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Abstract. Most of the research in parallel data mining and machine learn-
ing algorithms is focused on improving the e�ciency of existing algorithms.
However, our focus is the improvement of the solution quality, or model
accuracy. We are looking for �smart� strategies to invest parallel compute
resources in order to achieve a better exploration of the search space by ex-
ploring several solutions in parallel, referred to as Widening. In this paper,
we discuss the theoretical properties of a neighborhood-based Widening us-
ing a type of neighborhoods, optimality neighborhoods and contrast this com-
municationless approach to the straightforward beam-like Top-k Widening
approach, which requires communication. We show a bound on the number
of parallel workers needed for the communicationless approach to guarantee
that it has a solution of the same quality as the Top-k approach. In ad-
dition to the theoretical comparison, we experimentally compare these two
approaches in terms of running time and quality of �nal solution, using a
widened version of the greedy algorithm for set cover problem.
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1. Introduction. The tendency towards pervasive and ever-increasing
computing resources, such as GPUs, multicore processors, cloud computing and
others, has led to intensive research in the area of parallel algorithms. Typi-
cally, parallel machine learning algorithms have been focused on improving the
running time (improved e�ciency) of the existing algorithms. However, parallel
computing resources can be invested with the goal of improving the accuracy of
the resulting model, or the quality of solutions obtained, instead of simply ob-
taining the same result, only faster. For many tasks, the quality of the obtained
solution is of vital importance. This paper is focused on strategies for employ-
ing parallel computing resources in ways which improve the exploration of the
search space and thus result in a better solution than a given heuristic. Widen-

ing is an umbrella term for strategies which use parallel simultaneous searches
in the space of solutions in order to improve the result of a greedy heuristics.
A simple Widening approach, which uses communication between the workers,
was described in [17] and showed that an increase of parallel computing resources
improves the quality of the discovered solution of the set cover problem. In ad-
dition to improving the quality of the solution, Widening aims at keeping the
running time of the widened heuristic constant with respect to the number of
parallel resources invested, and equal to that of the original greedy heuristic. In
order to avoid undesired overhead, which arises from the communication between
parallel workers, we are interested in strategies in which the parallel workers do
not communicate when selecting paths through the search space. Communica-
tionless Widening was already discussed in [17], where a simple approach using
preferences was used. So far, the publications which discuss Widening strategies
for the improvement of the quality of the solution are focused on experimental
demonstration of the performance of the Widening methods for a large variety of
algorithms. In contrast, in this paper we present an investigation of the theoretical
properties of a new, local, neighborhood-based approach to Widening, which does
not require communication. We estimate the number of parallel workers needed
to have a result similar to that of the beam-like approach, called Top-k Widen-
ing, which uses communication. To do so, we use the known structure of the
search space for a particular type of problems. We use our theoretical �ndings to
determine which approaches can be used to further improve neighborhood-based
Widening. We use experiments to illustrate the comparative characteristics of
the two methods. We compare the running time of the Top-k Widening with
that of the neighborhood-based method and contrast the running times of the
two approaches with the quality of the solutions discovered by them.

Structure of This Paper. This paper is structured as follows. First,
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we present a general setting for Widening and de�ne the main related concepts,
de�ne Widening as iterations of re�nement and selection operators, motivate the
need of diversity and the need for communicationless approaches. Then, we de-
�ne communicationless Widening approach based on neighborhoods and discuss
di�erent types of neighborhoods. We proceed to de�ne the re�nement graph, and
discuss the re�nement graph structure for a special type of the re�nement opera-
tor. We then investigate the performance of No

k . We are interested in how many
parallel workers are needed so that the neighborhood-based approach can com-
pete with the communication-based Top-k approach. We discuss �rst the case
where the graph de�ned by the models which can be explored by No

k , GNk
, has a

uniform distribution of edges to each model at level l P l and where P l is strongly
non-uniform. We discuss how the size of the neighborhoods a�ect the distribution
of the paths P l in GNk

. We then proceed with practical experiments to compare
how Nk and Top-k perform, as well as their running times. We conclude with
discussing related work.

Goals of This Paper. We aim to compare theoretically as well as prac-
tically, using experiments, two Widening approaches: Top-k Widening and a
communicationless approach, Widening via neighborhoods. We are interested in
investigating how many parallel workers k are needed for the communicationless
approach to perform as well as the approach which uses communication. We cal-
culate di�erent bounds including worst case bounds for the number of parallel
workers needed. The motivation for this investigation is simple: communication
between parallel workers has a strong e�ect on the running time of the widened
algorithm.

2. General Widening of a Greedy Heuristic. Many data mining
algorithms use greedy search strategies (or other types of heuristic approaches)
through a space of potential solutions, choosing a locally optimal solution until a
stopping criterion is satis�ed. This heuristic search can be schematically presented
as an iterative application of two operators: re�nement r and selection s.

During the re�nement operation, a temporary model m is made more
speci�c to generate new models. The selection operator chooses the locally best
model from all possible re�nements.

The selection operator is usually based on a given quality measure ψ,
which evaluates the quality of a modelm from a family of modelsM : ψ :M→ R.
According to this notation, one iterative step of the greedy search is represented
as m′ = sbest(r(m)), where

sbest(M) = arg max
m′′∈M

{
ψ(m′′)

}
.
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Namely, the model from the subsetM ⊆M which is ranked highest by the
quality measure is chosen at each step. Figure 1 depicts the re�nement/selection
representation.

(a) (b) (c)

(1)

Fig. 1. The classic heuristic (often greedy) search algorithm. On the left (a), the current
model m is depicted in green, the re�nement options r(m) are shown in gray. The
selection operator s picks the yellow re�nement (b) and the next level then continues the

search based on this choice

It is known that unless the explored space is a matroid, choosing the locally
optimal solution at every step will not guarantee discovering the global optimum.
In order to improve the exploration of the search space, during Widening several
solutions are chosen at each step, instead of the locally best one. One iteration
of Widening can be represented as follows:

M ′ = {m′1, . . . ,m′k} = sw

( ⋃
m∈M

r(m)

)
.

At each step, the widened selection operator sw considers the re�nements of a
set M of original models and returns a new set M ′ of k re�ned models for further
investigation. Parameter k is the width of the widened search. The larger the
width, the higher the chances are of �nding a better model in comparison to the
normal greedy search. Figure 2 illustrates this process.

In [1] a beam-like approach, where the best k solutions are chosen at each
step, was described and is referred to as Top-k Widening. In each iteration of
Top-k Widening each parallel worker selects the top k choices for the re�nements
of its model and from the resulting k2 choices, the top k models are chosen:

{m′1, . . . ,m′k} = sTop-k

 ⋃
i=1,...,k

sTop-k (r(mi))


where sTop-k selects the top k models from a set of models according to a given
quality measure ψ. In [1] it was demonstrated that Top-k Widening leads to an
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(2)

Fig. 2. Widening. From a set of models M (green circles), the re�nement operator
creates several sets of models (gray), shown on the left (a). The selection now picks a
subset of the re�ned models (yellow circles in (b)) and the search continues from these

on the right (c)

improved quality and that larger width leads to better accuracy. The main issue
with Top-kWidening requires communication between the parallel workers, which
has a strong in�uence on the running time. As stated already, Widening aims at
preserving the running time the same as that of the greedy heuristic. Very simple
communicationless strategies for Widening have already been described in [17].
The method, based on assignment of di�erent orders of preferences, performs well
in practice, but is not a structured predictable way to explore the search space.

In this paper we will investigate the theoretical properties of a commu-
nicationless neighborhood-based approach to Widening, called Widening via op-

timality neighborhoods, and estimate the number of parallel workers, needed to
have a result similar to that of the Top-k Widening, which uses communication.

3. Communicationless Widening via Neighborhoods of Mod-
els. Ideally, we wish to split the search space among the parallel workers, so that
each parallel worker explores a di�erent partition. However, this is di�cult due
to the fact that initially we do not know the models in the search space. What
we can do is use a localized approach: given a set of re�nements M r, we can
directly force each individualized selection operator to pick a di�erent re�nement.
That is, given a model m and its re�nements M r = r(m), we assign the best k
models to each of the k parallel workers. Below we formally de�ne the concept of
neighborhoods and describe a framework for this localized approach.

De�nition 1. Given a model m, a selection operator s, a re�nement operator r,
and a distance measure d, the k-neighborhood of m′ = s(r(m)) is the ordered

set Nk(m
′) = (m′,m′1, . . . ,m

′
k−1) ⊆ r(m) where ∀i ∈ {1, k − 2} : d(m′i,m

′) <
d(m′i+1,m

′) and @m′′ ∈ r(m) \Nk(m
′) : d(m′,m′′) < d(m′,m′k−1).
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In other words, a k-neighborhood of m′, which is a re�nement of model m,
consists of the top k re�nements of modelm (includingm′), which are closest tom′

according to a distance d. Since we are interested in Widening of a greedy heuris-
tic, which always selects a locally optimal choice, we de�ne the neighborhoods
with respect to the greedy choice. A schematic representation of k-neighborhood
is seen in Figure 3.

Fig. 3. Schematic representation for Widening via local partitioning of Mr = r(m)
using k-neighborhoods. Di�erent neighbors are assigned to di�erent parallel workers,
represented by their color. Here k = 4. Each parallel worker chooses the model assigned

to it a priori

Given parallel workers w1, . . . , wk, we can use the de�nition of k-neighbor-
hood above, to de�ne the set of individualized selection operators, {sN1 , . . . , sNk },
with which aWidening via k-neighborhoods is performed. For each modelm ∈M,
each parallel worker prefers exactly one particular neighbor in Nk(s(r(m))), and
its choice is unique for this neighborhood.

De�nition 2. Given a selection operator s, a re�nement operator r and a model

m, let m′ = s(r(m)). The set of selection operators sNWidening = {sN1 , . . . , sNk } is
a Widening via k-neighborhoods of s, if ∀i ∈ {1, . . . , k} : sNi (r(m)) = m′i ∈
Nk(m

′) ∧ ∀i 6= j, i, j ∈ {1, . . . , k} : m′i 6= m′j.

Di�erent types of neighborhoods can be de�ned, by using a di�erent dis-
tance measure d. Based on the type of neighborhood used, the Widening search
will have di�erent properties. For example, an optimality k-neighborhood is
a k-neighborhood, where d is based on the original model evaluation function ψ.
We will refer to Widening via optimality neighborhoods as No

k . Widening via
optimality neighborhoods is an attempt to emulate the Top-k Widening in a
communicationless manner. Its goal is to decrease the �greediness� of a heuris-
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tic by considering the �rst, second and so on choices, instead of only the greedy
choice. In this type of neighborhoods the metric is de�ned as a distance from the
quality score ψ of the locally optimal model. The size of the neighborhood serves
as a constraint how much drift away from the locally optimal solution is allowed.
Widening via optimality neighborhoods is similar to a randomized beam search,
limited to picking k models at random from the top kl candidates (branches),
where l is the re�nement level. For very large k, Nk may stray too much away
from the locally optimal solutions in a randomized fashion, to be useful. For small
values of k, just like the Top-k search, it can converge to a local optimum.

Similarity neighborhoods are k-neighborhoods where the metric d is based
on a similarity evaluation of particular properties of the models. Widening via
similarity neighborhoods explores solutions with properties similar to those of the
greedy choice. Similarity neighborhoods can be used in many di�erent scenarios.
For problems, where it is known that the greedy algorithm leads to a good solu-
tion, exploring the area around the solution of the greedy algorithm can help to
discover the optimal one, or solutions of even higher quality. In the beginning of
the search a good strategy is to use diversity and explore more of the search space.
However, once good areas of the search space are discovered, it is useful to explore
these good areas in more detail in order to discover solutions of higher quality
(or even the optimal solution). This intensifying of the search in promising areas
is referred to exploitation. An additional application is the so called similarity

search. Many similarity searching strategies already rely on neighborhood-based
greedy-like approaches. In certain situations, one may need to discover many sim-
ilar models with certain properties, which perform well. Incorporating Widening
via the similarity neighborhoods to these strategies can further improve the results
of these searches.

In this paper, we will discuss the properties of Widening via optimality
neighborhoods.

Many di�erent models are reachable via selection paths that share com-
mon initial subpaths, but then diverge, as shown in Figure 4. We want to de�ne
another type of Widening via neighborhoods, that guarantees reachability for ev-
ery model at a �xed level l. In order to achieve that, multiple workers' paths may
have to intersect.

De�nition 3. Let θ be the size of the neighborhood, and let k be the Widening

parameter. Given a model m, a selection operator s, a re�nement operator r, and
d, a chosen distance measure, a θ, k-neighborhood of m′ = s(r(m)), Nθ,k(m

′), is
an element of the Cartesian product Nθ(m

′)k = Nθ(m
′)× . . .×Nθ(m

′)(k times).

Namely, k models are selected from Nθ(s(r(m))). If k � θ, this implies
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Fig. 4. Widening via θ, k-neighborhoods

repetitions between models m′0,m
′
2, . . . ,m

′
k−1.

We will introduce a speci�c type of a k-neighborhood, randomized k-
neighborhood, which we will use for our properties investigation.

De�nition 4. Given a family of models M, we de�ne randomized k-neighbor-
hood Widening, Nrok, as optimality k-neighborhood Widening, where each member

of a given k-neighborhood is selected by a parallel worker with equal probability
1

k
.

4. Search Space Graph GM. Let M be a family of models, X be
the set of model fragments in M, r be a re�nement operator over M. We can
useM and the re�nement operation r(·) to de�ne a graph GM(V,E), where V is
the set of vertices, and E is the set of edges, de�ned as follows: v ∈ V ⇔ v ∈ M
and ∀m,m′ ∈M,m′ ∈ r(m)∃e(m,m′) ∈ E. Clearly, GM is a DAG.

Di�erent types of re�nement operators exist, depending on their complex-
ity. The type of re�nement operator de�nes a particular structure of the search
space.

De�nition 5. LetM be a family of models, X be the set of model fragments inM,

r be a re�nement operator over M with the following two properties: only one

model fragment is added at a single re�nement operation, and the order in which

the model fragments are added does not matter. Namely, the set of model frag-

ments {x1, . . . , xl} uniquely de�nes a model m and ∀m′ ∈ r(m) : m′ \m = x′, x′ ∈
X. We will refer to such a re�nement operator r as re�nement operator of type 1.

We will discuss the search space properties for this most basic type of
re�nement operators.
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Lemma 1. Let M be a family of models, with re�nement operator r of

type 1. Then, M,≤ de�nes a lattice, where ≤ is the partial order de�ned by r
onM.

P r o o f. Let X be the set of model fragments on M. Then M, given
that r is of type 1, is the powerset 2X . It is a known fact that the power set of
a set forms a lattice, and we will show it below. First, we will show that each
two nodes have a unique supremum. Consider two models mi = {x′1, . . . , x′k}
and mj = {x′′1, . . . , x′′l }. Then their supremum is sup(mi,mj) = mi ∩mj . Their
unique in�mum is inf(mi,mj) = mi ∪mj . �

Lemma 2. Each node (model) at re�nement level l is of size l and has l
in-degrees.

P r o o f. This follows from the de�nition of the re�nement operator of
type 1. �

Lemma 3. The lattice of the family of models M, LM is a distributive

lattice.

P r o o f. A lattice of sets, where the lattice operations can be given by
set union and intersection, is always distributive due to the properties of these
operations. �

Example: Search Space Graph for the Set Cover Problem (SCP)

Formal De�nition of the SCP.We consider the standard (unweighted)
set cover problem. Given a universe X of n items and a collection S of q subsets
of X : S = {S1, S2, . . . , Sq}. We assume that the union of all of the sets in S is

X, with |X| = n:
⋃
Si∈S

Si = X. The aim is to �nd a sub-collection of sets in S,

of minimum size, that covers all elements of X. A model m in this setting is a
collection of subsets, or a cover C. The re�nement operator r(·) adds a single
subset, not yet part of C, to C.

The Lattice GM. for SCP.At level l = 0 is the empty modelG0 = {m0},
m0 = {}. At level l = 1 the graph consists of each possible subset, provided by
the problem. G1 = {S1, . . . , Sq}. The re�nement operator r(m) generates all
possible re�nements, which consist of adding a single subset to m, which does not
yet belong to m. At level l the graph Gl consists of the models of complexity l
(i. e., models containing l subsets). The paths between nodes show the re�nement
relationship.
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A Negative Example: Search Space Graph for Decision Trees

De�nition 6. We will call a re�nement operator of type 2, r2 if the model is

not an unordered set of model fragments, where the re�nement operator adds a

new model fragment to this set, but is a collection of alternative unordered sets of

model fragments.

A re�nement operator r for decision trees is not of type 1, but of type 2.
Instead of a single unordered set of model fragments, a decision tree can be pre-
sented as a collection of alternative unordered sets of model fragments, which are
alternative paths in the decision tree.

The re�nement operator at a given step generates all possible re�nements
of modelm by adding one model fragment, or attribute test, at one of the possible
alternative unordered sets (branches).

Lemma 4. The re�nement graph of decision trees, built using a re�nement

operator r2 as described in De�nition 6 is not a lattice, but only a directed set.

P r o o f. Consider two trees of depth 1, Imagine two decision trees of
the type a(b, c) and c(d, e) which have no common model fragment. Then the
following decision trees are both lower bounds according to the order de�ned
by the re�nement operator r2, a(b(d), c(e)) and c(d(a), e(b)), however they do not
have a greatest lower bound, because all the lower bounds are either incomparable
to these two, or smaller, according to the order de�ned by r2. �

5. Performance of N o
k . The Widening approach No

k is a communica-
tionless Widening strategy, which aims to explore the search space by considering
not just the locally optimal choice, but also using the k optimality neighbors of
the locally optimal choice in each re�nement set M r = r(m). It aims to em-
ulate in a communicationless way the Top-k Widening approach. By contrast,
Top-k Widening is a communication-heavy approach, which at a given re�ne-

ment step selects the best k models from
⋃
M r
i =

⋃
r(mi), i = 1, . . . , k, where

{m1, . . . ,mk} are the models selected from the previous step. Each parallel worker
in Top-k has access to each of the k re�nement sets at a given step, while each
parallel worker in No

k has access only to one re�nement set at a given step.
It is important to see how these two methods compare to each other

and whether the communicationless Widening strategy can compete with the
communication-heavy Top-k. For k = 1, both methods explore the greedy path,
and will obtain the same results. We will study how the two approaches di�er for a
larger k. First, let us compare Top-k and No

k in terms of search space exploration.
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Lemma 5. Let mi,mj ∈ M be two distinct models, then the optimality

neighborhoods of these two models can have at most one model in common:

|No
k (mi) ∩No

k (mj)| ≤ 1.

In fact, they intersect i� the two models belong to the same re�nement setmi,mj ∈
r(m).

P r o o f. The statement follows from the lattice property. Every two
nodes have exactly one supremum and one in�mum. The in�mum can be a direct
re�nement of both models or a re�nement, reached by several applications for the
re�nement operator. �

Let us consider the arti�cially constructed Widening approach FullTop-k.

De�nition 7. Given a model evaluation function ψ : M → R, and models

m1, . . . ,mk the function sFullTop-k is de�ned as follows:

sFullTop-k(r(m1, . . . ,mk)) :=
k⋃
i=1

sTop-k(r(mi)).

FullTop-k search is essentially a breadth �rst search with pruning to the
�rst k children of each already explored node (model). We will use FullTop-k
to bound the subspaces of the search space explored by both Top-k and No

k and
compare them.

Lemma 6. The following two conditions hold.

1. Top-k(M) ∈ FullTop-k(M).

2. No
k (M) ∈ FullTop-k(M).

P r o o f. Part one follows by design. More precisely, Top-k selects the
best k models from ∪r(mi), i ∈ {1, . . . , k}. In the extreme, these are k models
from the same re�nement set M i = r(mi).

Part two also follows from the design: No
k explores exactly a subset of the

paths, traversed by FullTop-k. �
The relationship between Top-k, No

k , and FullTop-k is visualized in Fig-
ure 5.

De�nition 8. Given a family of modelsM with a re�nement operator r of type 1,
we de�ne randomized k-neighborhood Widening, Nrok, as optimality k-neighbor-
hood Widening, where each member of a given k-neighborhood is selected by a

parallel worker with equal probability
1

k
.
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Fig. 5. The arti�cial FullTop-k structure, a bound for No
k and Top-k

Instead of assigning a unique neighbor from a neighborhood to each par-
allel worker, each model can be chosen with the same probability. For simplicity
of calculations, we will consider below that No

k is implemented as Nrok.

De�nition 9. Given a set of models M and a model quality evaluation function

ψ : M → R, we de�ne a performance-based distance dψ : M×M → N as follows.

For every two models mi,mj ∈M,ψ(mi) ≤ ψ(mj), letMij be the set of all models

m ∈M such that ψ(mi) ≤ ψ(m) < ψ(mj). Then dψ(mi,mj) = |Mi,j |. We de�ne

that dψ(mi,mj) = 0 i� i = j.

The Graph, GFT−k., Generated by FullTop-k. Let us consider the
graph that consists of the model subspace explored by FullTop-k until re�nement
step l.

De�nition 10. Let GFT−k be the graph generated by FullTop-k exploring the

space of models. Then the set of vertices V consists of the set of models explored

by FullTop-k until re�nement level l. The set of edges E represents the relationship

of direct re�nement between the vertices. More precisely, e = e(mi,mj) ∈ E ⇐⇒
mj ∈ r(mi).

The graph GFT−k is a subgraph of the search space graph GM.

Lemma 7. The graph GFT−k is a directed acyclic graph (DAG). More-

over, each node of GFT−k has k out-degrees.

Lemma 8. The Nrok Widening is equivalent to k independent random

walks (performed by the parallel workers) on GFT−k.

P r o o f. Follows by design of Nrok. GFT−k contains every potential choice
of Nrok and each parallel worker chooses exactly one node (model) at each step.
�
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Lemma 9. Let X, where |X| = n be the set of model fragments, re�ne-

ment operator of type 1 r and letM be the family of models, de�ned by r,X. The

graph GFT−k has at most min(kl,

(
n

l

)
) nodes at level l.

P r o o f. The number of models in M at re�nement level l is at most(
n

l

)
, while the number of di�erent models in the re�nement graph GFT−k is

at most kl. �

Probability Distribution Associated with GFT−k. The solutions of
Nrok(M) at level l depend on the structure of GFT−k. Namely, it depends on
the intersections between the re�nement sets of selected models at each step in
FullTop-k, or, equivalently, on how many in-degrees each model-vertex has. We
know that at a given re�nement level, each pair of re�nement sets intersects at
most once. This follows from the lattice structure.

Let P l be the probability distribution for each node at level l to be discov-
ered by a random walk. At each level l, the probability pli for reaching a node m

l
i

depends on the number of in-degrees to ml
i as well as the probability distribution

P l−1. Let T be the transition matrix associated with GFT−k.
Then,

P l = P l−1T.

This is demonstrated in Figure 6: the probability of reaching the purple, blue or
yellow node is two times greater than the probability of reaching the red node.

Fig. 6. A �gure representing the Widening via randomized neighborhoods as random
walks on the graph of models

Uniformly structured graphs lead to uniform P l, probability distribution
of reaching the nodes at level l. For very degenerate re�nement graphs, where
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P l is strongly nonuniform, the set of solutions will consists of repetitions of some
solutions and others may not be at all reached.

Uniform Distribution in GFT−k. The distribution of edges in GFT−k
determines the probability distribution of reaching each node of the graph. In
Section 5, we discuss the relationship between size of the neighborhood, k, and the
probability distribution associated with the graph GFT−k. Brie�y, for smaller k it
is more likely that the graph is degenerate, due to the higher chances of converging
to local optima.

Theorem 10. Given that P l is uniform, the solutions discovered by Widening

via Nrok, {Nrok(M)} ∈{FullTop-k(M)} are on the average uniformly distributed

among the solutions {FullTop-k(M)}. Thus max
ψ

({(Nrok)l(M)}) will be on the

average at most
kl−1

2
models away with respect to the model quality function ψ

from max
ψ

({FullTop-kl(M)}).

P r o o f. To begin with, let us consider each model discovered by
{FullTop-kl(M)} as distinct. There are kl models discovered by FullTop-k
at level l, |{FullTop-kl(M)}| = kl. Each of these models is reachable with
equal probability by Nrok, since each path traversed by FullTop-k is equally
likely to be traversed by Nrok by design. So assuming kl distinct models at
level l in {FullTop-kl(M)}, each of the models has equal probability of be-
ing chosen. From this follows that the k models discovered by Nrko will be
uniformly distributed among those kl models of {FullTop-kl(M)}. This im-
plies that the max

ψ
({(Nrok)l(M)}) will be at most kl−1 models away from

max
ψ

({FullTop-kl(M)}). �

Upper Bound for the Number of Parallel Workers. We now want
to derive an upper bound for the number of parallel workers k needed to guarantee
{Nroθ,k} = {Top-k}. We will denote the performance of a given set of models M
as Ψ. While it can be de�ned in various ways, such as the minimum, the maximum
or the average solution quality of the models in the set, here we will de�ne it as
the maximum score among the models in the set. Namely,

Ψ = max(ψ(m)), ∀m ∈M

In the worst case, maxψ{Top-θ} = maxψ{FullTop-θ}. We want to have a
quantitative estimation of how large does k need to be, so that we can guar-
antee Ψ({Top-θ(M)l}) = Ψ({Nroθ,k(M)l}) in the worst case scenario, where
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Ψ({Top-θ(M)l}) = Ψ({FullTop-θ(M)l}). In order to be able to guarantee that
Ψ({Nroθ,k(M)l}) discovery of the best solution discovered by Top-θ, k needs to be
large enough to discover every solution at level l. This is related to the number of
paths in GFullTop-θ at level l. In G

l
FullTop-θ the models at level l are at most θl.

Theorem 11. We assume a uniform distribution P of the edges in GFullTop-θ.

For k = min(θl,

(
n

l

)
), Nroθ,k explores fully the models explored by FullTop-θ at

step l and guarantees Ψ(Nroθ,k(M))l ≥ Ψ({Top-θ(M)l}).

P r o o f. The graph GFT-θ is a DAG, where each node has θ out-degrees.
At level l − 1 there is at most θl−1 nodes, so the total number of edges will

be at most θl. So for k = min(θl,

(
n

l

)
) we can guarantee that Ψmax{No

k,θ
l} =

Ψmax({FullTop-θl}). �
In this worst case, in which Top-θ discovers the best model from {FullTop-θl},

a signi�cantly larger number of parallel resources are needed for the communica-
tionless Widening approach to be able to guarantee the same performance as that
of Top-k Widening.

Nroθ,k. with Strongly Non-uniform Distribution P l. Strongly non-
uniform distribution is very disadvantageous for the No

k Widening methods in
comparison to the Top-k approach. In the case, where the distribution is strongly
non-uniform, every model at level l needs to be reached, in order to be able to
guarantee performance close to that of the Top-k approach.

Theorem 12. Assume that P l(x) represents the probability for each model at

level l to be reached by a random walk on GFullTop−θ. Then, for k =
1

minP l(x)
parallel random walks each model at level l will be reached on average.

P r o o f. For k =
1

minP l(x)
on average the node reached by minimum

number of paths will be reached. �
In order to avoid this degenerate situation, there are several things to

keep in mind. First, a small neighborhood size favors convergence to local op-
tima, which is a big disadvantage especially for the communicationless method
(although it is also a disadvantage of the Top-k, as it may explore too similar
solutions in parallel). Furthermore, the use of diversity can help avoid degenerate
graphs.
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Size of Neighborhood and Probability Distribution, P l. Extremely
degenerate graphs with strong intersections will more likely occur for small k. For
large k intersections will be close to uniformly distributed, as they will be repre-
senting the lattice structure of the search space. For small k these intersections
represent getting stuck at a local peak. Of course all of this depends also on the
general structure of the search space. We know that the re�nement graph in the
case of a simple re�nement operator is a lattice, in which each node at level l can
be reached via l paths.

Lemma 13. Let {FullTop-kl(M)} = {ml
1, . . . ,m

l
p}, whereml

i, i ∈ {1, . . . , k}
are unique models, each repeated respectively n1, n2, . . . , np.

As k increases,

n1, . . . , np → n.

P r o o f. Follows from the lattice structure of the search space. �
The k models discovered by Nrko , will be uniformly distributed among

those kl models of FullTop-k. This implies that the max({(Nrok)l(M)}) will be
at most kl−1 models away from max({FullTop-kl(M)}).

Properties of θ, k-Neighborhoods. We can �nd how many parallel
workers are needed for max

score
{(No

θ,k)
l(M)} to be some distance from max

score
{Top-θl(M)}.

Theorem 14. Given a uniform distribution P l, for k = θl/p, the best solution

discovered by No
θ,k is on average p models away from the best solution discovered

by FullTop-θ.

P r o o f. The solutions discovered by the parallel workers at step l, using
No
θ,k, ({No

θ,k)
l(M)} are uniformly distributed among the solutions discovered by

FullTop-θ. This follows from Lemma 10. GFT-θ is the bound for Top-θ, and thus
max{No

θ,k} is at most p models away in the graph GFT-θ from max
ψ
{FullTop-θ}.

�

6. Experimental Results and Discussion. In this section we will
present experimental results from the application of Widening via optimality
neighborhoods and Top-k Widening to the greedy algorithm for the set cover
problem. We will compare the quality of the solution obtained (size of the cover)
by both methods, and the e�ect that the number of parallel workers and size
of neighborhood have on the quality of the solution. We will also compare the
running time for di�erent sizes of optimality neighborhoods to the running time
of the Top-k Widening approach.
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Greedy Set Covering. The greedy algorithm [18] attempts to construct
the minimal set cover in the following way. It starts with the empty set being the
temporary cover and at each step selects and adds a single subset to it. The subset
selected is the one which contains the most elements that are not yet covered by
the temporary cover. Algorithm 1 illustrates this procedure.

Algorithm 1: Greedy Algorithm for Set Cover Problem,

Data: collection S of sets over universe X
Result: set cover C:

⋃
S∈C

S = X

C ← ∅;
repeat

Scurrent =
⋃
S∈C

S

Sbest = arg max
S∈S
{|S\Scurrent|}

C ← C ∪ Sbest
until

⋃
S∈C

S = X;

return C.

Top-k Widening of the Greedy Algorithm for the Set Cover

Problem. In contrast to the greedy algorithm, the Widening of the greedy
algorithm builds k temporary covers in parallel. The focus in this algorithm is to
use resources to explore a large number of re�nements in parallel.

A single iteration of the widened algorithm then operates as follows. Let
C1, · · · , Ck represent the k temporary covers. A re�nement of Ci is created by
adding a new subset to Ci. For each Ci, the k re�nements which contain the
largest number of elements, are selected. This results in k2 re�nements in total.
From those, the top k re�nements are selected, resulting in k new temporary
covers C

′
1, · · · , C

′
k. As we will see later, the quality of the solutions will increase

with larger k, due to more options being explored in parallel.

Widening of the Greedy Algorithm for SCP via Optimality Neigh-

borhoods. Each neighborhood is built on the re�nement set r(m) of a given
model m. Let m = {Si}, i = 1, . . . , l − 1. A re�nement set refine(m) consists of
a set of models

{{Si}∪Sj1 , {Si}∪Sj2 , . . . , {Si}∪Sjn−l+1
}, i = 1, . . . , l−1, Sj1 , . . . , Sjn−l+1

/∈ {Si},

which di�er in only one subset from each other, i. e., each of them contains
m = {Si}, i = 1, . . . , l − 1 and exactly one additional subset.
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Then a k-neighborhood within the re�nement set will contain k models,
chosen from the re�nement set of modelm, which are chosen di�erently depending
on the type of neighborhood. To each parallel worker one model from the k-
neighborhood is assigned, with or without repetition.

Given a model m = {Si}, |{Si}| = l − 1, i = 1, . . . , l − 1, the optimal-
ity k-neighborhood of r(m) = {{Si} ∪ Sj1 , {Si} ∪ Sj2 , . . . , {Si} ∪ Sjn−l+1

}, i =
1, . . . , l, Sj1 , . . . , Sjn−l+1

/∈ {Si} consists of the best k models in r(m) with respect
to performance.

Methods. All the approaches were implemented in Java, using KNIME
[4]. Each experiment was run 50 times with shu�ed order of the data.

Datasets. All the experiments are performed on three data sets rail507,
rail516, rail582 from the OR Library database [3], which are associated with real-
world set covering problems and have di�erent properties. These data �les arise
from an application in Italian railways. The characteristics are as follows. The
dataset rail507 has 507 rows and 63,009 columns, rail516 is with 516 rows and
47,311 columns, and rail582 is with 582 rows and 55,515 columns. As might be
expected, these problems have a number of special characteristics, speci�cally: all
column costs are either one or two, a column covers at most 12 rows.

Top-k Widening. We compare the e�ect of the size of Widening on the
quality of the obtained results. We use this Widening method with communication
as a benchmark for comparison with our communicationless methods.

Widening via Optimality θ, k-neighborhoods. We use Widening via
optimality neighborhoods to investigate the e�ects of the parameters k and θ. We
compared the quality of results using Widening via optimality neighborhoods for
di�erent parameters k with �xed θ as well as the quality of results as θ increases.
Additionally, we compare the quality of results of Widening via optimality neigh-
borhoods and Widening with communication, Top-k, in order to see whether the
approaches with communication can compete to those without.

Running Time Experiments. We used the Top-k Widening method
and contrasted it to the di�erent neighborhood-based approaches. The experi-
ment were performed using the rail507 data set, from the OR library [3], rail507
on a 64-core machine and repeated 10 times. Predictably, the number of parallel
workers k had a strong in�uence on the running time of Top-k approach.

Implementation details in Java. The parallel search is implemented
by a priority blocking queue. The parallel workers are independent threads, which
are called from the thread pool and perform a search for solutions, based on a
prede�ned behavior. For the Top-k approach, the threads are in communication
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with each other, by storing all their optimally discovered solutions in the priority
blocking queue structure, from which the best k from the k2 are then selected
at each step and are used by the parallel workers as the next points of further
exploration.

In the neighborhood-based approaches the parallel workers independently
search through the space of potential solutions without exchanging information
about the discovered solution. Prior to the search, each model fragment is assigned
a neighbor list in the form of a hash table, which dictates which neighbor will be
chosen by which worker, given that the model fragment is the optimal fragment
to choose at a given step in the search. The result of the search of each thread
(parallel search) is reported only at the very end of the search, and no intermediate
solutions are communicated.

Results. In Figure 7 the e�ect of di�erent neighborhood sizes is investi-
gated. We can see that increasing θ while keeping the parallel workers constant
can lead to worsening of the performance: a very large neighborhood size θ leads
to a randomization of the search.
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Fig. 7. Comparison of solution quality for Widening via optimality neighborhoods for
di�erent neighborhood size θ and Top-kWidening. Three data sets used: rail507, rail516,

rail562 from the OR library [3]

As Figure 7 shows, the larger the number of parallel workers for a �xed
neighborhood, the better the performance of the search. For a �xed number of
parallel workers, increasing the size of the neighborhood eventually will lead to
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a randomized search. On the other hand, a small size of the neighborhood leads
to exploring solutions, which are similar. While Widening via Top-k performs
better than Widening via optimality neighborhoods, the performances of the two
methods do not di�er signi�cantly. This may also be due to the fact that already
the greedy algorithm for the set cover problem performs well. Further improve-
ments on the results of Widening via optimality neighborhoods can be achieved
via increased parallel resources or by explicit use diversity. This, however is not in
the scope of this paper, which deals with investigating the theoretical properties
of Widening via optimality neighborhoods.

Running Time of Optimality Neighborhoods. In this subsection we
compare the experimentally obtained running times for both approaches using
dataset rail507 http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/

rail507.txt, from the OR library [3].
As expected, in Figure 8 one can see that the running time increases as the

number of parallel workers increase. The experimental results con�rm that the
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Fig. 8. Running time of Widening via optimality neighborhoods with di�erent neighbor-
hood size θ compared to the running time of Top-k

running time of the Top-k approach is signi�cantly greater than the running time
of Widening via optimality neighborhoods, while the model quality discovered by
the two algorithms is similar. The communication between the parallel workers
seems to have a big in�uence on the running time in the case of Top-k while this
is not compensated by a great solution quality.
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7. Evaluation and Summary of Obtained Results. We show
that both Top-k and {No

θ,k} can be bound by GFT−k. The re�nement graph
for the set cover problem is a lattice, and for large enough k the full re�nement
graph will be explored. The behavior of Widening via optimality neighborhoods
depends a lot on the intersections between di�erent neighborhoods, and distri-
bution of edges in the graph GFT−k. For large enough neighborhoods, however,
the distribution of paths to each model at level l will be close to uniform, due to
the fact that the re�nement graph is a lattice. The size of the neighborhood has
to be signi�cantly smaller than the number of parallel workers, in case of a very
non-uniform distribution, in order to be able to expect good performance from
Widening via optimality neighborhoods. Experimental results show that while
theoretically in general we cannot expect in the worst case, that Widening via
neighborhoods performs as well as the Top-k, in practice Widening via neighbor-
hoods performs comparatively well to the method, which uses communication,
while at the same time having a much better running time.

8. Related Work

Speed-Up Through Parallelization. For the vast majority of paral-
lelizations of data mining algorithms, the aim is to improve e�ciency. Compre-
hensive surveys are found in [20,23,33,34]. A large amount of work focuses on the
parallelization of decision tree learning. One of the earliest distributed decision
tree algorithms, SPRINT [27], has served as the basis for many subsequent paral-
lel decision tree approaches. Some noteworthy examples include [32] (employing
data parallelism), [8] (using task parallelism), and [22,28] (presenting hybrid ap-
proaches). Extensive surveys exist in the area of parallel association rule mining
algorithms [31]. Parallelism in clustering algorithms has been used for both ef-
�cient cluster discovery and more e�cient distance computations. Partitioning
clustering algorithms are parallelized mostly using message-passing models, ex-
amples are presented in [9,19]. Examples for hierarchical clustering, which is more
costly, include [11,25]. However, all these algorithms are using parallel techniques
to achieve speed-up and not solution quality.

Model Quality Improvement. A number of papers concentrate on
improving the accuracy of the models. Some approaches learn more models to be
used in concert (ensembles) or in a randomized fashion (meta heuristics).

Ensembles use multiple models to obtain better predictive performance
than could be obtained from any of the constituent models. The most notable
examples are bootstrap aggregating or bagging [5], boosting [26], and random
forests [6]. However, these methods do not result in a single interpretable model.
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Learners based on genetic algorithms are naturally parallelizable by paral-
lel execution of independent copies of a genetic algorithm.This results in improved
accuracy [29]. These methods have a randomized approach to search space ex-
ploration, which is contradictory to the goal of Widening.

Parallel Local Search. Di�erent local search metaheuristics include
simulated annealing [21],metaheuristic approach for approximating the global op-
timization in a large, typically discrete, search space, tabu search in [12�15, 24].
Large neighborhood search methods [19] aim to explore complex neighborhood
structures e�ciently by the use of appropriate heuristics, which do not require
full explicit enumeration.

Parallel variants of neighborhood-based metaheuristics [30] and the state-
of-the-art surveys [7,10], as well as the book [2], which present the recent develop-
ments in the �eld of parallel metaheuristics. Most parallel approaches are focused
on improving the running time of the sequential approaches. Other parallel ap-
proaches are focused on improving the running time and the solution quality,
however, they use communication between parallel workers.

The type 1 source of parallelism is usually found within an iteration of
the heuristic method, where possible moves are evaluated in parallel and the best
one is selected. This strategy of low-level parallelism is only focused on improving
the e�ciency of the computation. It does not aim at achieving better exploration
and, as a consequence, higher quality of the obtained solution.

The type 2 approach achieves parallelism by partitioning the set of decision
variables. The partitioning reduces the size of the solution space, but needs
to be repeated to allow the exploration of the complete solution space. This
parallelization approach leads to exploring di�erent solutions from the solutions
explored in the sequential version of the same heuristic method. This approach
still bears no resemblance to Widening in terms of its goals and implementations.

In type 3, the parallelism is obtained from multiple concurrent explo-
rations of the solution space. One can di�erentiate several subtypes of this multi-
ple walk approach, based on the lack or presence of cooperation, synchronization
between workers and others. Type 3 approaches, also called multiple walks, or
multiple runs bear similarity to Widening, and they explicitly have a goal to also
increase the search space exploration, and solution quality, although in most cases
this is a secondary goal.

In [7], the goal of improving the solution quality as a result of parallel
multistart heuristics is explicitly stated and reported in several parallelization
cases. Evaluation of the neighboring solutions in parallel leads to improvement in
e�ciency, while the concurrent exploration of the search space often leads to an
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improved solution quality. In [2], parallel metaheuristics are viewed as a separate
class of heuristics all together. Often the parallel implementation does not return
the same solution as the sequential implementation and the authors suggest that
evaluation criteria based on the notion of solution quality have to be added to
speedup measures, when evaluating parallel metaheuristics.

The biggest progress in this �eld has been made with the approaches that
are based on cooperative multiple walks. They can be synchronous and asyn-
chronous in nature. These approaches bear similarity with some of the motiva-
tions behind Widening. The idea about better solution quality and better search
space exploration are clearly stated. In general, these implementations outper-
form the serial methods in solution quality. However, synchronous cooperative
approaches create a lot of overhead, due to the need of constant communication.
Hybrid metaheuristics can be both, multiple independent runs (MIRs), in which
there is no cooperation between the parallel workers, and cooperative multistart
searches. This type of approaches for multistart runs have shown the best perfor-
mance with respect to e�ciency and solution quality. Path relinking and scatter
search [16] are two approaches commonly used in hybridization of metaheuristics,
which use long term memory in order to direct the search into promising areas of
the search space.

When developing strategies for Widening, we are interested in sophisti-
cated strategies that are focused on structured search space exploration, espe-
cially ones without communication. On the other hand, in the standard MIR
approaches the only thing done to prevent the parallel workers from investigating
the same solutions is a di�erent starting point. In newer strategies, multiple runs
are used, with the best solution as a seed. While a lot of progress has been made
in search space exploration, especially when it comes to the cooperative multiple
walks, they are focused on improving the exploration via exchanging information
or via adding randomization/genetic search hybridization approaches. Even more
sophisticated strategies, such as path relinking, while leading to improved quality
solution, are not taking advantage of the parallel compute resources for better
exploration.

9. Conclusion and Future Work. From a theoretical perspective,
the number of parallel workers necessary to guarantee for No

k a performance equiv-
alent to that of Top-k is, generally speaking, very large. However, the experimen-
tal demonstrations show that the di�erence in solution quality is not that large
between the two methods. This can be due to the fact that the greedy algorithm
for the set cover problem is already known to perform well. Still, given a suf-
�cient number of parallel resources and good partitioning strategy, the need for
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communication decreases. The experimental results show a vast di�erence be-
tween the runtime of the two methods, neighborhood-based Widening and Top-k
Widening. The synchronized communication between the parallel workers indeed
produces great overhead, as expected. The running time is not a�ected by the
size of the neighborhood in this type of neighborhood, optimality neighborhood,
because this neighborhood is built using a distance measure based on the model
quality ψ. This is not true of other types of neighborhoods, where at each step
not only a quality measure is evaluated, but also another distance measure, which
has additional computational costs. The �aws of Widening via optimality neigh-
borhoods are similar to the �aws of Top-k, they are related to lack of diversity
among the solutions. However, due to lack of communication, the chances of ob-
taining similar solutions are greater. Strongly nonuniform intersections between
the neighborhoods cause the search to focus on one area of the search space. This
is also a potential �aw of Top-k. Both, Widening via optimality neighborhoods
and Top-k, bene�t from diversity, which helps to broaden the search and prevent
the exploration of very similar solutions. Apart from explicitly using diversity,
the neighborhood-based Widening approach, No

k , can further bene�t from taking
into consideration the speci�c topology of a given search space. This can be done
either a priori by looking at the topology of the space of model fragments (used
by the re�nement operator to build new models) or by a reactive search strategy
which assesses the probability distribution of intersections during the search and
responds to it.
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