
possible past and the possible future can be presented as a tuple of trees. Let
All2 be the set of all such tuples of trees.

Definition 18. Each subset of All2 will be an ISME.
According to this definition there are too many ISMEs. We will describe six

ISME types which are important to us.

5.3.1 Always occurs

An example of this type of event is “Event A will always occur in future”.
(Likewise, for the past: “Event A has always occurred”). We would like to draw
some borderline. That is why we will generalize this event to the following:
“In the future, event A will occur always until the moment at which event B
occurs”. The concise expression of this event will be A from t until B.

It makes sense to try and find some heuristics which predict this ISME. For
this purpose we will use statistics over lived experience and will select some
conjunction which is a candidate for antecedent of the heuristic. Let this con-
junction be True m times and let us assume that in k of these times A from t
until B has been True. Then k/m appears a good candidate for a confidence
coefficient. This candidate however does not reflect the specificity that at low
m values the confidence is also low, so it is better to have (k − 1)/m. In this
case the coefficient will be below 100% but will tend to 100% when k = m and
when m tends to infinity.

Let us assume that in our conjunction there is an invisible event. We will
also assume that on the basis of certain heuristics this invisible event is True.
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We can obtain this information from the guesses Gt. If there are several guesses
for the invisible event, then let R be the highest confidence coefficient possible.
In this case we will insert in the counters (in which we accumulate k and m) R
instead of 1. In this way we acknowledge that the antecedent may not always
be True.

5.3.2 Will occur

This type is similar to the event “A always occurs”, but cannot be obtained
from it by two negations because we will be left with the event “A may occur”.
The latter means that A will occur in some paths of the possible future, but we
want A to occur every time (in each possible life).

Accordingly, we will introduce a new invisible event: “A occurs before B”
and will express it in the following way: exist A after t before B in all cases.

Again, we can use statistics in order to find some heuristics which can predict
this event. We should add here that the predictions should include the case “Do
not know”. This is the case when life ends before event A or B has occurred,
meaning that we do not know which one (A or B) would occur if life goes on.

There is some difference between “in our case” and “in all cases”. The first
means that the event will occur in our life, while the latter means that the event
will occur in each possible continuation of the future. The event “exist A after
t before B in all cases” is invisible even if A and B are visible.

5.3.3 Will occur with probability p

The event “A occurs between t and B with probability p” is different from
the previous two events. The two events defined above have the properties
“retain 0” and “retain 1”. When an event “retains 0” this means that when
it is False in two states, it is False in any belief made of these two states. By
analogy, the same applies to the property “retain 1”.

The event at hand can be False in two states, but can be True in a belief made
of these states. For example, let in these two states A occur with probabilities
1/4 and 3/4. Then from the two states we can make a belief in which A occurs
with probability 1/2.

5.3.4 Feasible event

The event “A is feasible” sits between the events “A may occur” and “A will
occur”.
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“A is feasible” means that there is some algorithm P such that when the
agent executes P then A will occur. An example of algorithm is Act(t+ 1) = a.
It goes without saying that the algorithm can be much more complicated.

How can we find some heuristic for “A is feasible”? Again, let us select an
conjunction which is a suitable candidate for antecedent of the heuristic. Then
we will consider different cases. For each case we will find some algorithm P and
an heuristic which tells us that if the antecedent is in place and if we execute
algorithm P , then A will occur. If we cover all cases we can conclude that if
our antecedent is in place then A is feasible.

5.3.5 Test event

Test events are discussed in detail in [4].

An example of a test event is “If we press the door handle, the door will
open”. We can call this event “The door is not locked”. The value of the test
event does not depend on whether we have made the test. Thus, the door may
be locked regardless of whether we checked this or not.

5.3.6 ED model state

Let us have some ED model and try to find the interpretation of that model.
For each state Si of the ED model we will add the event Ei which will be True
when the ED model is in state Si. We will try to find a simple interpretation,
i.e. we assume that Ei is an ISME.

For each arrow of the ED model we will add one heuristic:

Ei(t) & A(t)⇒ Ej(t+ 1) (per cent) (18)

where A is an observed event and the arrow is over that event from Si to Sj .

We will describe the partial trace in a similar way. For each distinction we
will add the following heuristic:

Ei(t)⇒ A(t) (per cent) (19)

where Si is the state, A is the distinctive event and the per cent reflects the
probability.

With these heuristics we can guess the current state of the ED model and
then use the trace in order to predict the additional events.
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5.4 Semi-visible events

We need to add semi-visible events because of incorrect moves. In order to
realize that a move is incorrect we have to try to play it. Accordingly, these
events will sit between the visible and the invisible ones. These will be events
that we will see if we watch for them.

We will introduce an atomic event (Correct) and two heuristics which define
that event.

Act(t)=a ⇒ Correct(a, t) (100%) (20)

This heuristic tells that if at moment t we executed successfully action a,
then action a was correct at that moment. The next heuristic tells us that
if at moment t we tried unsuccessfully to execute action a, then action a was
incorrect at t.

UnsuccessfulTry(a, t) ⇒ ¬Correct(a, t) (100%) (21)

The guess UnsuccessfulTry(a, t) will be a different guess. Instead of deriving
it through heuristics we will add it in gt by default at each unsuccessful attempt
to execute action a at t. This is the way to add information about unsuccessful
attempts.

Why do we add the information about unsuccessful attempts to the guesses?
We assume that at any moment the world knows which move is correct and
which is incorrect, but does not know which incorrect moves the agent has tried
to play. This means that the information about unsuccessful attempts will be
visible only by the agent.

The two default heuristics which we added have a confidence coefficient of
100%, but there may be other statistics-derived heuristics which also tell us
whether a move is incorrect. It makes sense to assume that when the agent is
trained she will come to know which move is correct even without trying to play
it. This training will come from the additional heuristics which the agent will
derive through statistics.

5.5 Irrelevant events

In addition to the relevant events there will be irrelevant ones. These are
events which we will ignore and will not bother to understand.

Here are three examples of irrelevant events:
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1. “Which life are we living now?” Given that our lived experience is a
sequence of many lives, we can ask the question “Which is the serial number of
the life we are living now?”

We can assume that the behavior of the world will not change across lives,
but it makes sense to assume that in her first life the agent will make certain
errors due to lack of experience which she will avoid in the next lives. Nev-
ertheless, we will regard this question as irrelevant and will therefore ignore
it.

2. “How old am I and how much time is left for me?” We will ignore this
question, too. In other words, we will ignore the parameters t and k − t. Here
is why we ignore this question: We imagine that our agent is eternally young
and does not get older as life goes on. As concerns k − t, nobody knows how
much time is left for them to live.

Later we will define an extended model where t and k − t matter, but we
are only interested in events which if True in one life will remain True in any
forward or backward extension of that life. Hence we are only interested in
events which do not depend on t and k − t.

3. We will also regard as irrelevant the events which produce unimportant
information. In Section 3.7 we already provided an example in which it does
not matter whether the count of occurrences of an event adds up to an even or
odd number.

5.6 Related work

What is an event and who introduced the term event in AI? The term was
first introduced by Xi-Ren Cao. He introduced events in his paper [5].

Subsequently, in 2008 Xi-Ren Cao and Junyu Zhang provided a definition of
the term event in their paper [6]. That definition is not good enough, because
it depends on the model and because it suggests that the last state in which the
model has been is remembered, but this is not something worth remembering.
This is how their definition of event looks like:

E ⊆ S × S, where S is a specifically chosen model. (22)

E =
{
〈si−1, si〉 | if E happens at moment i

}
(23)

Why does this definition depend on the model? Because Cao and Zhang
assume that there is only one model of the world, which is not the case. In
[3] we prove that the world has many models and furthermore that there is a
Minimal and a Maximal model of the world. Minimal and maximal in this
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case refer to what the states of the model know about the past and about the
future.

What should the definition be, then?

E ⊆ S, where S is an arbitrary model. (24)

E =
{
si| if E happens at moment i

}
(25)

In the various models the state can “remember” a larger or a smaller piece
of the past. In Xi-Ren Cao’s definition the state remembers the last state in
which the model has been. As we mentioned already, this is not something
worth remembering. If we decide to remember something, it would be better
to remember the last action of the agent. This will make it obvious that the
agent’s actions are events.

While the definition in [6] is not perfect and needs to be improved, this
does nowise diminish the credit owed to Xi-Ren Cao because he was the first to
realize that observing the actions only is not enough and therefore we should
generalize to the wider class of events.

Indeed actions tell us everything, but they provide too much information.
Where a model monitors each and every action, it is flooded and overwhelmed
by an excessive flow of information. By generalizing actions to events we can
reduce the inbound information and stay only with the “important” things.

Note: In MDP, observations are not among the monitored events, but they
are detected by trace. The trace specifies the current state and thus the obser-
vations are taken into account.

Note: The term event is used in many papers, but usually with another
meaning. In Lamperti, Zanella and Zhao [7] for example, event is meant as an
observation. While an observation is a special case of an event, for us event is
a more general concept.

6 The world

Before creating a language for description of worlds we must be clear about
what is a world. We will define the world through its perfect models. The idea
is the following: Imagine that you have a painting and a perfect copy of that
painting. The copy is so perfect that one cannot tell the copy from the original.
In this case we can assume that the original painting and its copy are the same
thing.

The world will consist of a model (which will be a Simple MDP) and an
initial belief which will show us where life is expected to start from. We will



Language for Description of Worlds. Part 1: Theoretical Foundation 129

want the model to be both perfect (so it cannot be improved any further) and
minimal.

While the minimal model is not unique and even the perfect minimal model
is not unique, for every pair of two perfect minimal models we can say that the
states of the first model can be expressed as beliefs of the states of the second
model.

6.1 The minimal model

A minimal model is one the states of which do not know any redundant
facts. That is, they do not remember anything redundant about the past and
anything redundant about the future. A redundant (unnecessary) fact of the
past is one which does not have any impact on the future. If it does not affect
the future, is it worth remembering? A redundant fact about the future is one
which does not depend on the past (i.e. cannot be predicted from the past).
Does it make sense to have the model know unnecessary (redundant) things
about the future? For example, when you receive a letter but have yet opened
it, does the world know what does the letter say? We will assume that the past
can nowise help us predict the content of the letter. In this case the content of
the letter is something redundant for the world, so the world does not need to
know it. The world can decide what the content of the letter is only when you
open it.

Of course you assume that you live in a real world and the world knows what
is in the letter even before you open it. But imagine that you live in a computer
program (as in the movie The Matrix) and the world will decide what must
happen in the last minute. Thus, the world will decide what is in the letter not
at the time it was written but as late as when you open it.

The content of the letter is something redundant for the world, but not
for the agent. This fact is important for the agent because it is related to its
future, but will be unpredictable by the agent because it is unrelated to the
past. Although the fact is unpredictable, the agent will try to predict it because
there is nothing to tell her that the content is unpredictable and therefore her
attempts will be futile.

6.2 The perfect model

As we said, the states of a minimal model do not know anything redundant.
Now we say that the states of a perfect model know everything useful. Therefore,
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the states of a perfect minimal model know exactly what needs to be known
(everything useful and nothing redundant).

There are many ways to say that a model is perfect:
1. The model has the Markov property.
2. The future depends only on our state of departure and does not depend

on how we have arrived at that state.
3. The model cannot be improved any further into another model capable

of making a better prediction of the future on the basis of past.
4. No state can be divided in two states such that the two new states have

different past and different future. A different past means that we would be able
to distinguish the states on the basis of what happened. To distinguish them
means to distinguish with certainty or to say that the one is more probable
than the other. It is not mandatory for each possible past to distinguish the
two states. Just one possible past that can distinguish the two states is sufficient.
By analogy we can say what it means when two states have a different future.

These definitions of a perfect model are all equivalent. The state of the
perfect model need not be split in two because it knows everything useful. If
we split the state in two on the basis of the past, the two new states will know
something more about the past, but that thing will not be useful and therefore
the new states will be bound to the same future.

Question: If we pick randomly some model, will it be a perfect model
of some world? The answer is yes. Every model is a perfect model of some
world. Every model describes some world and if we assume that it is the best
possible description and that description cannot be improved any further, then
the model is perfect. Of course there are infinitely many worlds for which that
model provides some partial description which can be improved. The main
question is: “Have we found the perfect model exactly of the world we are
trying to describe?” The answer to this question is that we do not know. All
we know about the world is our lived experience. This experience can occur in
infinitely many worlds. Certainly, we are looking for the simplest model that
matches our experience (this principle is known as the Occam’s razor).

In fact, we cannot even be sure that the model built on the basis of our lived
experience is correct. There are some probabilities in the model which we deter-
mine by statistics. When the collected statistics are limited these probabilities
may not be accurate, but if we assume that the statistics are sufficient then the
only question left would be whether the model is perfect.

We will not try to find a perfect model of the world. All we need is a
sufficiently good model which works for us. In [8] we explained why trying to
find a perfect model of the world is an overly ambitious goal. Nevertheless, we
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will assume that a perfect model of the world does exist and that model provides
the definition of the world.

Furthermore, we are not looking for a minimal model of the world because
it would make us admit that certain events are unpredictable. As a rule, we will
try to predict any event even though we assume that the result from certain
events (such casting a dice) is unpredictable.

6.3 The basic model

Definition 19. A basic model of the world is every perfect and minimal
model of the world.

We will assume that each world has a basic model which provides the defi-
nition of that world. A model can be the basic (perfect) one of a certain world,
but for another world it may be just an ordinary (imperfect) model.

The states of the basic model know everything useful both about the past
(everything that could have happened) and about the future (everything that
can happen going forward).

Note: Various authors may use different terminology. Thus, the term used
in [9] is “game” instead of “world”. Likewise, [9] uses “Game Description Lan-
guage” instead of “Language for Description of Worlds” as well as “Imperfect
Information” instead of “Partial Observability”. We can imagine the world as
a game and, vice versa, a game can be thought of as a world in its own right.
The Mystery group uses this idea in their song “The World is a Game”.

6.4 Simple MDP

Worlds are usually described using Markov decision process (MDP). We will
simplify the MDP and create a Simple MDP.

Why does MDP need simplification? Why do we claim that there is a degree
of needless complication in the MDP? There are two reasons for this.

First, MDP conceals the fact that besides being a model of the world it also
models the agent. Indeed, the world and the agent form a single system, so one
cannot describe the first without describing the latter. In other words, MDP
describes not only the behavior of the world but also the behavior of the agent.
If you look closely at the MDP you will see that according to MDP the agent
does whatever she wants. Doing whatever you want is also a kind of behavior,
though it is the most liberal behavior possible. What is the probability for the
agent to choose a particular action? We do not know – the agent is free to do
whatever she likes, so the probability is in the interval [0, 1].
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Second, the MDP restrains the world and forces it to follow some fixed policy.
I.e., in MDP the agent is unrestrained and free to do anything, while the world
is restrained to a fixed policy.

6.5 Fixed policy

What is a fixed policy? For example, this is the case when in a given situation
you always turn left. Even more so, this is an extreme policy because always
left and always right are two extreme possibilities. But, in a scenario when you
toss a coin and if it falls heads then you turn left you will be executing a fixed
policy with probability 1/2 (exactly 1/2). If the probability is different then you
are executing a different fixed policy. If you turn left or right as you like, then
you will not execute a fixed policy and instead will turn left with probability in
the interval [0, 1].

Do you have free will (freedom of choice) when executing a fixed policy? The
answer is no. When you toss a coin, it is the coin which makes the decision, not
you. Thus, in MDP the agent enjoys absolute freedom when choosing her move.
In MDP the agent is not restrained by anything, while the world is absolutely
restrained as it is forced to execute a fixed policy.

6.6 Extreme policy

An extreme policy is a fixed policy in which every probability is set to its
minimum or to its maximum value.

How can we select an extreme policy? If the probabilities are determined by
the intervals [ai, bi], we will select the extreme value of one of these intervals (i.e.
we select either a or b). If we select b, this may shorten the remaining intervals.
Then we will select one of these remaining intervals (probably shortened) and
so forth. In this way we select a fixed policy where every probability is extreme
(i.e. it cannot be increased any further or it cannot be reduced).

When we make a reference to policy in Simple MDP, we will mean a policy
shared by the agent and the world. To put it another way, the two of them
have colluded to implement two policies, the combination of which is the policy
of the Simple MDP. In the MDP, references to a policy are in fact references
only to the policy of the agent because in the MDP the world is bound to a
fixed policy and has nowhere else to go. Then, the agent’s policy in the MDP
is in fact an extreme policy (each one with probability either 0 or 1). What
makes extreme policies sufficient in the MDP? When we pursue a certain goal
and have to decide left or right, typically there are three scenarios: 1) our goal
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will be better served when we go left; 2) our goal will be better served when we
go right; and 3) it does not matter whether we go left or right. If we assume
that in the third scenario we choose to go left, then we end up with an extreme
policy. This makes extreme policies sufficient in the MDP. Certainly, this does
not apply to each goal. If the goal is diversity (tour around as many states as
possible), then we should alternate left and right.

The good thing about extreme policies is that when the states are finitely
many, then the extreme policies are also finitely many, while the fixed policies
usually are continuum many.

6.7 From MDP to Simple MDP

The MDP can help us describe only part of the worlds. These are some
very peculiar worlds where nature does not have free will as it is forced to
execute a fixed policy. If an agent with free will lives in such a world, the world
cannot be described by MDP. Let us take the world of the chess game in which
there is a second agent who plays against the protagonist. Let us assume that
the second agent is not deterministic (she is not bound to play some extreme
policy). Suppose that she even does not play a fixed policy. So, we let the
second agent loose and she can play whatever she wants. This type of world
cannot be presented by the MDP, but we can describe it using the Simple MDP.
The difference between the two models is that instead of exact probabilities, in
Simple MDPs we operate with probability intervals.

The MDP is needlessly complicated because it obscures the fact that the
probability of the agent’s actions is actually the probability interval [0, 1]. While
the arrows over actions come with probabilities, rather than determining the
probability of the action these probabilities determine indirectly the probability
of the observation. (The observation has some influence on what the next state
of the MDP model will be, but that influence is very subtle and indirect. The
arrows define, in a non-deterministic manner, several possible states and some
of these possibilities are dropped out on the basis of the observation. With
Simple MDP things are much more straightforward because the Simple MDP
includes arrows over observations which directly indicate the influence of the
observation on what the next state will be.)

In MDP the state has past, present and future. That is, something has hap-
pened before the state, something is happening within the state and something
will happen after the state. The Simple MDP state has only past and future
because nothing happens within the state. In the MDP state there is some
observation. There are two equivalent definitions of MDP. We will name them
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monochromic and polychromic. With the monochromic definition in the state
there is only one possible observation, while the polychromic definition says
that in each state there are several possible observations and each observation
comes with a fixed probability. This means that the model in the monochromic
definition is not minimal because the state “knows” exactly which observation
will come up and that knowledge may not follow from the past. It may be the
case that the past provides for a non-deterministic transition between several
monochromic states. Minimality will occur if these several monochromic states
are replaced with a single polychromic state wherein each observation comes
with its probability.

6.8 Definition of Simple MDP

We will present the Simple MDP as a finite automaton (except for the re-
quirement that the number of state is finite). More precisely, we will present it
as a probabilistic automaton because over the arrows we will have probabilities.
Even more precisely, we will present it as interval-valued probabilistic automa-
ton because over the arrows instead of probabilities there will be probability
intervals.

With the MDP there is only one type of state due to the fact that in MDP
it is always the agent’s turn to make a move. The world in Simple MDP will
be a game between the agent and the world. Thus, there will be two types of
states of the world: 1) states in which it is the agent’s turn to make a move and
2) states in which it is the world’s turn to make a move.

Each arrow in MDP stands for one move. This move comprises some action
by the agent and some response by the world. (The response of the world is the
observation which the agent sees.) In Simple MDP each arrow will represent
a ply (half move). This half move is either the agent’s action or the world’s
response.

Definition 20. Simple MDP is a graph 〈U ∪W,A ∪ O〉 with two types of
nodes and two types of arrows:

• U are the states of the world when it is the agent’s turn to make a move
(the agent will execute some action);

• W are the states of the world when it is the world’s turn to make a move
(the world will display some observation to the agent);

• A are arrows which represent actions (A-type arrows);

• O are arrows which represent observations (O-type arrows);
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• If u ∈ U , then the arrows departing from u are A-type arrows and the
arrows ending in u are O-type arrows;

• If w ∈ W , then the arrows departing from w are O-type arrows and the
arrows ending in w are A-type arrows;

• A→ Σ× [0, 1]× [0, 1], meaning that each A-type arrow is associated with
some action and a probability interval;

• O → Ω× [0, 1]× [0, 1], meaning that each O-type arrow is associated with
some observation and a probability interval.

We must add something about the probability intervals. When the probabil-
ity is fixed (the length of the intervals is zero), then the sum of the probabilities
of the arrows which depart from one node must be 1. When the probability
is not fixed, then we will consider the probability intervals (of the arrows de-
parting from one node) as a description of a set of vectors of fixed probabilities,
wherein the sum of each of these vectors is 1. This means that the intervals
[ai, bi] describe vector pi, where ai ≤ pi ≤ bi and

∑
(pi) = 1. We will want

this description to describe at least one probability vector (i.e. the set of the
described vectors must not be the empty set). We will also want the description
to be optimal (meaning that each shortening of the intervals will remove some
vector from the set). In [10] there are several inequalities which must be true
for the description to be both non-empty and optimal.

6.9 MDP as Simple MDP

How can we present MDP as a Simple MDP? In MDP all arrows are over
actions, which makes them A-type arrows. Each arrow will remain in the Simple
MDP, the only difference being that its probability p will be replaced with the
interval [0, p]. Hence, if the agent chooses that action, then she will choose that
arrow with probability p and in the opposite case will choose that arrow with
probability 0. Where the action is only one (no arrows over other actions depart
from the state), then p is replaced with the interval [p, p].

How do we change states? Each state s is replaced with two states (w and u)
which belong to type W and accordingly to type U . All arrows which previously
arrived at state s will now arrive at state w and the arrows which previously
departed from s will now depart from u. We will add additional arrows from
w to u. The number of these additional arrows will be equal to the number of
possible observations ob in s. Each such arrow will be of type O, will be over
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the corresponding observation ob and will be associated with the probability
interval [p, p], where p is the probability of the observation ob in s. What shall
we do in the case of the monochromic definition (where each state has one and
only one observation)? Then there will be only one arrow from w to u and its
probability interval will be [1, 1].

The resulting Simple MDP will describe the same world as will the MDP. If
the MDP model has been perfect, then the resulting Simple MDP will also be
perfect. The same applies to minimality.

So we have proven that all worlds which can be described through MDP
can also be described through Simple MDP but not vice versa. In other words,
Simple MDP expands the notion of world.

6.10 Initial belief

Before we can describe the world we need to add an initial state. We prefer
to have a set of possible initial states instead of a single initial state. Each of
these possible states comes with some probability. If this probability is fixed,
we will have a structure which we will designate as fixed belief .

Definition 21. Fixed belief :

• M ⊆ U ∪W .

• M → [0, 1].

This means that we have a set of states and have matched each state in that
set to a fixed probability. The sum of these fixed probabilities must be 1. In this
case saying that s /∈ M is not much different from saying that the probability
of s is zero. The term belief has the meaning used in the MDP rather in the
meaning employed in “deep belief network”. In most papers about MDP our
notion of fixed belief is called belief , but here belief will be something more
complex.

Definition 22. A generalized belief is the set of fixed beliefs.
For the sake of simplicity instead of generalized belief we will use just belief .
We will assume that the world is described by one Simple MDP and one

initial belief . Which initial state do we expect to depart from? First, from the
members of the initial belief we pick one fixed belief . How do we pick it? Any
way we wish, here we have randomness with unknown probability. Then from
the selected fixed belief we pick a concrete initial state with the probability
given by that fixed belief .
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The meaning of the notion initial belief can be inferred from lived experi-
ence and from the statistics of the world. This is the expectation about what
the initial state of the world will be.

7 Interpretation

We already explained what is an interpretation of an ED model, but have
not yet explained the interpretation of an event.

We will introduce the extended model. We will obtain it by adding the past
and the future to the basic model. Thus, while the states of the basic model
know what could have happened and what can happen going forward, the states
of the extended model will know what exactly has happened so far and what
exactly will happen from this moment onwards.

The interpretation of an event will be a set of states of the extended model.
Each event will have its own probability because each state of the extended
model will have its own probability.

In order to simplify the explanation, we will assume that the world is cyclic.
The property of being cyclic is characterized by two things:

1. Each event that has already happened may happen again.
2. The initial belief is the invariant belief . Thus, the question “In which

state do we expect to be at the initial moment?” coincides with the question
“In which state do we expect to be at a random moment?”

The good thing about the cyclic world is that in it the backward probability
does not depend on t. Another advantage of the cyclic world is that in it we
can define a probability for each state of the basic model and that probability
will not depend on t either.

7.1 Possible future

The possible future is a sequence of observations, actions and sets of incorrect
moves. These sets are finite and that is why the possible future is a word over
an alphabet composed of n+m+2m letters.

For each state s we can describe the possible future as an infinite tree of
all words which the future can produce if we start from s. Each node of the
tree will be associated with some word (possible future) and some probability
(probability interval).

The probability is the product of the probabilities which we have captured
in the Simple MDP model when we start from s and read the word in question.
(Arrows are associated with actions and observations, while U -type states are
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associated with sets of incorrect moves.) If the word in question can be read
in two or more ways, then the probability is equal to the sum of the various
probabilities which may be obtained by the different readings.

Where the probability is an interval of probabilities we should explain how
probability intervals are added and multiplied.

[a1, b1] . [a2, b2] = [ a1. a2, b1. b2] (Multiplication) (26)

[a1, b1] + [a2, b2] = [ a1+a2, min( b1+b2, 1) ] (Addition) (27)

How the tree of the possible future looks like? The number of arrows over one
action which depart from one node cannot be more than one, but the number
of arrows over one observation can be more than one. When all moves are
correct then the tree is simple and the arrows over observations cannot branch
out, either. The presence of incorrect moves makes the tree more complicated
because from one node there can depart several arrows over one and the same
observation, but they will end in nodes which correspond to different sets of
incorrect moves.

We will assume that none of the arrows is associated with a probability of
zero. If there is such probability, we will remove that subtree. If we let some
arrows have zero probabilities, then the tree will not be unique.

7.2 Possible past

We prefer to reuse the definition of the possible future and apply it to the
possible past. However, we have a problem here. For each arrow we will need
its backward probability, that is the probability of arriving from that arrow.
(We already have the forward probability, but it means something else: how
probable it is that we departed over that arrow.)

We can define the backward probability by the statistics of the world. Its
value will be k/m, but m here will express the number of times we have been
through the head of the arrow (not through its tail). The problem here is that
in defining the forward probability we assumed that it is permanent and does
not depend on t (i.e. does not depend on the step at which we are). However,
when defining the backward probability it may turn out that it depends on t.

In order to calculate the backward probability, we will need the forward
probability and something else, namely the probability of each state. In the
initial moment we can present that probability through an initial belief . For
each next moment we can calculate the next belief by using the initial belief
and the forward probability.
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The formulas for this purpose are:

mi . pi = m. qi (28)

qi =
mi . pi
m

(29)

m =
∑

(mi . pi) (30)

Here qi are the backward probabilities of some state s. The index i runs the
previous states (the states of departure of an arrow which arrives at s). The
probabilities pi are the forward probabilities of the arrows which depart from
the previous states and arrive at state s. The probabilities mi are obtained
from the previous belief . These say how likely it is that we have been in some
previous states at the previous moment, while the probability m says how likely
it is that at the next moment we will be in state s.

The basis of the first equality is that the probability of departing from a
certain state over a certain arrow is equal to the probability of arriving at the
next state over the same arrow. The formulas above determine the backward
probabilities qi in all cases except one. This is the case when m = 0. In this
case we can assign to qi any values we wish (as long as the sum of qi is 1).

Thus, for each step t we obtain some belief and backward probabilities which
depend on step t. We defined the possible future as an infinite tree, but the
possible past will be much more complex. It will be a countable set of trees. At
moment 0 we will not have any past (i.e. a tree with a depth of 0). The possible
past at moment t will be presented as a tree with a depth of t.

Preferably, the possible past should be as simple as the possible future. For
this purpose the expectation about the state in which we are must be constant
(independent from step t).

7.3 Past vs Future

In this paper the past and the future are absolutely symmetric. This sym-
metry comes from the fact that we present life as a path in a certain graph.
The direction we follow does not make a difference, i.e. moving forward in the
direction of the arrows is not any different from moving backward against the
arrows.

At a first glance it appears that there is some difference between forward
and backward probabilities, but in fact there is not any difference between
these probabilities, either. The forward probabilities are constant, while the
backward probabilities depend on t, but this is because we first establish the



140 Dimiter Dobrev

forward probabilities and thereafter establish the backward probabilities. With
the inverse approach (establish the backward probabilities first and on their
basis establish the forward probabilities) the backward probabilities would be
constant and the forward probabilities would depend on (k−t). Certainly, when
we walk backwards we need to have a final belief instead of an initial belief .
Hence, we must depart from some final belief .

Later on we will introduce the notion of cyclic world. This will be a special
case where the forward and backward probabilities do not depend on t. In this
way we will demonstrate that in the interesting case the past and the future are
absolutely symmetrical.

7.4 Free will

We assumed that the world and the agent may have free will (freedom of
choice). I.e. we suggest that the world and the agent can do whatever they like
(but within certain limits). Since we describe the world through statistics, the
players must make use of their freedom, otherwise the model will not be able to
capture that freedom.

If the agent and the world do not exercise their freedom to the fullest extent,
these statistics will produce some abridged model of the world which reflects only
the actual behavior of the players.

For example, in a chess game the agent and the world have some correct
moves and can play any of them. But in an actual game they will not play each
and every correct move, e.g. we may reasonably suggest that they will not make
stupid errors. If we use statistics to describe the chess game, the probability
intervals perhaps will be shorter, i.e. the resulting model will not capture all of
the possible moves. This will reflect the actual behavior of the agent and of her
opponent (there are possible moves which the two of them will never play).

In chess there is one rule which says: “You cannot make a move if it enables
the opponent to capture your king in the next move”. We can say that such a
move would be a stupid error and the rules of the game prohibit stupid errors.
So, this rule reduces the number of correct moves. If we prohibit other stupid
errors we will end up with a more abridged model in which the behavior of the
world and agent will be even more restricted.

7.5 Invariant belief

We wish to have an initial belief such that the next belief is the same and
every next belief is the same. I.e. we wish the initial belief to be an invariant
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one (an invariant point).
We will assume that the probability interval of each arrow is different from

0 (i.e. the interval can be [0, p] but cannot be [0, 0]).
Definition 23. A trap is a group of states which one can enter but can

never exit.
If there are not any traps in the world, then each connected component will

be a strongly connected graph. Let us assume that in each connected component
we have selected one strongly connected component to be the main one (let’s
call it the kernel of the connected component). There are not any traps in the
world if and only if there are not any inflows and outflows.

Definition 24. Inflow is a group of states from which there is a way into
the kernel, but no way back.

Definition 25. Outflow is a group of states to which there is a way from
the kernel, but from which there is no way back.

For an invariant belief to exist, the probability of coming from an inflow has
to be zero. Otherwise, the probability of being in the inflow will decrease, but
it has to be constant. Therefore, for invariant belief to exist, there must be no
inflows. Analogically for outflows.

7.6 Cyclic world

Let us first define the concept of compact world:
Definition 26. A compact world is a world without any inflows and out-

flows.
Definition 27. A cyclic world is a world which satisfies the following three

conditions:
1. There is a path between any pair of states (strongly connected graph);
2. The probability interval of each arrow is different from 0; and
3. The initial belief of the world is the set of all invariant fixed beliefs.
The first condition means that the cyclic world is compact and has one

connected component. The second condition ensures that we can go into every
state with some probability if there is some support from the world and the
agent (through their free will). The third condition means that the following
two questions have the same answer:

1. Which state do we expect to depart from?
2. In which state do we expect to be after some very long life, regardless of

our state of departure?
We will assume that the world is compact and even cyclic. The good thing

about the compact world is that the backward probabilities are unambiguously
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defined so that the possible past is simple (it is one tree). The good thing about
the cyclic world is that we can define unambiguously the invariant belief and
thereby provide a more simple definition of the extended model. In the opposite
case the expectation as to which particular state we are in will depend on the
connected component and on the way in which the initial belief distributed the
probability over different connected components.

In [11] we assumed that our objective is to find some AI which will work
well in worlds that are free from fatal errors. The assumption in [11] was that
if some AI works well in this kind of worlds, it would work well in any world.
The same assumption can be made in respect of the cyclic worlds.

Can we say that a cyclic world is free from fatal errors? In the next sections
we will see that if a world is cyclic and is not hostile, then any error would not
be fatal. What do we mean by a hostile world? We said that the world enjoys
some freedom of choice so it can choose its strictly defined policy from a pool of
strictly defined policies. A hostile world can intentionally choose a policy which
works against the agent. Then the agent may end up in some concavity without
being able to crawl out of it because the world would not let her get out. If
the world is not hostile (i.e. if it is impartial or even good-minded and helpful),
then the agent would be able to get of any concavity it falls in so there will not
be any fatal errors.

7.7 A unique belief

When is the invariant fixed belief unique? Let’s look at the more simple
case when we have a fixed policy (i.e. the probabilities pi are fixed). Let also
the probabilities pi be different from zero. And finally, let the world be cyclic.

In this case we would have a unique invariant belief (that belief will be
fixed). We can calculate it by solving a system of equations. Another way to
obtain this fixed belief is through the statistics of the world. We can pick some
very long life. It does not matter which is the initial state. Let then m be the
probability of us being in state s. That probability will tend to the value given
to us by the unique belief . Here we do not mean the probability at moment
t, but the average probability. The reason is that the probability may have a
waveform pattern and at the moment t it may be divergent, while the average
probability is convergent.

So we obtained an invariant belief which answers the natural question:
“Which state do you believe the world is in?”

Let us now the world be compact, but not cyclic and let there be two con-
nected components. Then the invariant belief will not be unique because we can
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distribute the probability of the two connected components in any ratio (e.g.
1:1 or 1:2).

Now let the world be cyclic, but with a fixed policy where some probabilities
are equal to zero. Then this policy will divide the world in concavities with
flat bottoms and surroundings around the concavities. Once we hit the bottom
of a concavity we will never be able to get out of it. If we depart from some
surrounding around a concavity we will end up in the bottom of that or of some
other concavity. In this case the invariant belief will not be unique because
the probability in the surroundings around the concavities will be zero (it will
be distributed across the bottoms of the concavities). The problem is that the
probability can be distributed in any ratios across the bottoms.

How can we in this case construct a unique belief ? Let us look at the limit
where the probabilities pi are different from zero, but tend to the ones we have.
In this way we will find the natural distribution of the probabilities over the
various bottoms. This is how we can find a unique invariant belief when the
policy is fixed.

If we take the set of all fixed policies (which fall within the probability
intervals) we will obtain a set of fixed beliefs. That will be the generalized
belief which answers the question: “Which state do I believe I am?”

For each state of basic model the generalized belief will return one probability
interval. That interval will tell us how likely it is that we are in a certain state
of the basic mode (the probability of us being in that state). Let’s designate
this interval with the function expected.

7.8 Extended model

We said that the states of the basic model know everything useful and noth-
ing redundant. In the extended model we will add one piece of redundant
information. We will add the entire life (the trace and the backbone). This
information is “redundant” because the state of the basic model “knows” what
is the possible past and the possible future, but does not know what exactly
happened in the past and what exactly will happen in the future.

The extended model will have a set of states S′.

S ′ =
{
〈t, L〉 | 0 ≤ t ≤ k, L is possible life

}
(31)

Here k = |L|. What do we mean by “possible life”? This is any finite path
in the graph which describes the basic model. (Any state can be the initial state
because of our assumption that the world is cyclic.)
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The set S′ will be the set of moments because each moment in each possible
life is a member of that set.

If we present the extended model as a graph it will have a very simple
structure composed of non-intersecting threads. Each thread will be associated
with one possible life.

The state of the extended model will know what exactly has happened and
what exactly is going to happen, however, this does not mean that if we know
the past and the model we will be able to foretell the future. While it is true
that the state “knows” everything, we cannot know which particular state we
are in.

When t = 0, then the initial belief defines the particular state of the extended
model we are in. We will obtain the new initial belief from the set S′0 by adding
to each state the probability expected(〈0, L〉) (these definitions are provided
below).

S′0 =
{
〈0, L〉 | L is possible life

}
(32)

Thus, the new initial belief will contain the initial moment of each possible
life. These members are many because even if fix the initial state u0, then
the members of the new initial belief will again be countably many, because
the possible lives starting from u0 are countably many (due to the variety of
lengths and branches). This means that state 〈0, L〉 “knows” everything about
the future, but we do not know it because we have no way to know that we are
exactly in state 〈0, L〉.

We will now extend the function expected, which is defined for the states of
the basic model, by defining it for the moments (i.e. the states of the extended
model). For this purpose will take the probability of life L and will divide it by
the number of moments in L.

We will want the sum of the probabilities of all lives to be 1 and that is
why we will assume that the life can be of length k with a probability of (1 −
λ).λk. (So we distribute 1 across all possible lengths of the life.) We will select
some coefficient λ, however, the way we choose that coefficient is not important
because we assumed that events are truth-preserving under life extension. (The
formula for expected will depend on L but not on t because the probability is
distributed evenly across all moments of life L.)

expected
(
〈t, L〉

)
=
expected(s0).p1.p2. . . . .pk

k + 1
. (1− λ).λk (33)

Here k = |L|, s0 is the first state of life L and pi is the probability of the
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arrow from si−1 to si. Let qi be the backward probability of the arrow from
si−1 to si. Then we have three ways to express the probability that some life of
length k is exactly life L:

expected(s0) . p1.p2. . . . .pk (34)

q1.q2. . . . .qk . expected(sk) (35)

q1. . . . .qt . expected(st) . pt+1. . . . .pk (36)

That is, we can start from the probability of any state along the backbone
of life and multiply it by the probability of transitioning to the next (or the
previous) state.

Definition 28. The interpretation of event A is the tuple of states P and
Q, where P are the moments at which A occurs, Q are the moments at which
A does not occur, and the remaining moments are those for which we do not
know whether A occurs or not.

Definition 29. The probability of event A is:

expected(A) =
expected(P )

expected(P ) + expected(Q)
(37)

This means that the probability is determined by the moments at which we
know what the value of the event is.

We assumed that events are truth-preserving under life extension, which
translates in the assumption that the sets P and Q are closed under the “life
extension” operation.

Our definition of event depends on the selected basic model. A different
basic model would come with different 〈P,Q〉 tuple. Nevertheless, the event
will be the same because it will have the same probability and will behave in
the same way versus the trace of life.

7.9 MDP as an ED model

As an application of the above we will prove that MDP is a special case of
an ED model. With MDP models the observed events are the agent’s actions:

act(t) = ai, 1 ≤ i ≤ m (38)

These events do not intersect so we do not need any rules for the reconcilia-
tion of collisions. The additional events (those which participate in the partial
trace) are the current observations:
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ob(t)=oi ∨ ob(t+1)=oi, 1 ≤ i ≤ n (39)

Here it is not clear whether t is an even or odd number and whether the
current observation has just occurred or will occur at the next step. For this
reason the event is defined by disjunction.

7.9.1 Fully observable Markov decision process

Let’s first look at the Fully observable MDP (FOMDP). In this case the
topology of the ED model is a simple one. The model has n states (the number
of possible observations) and there is an arrow over each action between each
pair of states. The trace of the ED model is clear and nice. In each state there
is one current observation which occurs with a probability of 1 (each state is
identified unambiguously by the current observation). The only thing we need
to do in order to define the FOMDP model are the probabilities over the arrows:

piaj = expected
(
ob(t+2)=oj | ob(t)=oi & act(t+1)=a

)
(40)

This formula says that the next observation is oj , given that the previous
observation has been oi and the last action has been a. Here we should explain
what does it mean that an event is under a condition. This means that the
event will be True or False when the condition is fulfilled and “Do not know”
when the condition is not fulfilled.

The function expected can return either some strictly specified probability or
some probability interval. When expected returns strictly defined probabilities
in (40), we will obtain a classic FOMDP definition. Certainly, nothing prevents
us from generalizing the FOMDP definition and thus allow for transitions the
probability of which will be probability intervals.

Note: The FOMDP has a single unambiguous interpretation and it is de-
fined by the event “What is the current observation?” We know what is the
current observation for any moment of life except for the first moment (moment
zero). Not knowing the current observation at the first moment is not a prob-
lem because the interpretation need not be defined for a finite life. It must be
defined over any infinite life, and infinite lives do not have a first moment.

Thus we have obtained a model with n states and a transition probability
matrix piaj . In literature this model is referred to as Full Observable MDP.
The question which comes with it is whether the model satisfies the Markov
property or in other words is the model perfect (the best possible model which
cannot be improved any further).
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On one hand, we should be happy if the model satisfies the Markov property
because this tells us that we have found the best solution. On the other hand,
we should not be so happy because a perfect model means that we have hit a
stonewall beyond which it is not possible to improve the model any further.

Accordingly, for each model we will assume that while there is chance for
the model to satisfy the Markov property, it is more likely that the model does
not. In other words, we will imagine that it might be the best possible model
for this world, but in all probability there are better models out there.

7.9.2 Partially observable Markov decision process

This is the next model we will deal with. Again, its topology is simple. We
have a random number of states and arrows over each action between each pair
of states. We have probabilities over the arrows, but also probabilities over the
trace. For each state of the ED model we have n distinctions. In each state,
each observation will be observed with some probability and, in the general case,
that probability will be different from the average one.

The question is whether there is any interpretation of the so-described Par-
tially observable MDP (POMDP). There may or may not be an interpretation.
(If the model is inadequate, then there will not be any interpretation.) Therefore
we will examine the set of possible interpretations and for each interpretation
we will determine the probabilities over the arrows and over the trace.

We will examine the unambiguous interpretations. Thus, we will partition
the set S′ into equivalence classes (S′ is the set of moments). After partitioning
S′ each state of the ED model will correspond to one equivalence class.

Note: The equivalence relation R is not fully random because R must re-
tain the transition over observations. This means that for each odd-numbered
moment 〈t, L〉 that moment and the next moment 〈t + 1, L〉 must be in the
same equivalence class. A sufficient condition for retaining the transition over
observations is to define R on the basis of some equivalence relation over the
set O (the set of arrows over observations).

Let events Ci are those which determine the equivalence classes of R.

piaj = expected
(
Cj(t+2) | Ci(t) & act(t+1)=a

)
(41)

Thus, the next state is j if the previous state was i and the last action has
been a.

What will be the POMDP trace? For each state i we have n possible obser-
vations and each one of these observations occurs with some probability qij .
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qij = expected
(
ob(t)=oj | Ci(t)

)
(42)

As we said already, the function expected can return either some strictly
specified probability or some probability interval. If we aim to obtain a classic
POMDP definition we have to assume that piaj and qij are strictly specified
probabilities.

Note: If we stay with the standard definition of Partially observable MDP,
then the only possible trace of the model will be the probabilities qij . However,
we will assume that there may be other traces, i.e. other distinctions, which
are characteristic of a given state Ci. For example, it may be the case that a
certain action can never occur in that state. Another possible distinction is that
a certain conjunction of events is impossible, even though the individual events
in the conjunction are perfectly possible.

Note: The following question arises: “Is there a POMDP which is a perfect
model of the world (a POMDP which satisfies the Markov property)?” We have
a plethora of POMDPs (for example there is one POMDP for each equivalence
relation over O). But, among all these models, is there a perfect model? The
answer is “Yes, there is.” This is how we will obtain that perfect model from
the basic model: We will take all arrows in O and for each arrow we will create
the event “Walk over this arrow”. This event will be True at each odd-number
moment when we depart over the arrow as well as at the next moment. The so-
obtained POMDP model will be perfect as a sequel the perfection of the basic
moment. The model will not be minimal, but if we put together all arrows
which have the same beginning and the same end, then we will obtain a perfect
and minimal POMDP (as a sequel of the perfection and minimality of the basic
model).

7.10 Related work

The idea which drives the creation of ED models is that the states of the
world a far too many so we should reduce them in order to make the model
more understandable. The same idea is embodied by Wang, Joshi and Khardon
in [12]. Their paper introduces the concept Relational MDPs, which essentially
are a special case of the ED models.

We said that any equivalence relation (which partitions the set of arrows)
can be used for creating a POMDP. Wang, Joshi and Khardon propose that
certain events be selected for a Relational MDP. (Instead of events they refer
to predicates, actions and rewards.) These events are then used to define the
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equivalence relation (two states are equivalent if the same events from the pool
of selected events occur in these two states). A POMPD is defined over the
quotient set of that relation and this is the wanted Relational MDP.

Note: The definition of [12] does not use a quotient set, but refers to a family
of MDPs. If each of these MDPs has only one state from each equivalence class,
then it will have the structure of the quotient set, but typically this is not the
case. Therefore, it is better to define Relational MDPs through the quotient
set.

How does a Relational MDP look like? We will explore three scenarios:

1. Let the input consist of 10 bits. Let these 10 bits be the ten events which
have been selected and used for the creation of the Relation MDP. Then the
resulting Relational MDP coincided with the FOMDP.

2. Now let only 5 of these 10 bits be selected events. This will give us a
Relational MDP with less states than the FOMDP states.

3. Let us now have the selected 10 input bits (events) plus 5 other events
which are invisible (do not follow from the input). Let’s take these 15 events
and create a Relational MDP. Now the Relational MDP will have more states
than the FOMDP.

8 Conclusion

In the first part of the paper we described the key concepts which we will
need to create the language for description of worlds we are looking for. In the
second part we will show how quite a complex world can be described and will
see that the task can be achieved by a fairly simple description. By using the
description of the complex world, we will create our language for description
of worlds. In other words, our approach will be to solve the general task by
exploring a concrete example: We will create the language for description of
worlds on the basis of a particular world and its description.
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