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Abstract. We investigate Residue Number Systems (RNS) of special type
which were recently shown to be useful for some type of computations in
embedded systems. We develop an algorithm for derivation of all quadruples
for RNS under investigation subject to certain restrictions.

1. Introduction. Residue number systems (RNS) are attractive for
computing in digital signal processing applications because their modular design
allows parallel processing in the di�erent modular channels [1, 8, 9, 10]. In com-
putations with RNS the implementation of non-modular operations like division,
sign detection, comparison of numbers, and reverse conversion can be more ef-
fective when a diagonal function, corresponding to Sum of Quotients SQ = 2k,
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is used (see [11, 3] and references therein). Therefore it is important to �nd and
classify RNS with SQ = 2k.

In this note we are interested in the following more general problem�to
investigate RNS with SQ = pk, where p is a prime and k is a positive integer. We
propose an algorithm for �nding quadruples for RNS with such SQ and present
and discuss some results. As a by-product, we introduce a p-ary measure for
balancedness of RNS. Possible applications of such RNS will require p-ary instead
of binary implementations.

We formulate the problem in Section 2 and describe our approach to it
in Section 3. Section 4 is devoted to the algorithm, which follows the previous
argumentation. We discuss the balancedness of the obtained quadruples and give
some examples in Sections 5 and 6, respectively.

2. Residue Number Systems and their Sum of Quotients.
Let m1,m2, . . . ,mn be mutually co-prime positive integers greater than 1, xi ∈
{0, 1, . . . ,mi − 1}, i = 1, 2, . . . , n, be integers, and

(1) X ≡ xi (mod mi), i = 1, 2, . . . , n,

be a system of linear congruences de�ned by these parameters. In RNS, using
the Chinese remainder theorem (see, for example, [7, Section 3.4]), a solution
X ∈ {0, 1, . . . ,m1m2 . . .mn − 1} of the system (1) is associated with the n-tuple
(x1, x2, . . . , xn) and subsequently this n-tuple is used in operations instead of X.

Denoting

M =

n∏
i=1

mi, Mi =
M

mi
, i = 1, 2, . . . , n,

(the numberM is called dynamical range) one considers the sum of quotientsMi,

SQ :=
n∑

i=1

Mi.

The number SQ is also called diagonal modulus. For example, the diagonal modu-
lus is instrumental in the de�nition and the performance of the so-called diagonal

function [5, 6]

D(X) :=

n∑
i=1

kixi (mod SQ),

where the integers ki ∈ {1, 2, . . . , SQ− 1} are de�ned by the congruences

kimi ≡ −1 (mod SQ).



Quadruples for RNS with sum of quotients a power of a prime 45

Diagonal function can be also used in RNS to binary conversion [2].

It was observed that diagonal moduli of special binary representations
(very low or very high Hamming weight) are capable to provide RNS with good
performance (see [11]). Classi�cation problems for small (with n = 3 and 4)
moduli sets resulting in diagonal modulus SQ = 2k − 1 or 2k were considered
in [3]. The case n = 6 with SQ = 2k was considered in [4].

We are interested in the following generalization of this problem�to in-
vestigate moduli sets with Sum of quotients SQ = pk, where p is a prime (�xed in
advance) and k is a positive integer. Thus we search for SQ = pk with n mutually
co-prime modules mi, i = 1, 2, . . . , n. Assuming that p is a �xed prime number,
we need to analyze the Diophantine equation

(2) pk =
M

m1
+
M

m2
+ · · ·+ M

mn
,

where M = m1m2 . . .mn and (mi,mj) = 1 whenever i 6= j. It is easy to see that
(mi, p) = 1 for every i = 1, 2, . . . , n.

The case n = 2 is trivial, since (2) is reduced then to

m1 +m2 = pk

and the solutions are given by all pairs (m1, p
k − m1) with (m1, p) = 1 and

1 < m1 < pk. For n = 3, equation (2) becomes

m1m2 +m2m3 +m3m1 = pk,

which has too many solutions and even a brute force approach can provide a large
amount of them. Thus n = 4 is the �rst interesting case, although a complete
description of the solutions seems unattainable. We will present an heuristic and
computational approach with an algorithm for �nding all solutions of (2) for
n = 4 with limited modules. More precisely, our goal is to provide an algorithm
for classifying all RNS quadruples (m1,m2,m3,m4) with SQ = pk, where the
modules mi are bounded from above by some constant. In our implementation
we set the restrictions mi ≤ 10000, i = 1, 2, 3, 4.

3. Our Approach. We shall use several times the following simple
lemma. We use the notation vp(m) for the maximum power of p which divides m

(i. e., the ratio m/pvp(m) is an integer which is co-prime with p; vp(m) is a non-
negative integer). For example, v2(54) = 2, v3(54) = 3, v5(100) = 2, v5(101) = 0.
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Lemma 1. Let u and ` ≥ 2 be positive integers and

pu = a1 + a2 + · · ·+ a`,

where a1, a2, . . . , a` are positive integers. Then the two smallest among the non-

negative integers vp(a1), vp(a2), . . . , vp(a`) are equal.

P r o o f. Assume for a contradiction (and without loss of generality) that

vp(a1) < v := min{vp(a2), . . . , vp(a`)}

(i. e., vp(a1) is the smallest among the non-negative integers vp(a1), vp(a2), . . . , vp(a`)
and it is unique with this property). Since u > v (otherwise pu ≤ pv ≤ a2 <
a1 + a2 + · · ·+ a`), it follows that

0 ≡ pu = a1 + a2 + · · ·+ a` ≡ pvp(a1)b1 (mod pv),

which is impossible (here the positive integer b1 = a1/p
vp(a1) is coprime with p).

�
The �rst step in our investigation will be to represent the equation (2) in

such a way that Lemma 1 would be e�ective. This can be done di�erently for
di�erent n and even for the same n, when n is large. In all cases we build our
algorithms on the investigation of sums of two of the variables mi.

In what follows we already focus to the case n = 4. The equation (2) can
be written as

(3) pk = m1m2(m3 +m4) +m3m4(m1 +m2).

It follows now from Lemma 1 (with ` = 2; note that mi are coprime to p) that

(4) vp(m1 +m2) = vp(m3 +m4) = ω1 ≥ 0,

where ω1 is integer. Let

m1 +m2 = pω1r, m3 +m4 = pω1s,

where (r, p) = (s, p) = 1. Moreover, (r, s) = 1 because otherwise their common
prime divisor will divide pk, i. e., will be equal to p, which is impossible.

Dividing both sides of (3) by pω1 , we obtain the equation

pk−ω1 = rm3m4 + sm1m2,
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whence we express

m3m4 =
pk−ω1 − sm1m2

r
.

Hence, for �xed m1+m2 = A and m3+m4 = B with vp(A) = vp(B) = ω1

the numbers m3 and m4 are the roots of the quadratic equation

X2 −BX + C = 0,

where

C =
pk−ω1 − sm1m2

r
= m3m4.

This representation is instrumental in our algorithm below since it allows tangibly
faster determination of the feasible pairs (m3,m4) (compared to brute force by
embedded cycles of the sums m1 + m2 = A and m3 + m4 = B). We run all
possible powers pω2 = pk−ω1 in order to �nd these which are divisible by r.

In the above scheme, the following restrictions can be applied:

A ≤ B ≤ 2c4, C ≤ B2/4,

r divides pk−ω1 − sm1m2, B
2 − 4C is a perfect square less than B2, and

m3,4 =
−B ±

√
B2 − 4C

2

are integers in the interval [2, c4], coprime with p. Our implementation uses
c4 = 10000.

4. An Algorithm for Finding Quadruples. The above analysis
can be turned into classi�cation as follows.

Step 1. For �xedA = m1+m2 ∈ [5, 2c4] consider all sumsB = m3+m4 ∈ [A, 2c4]
such that the condition (4) is satis�ed. For each pair (A,B) compute r =
A/pω1 and s = B/pω1 .

Step 2. For every pair (A,B) from Step 1, consider all pairs (m1,m2) with sum
A, (m1,m2) = (m1, p) = (m2, p) = 1, and for every such pair search for
feasible powers of p, say pω2 , such that r divides pω2 − sm1m2. Compute
C = (pω2 − sm1m2)/r.

Step 3. For any quadruple (ω2,m1,m2, B) from Step 2, check whether the roots
(they will be m3 and m4) of the equation X

2−BX +C = 0 are integers in
the interval [2, c4], which are mutually coprime and coprime to p.
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Output: p, (m1,m2,m3,m4), k = ω1 + ω2, SQ = pk.

Theorem 1. The so chosenm1,m2,m3,m4 form an RNS quadruple with SQ = pk.

P r o o f. It is clear from the above that every quadruple (m1,m2,m3,m4)
obtained this way has SQ = pk. Moreover, since the search is exhaustive with
respect to the pairs (m1,m2) and the consequent derivation of m3 and m4 is
uniquely determined in the chosen limits, all such quadruples are found. �

5. Balancedness of Our RNS Quadruples. A measure for bal-
ancedness of RNS was proposed in [4]. Here we consider its p-ary version as
follows.

Let (m1,m2,m3,m4) be an RNS quadruple (with or without SQ = pk).
Denote bi := dlogpmie, i = 1, 2, 3, 4 (of course, this can be generalized for any
number of modules) and

b =
b1 + b2 + b3 + b4

4
.

Then

β :=
4∑

i=1

(b− bi)2

shows the deviation of the quadruple (b1, b2, b3, b4) from the �ideal� quadruple of
equal �widths� bi. It is natural to expect that quadruples with smaller β will
perform better in most applications. Of course, the most interesting1 case comes
with b1 = b2 = b3 = b4 = b, i. e., β = 0.

It is clear that it is easy to construct unrestricted RNS with β = 0.
However, the addition of the condition SQ = pk makes the problem for �nding
well balanced RNS quite di�cult. As we will see in the next section, there are
only two quadruples with β = 0 for p = 2 and none for p = 3 (with moduli less
than 10000).

6. Some Results. We implemented the above algorithm by C++ for
each prime less than 100 with restrictions mi ≤ 10000, i = 1, 2, 3, 4. In the section
we describe some results for p = 2 and p = 3.

6.1. p = 2 There are 165 quadruples with Sum of Quotients SQ = 2k and
mi ≤ 10000, i = 1, 2, 3, 4. The smallest dynamical range M is 4220805 (by the
quadruple (5, 29, 93, 313)) and the largest one is ≈ 1, 768.1015 (see below). The
parameter k is always even, between 20 and 40.

1If β = 0, all parallel computational channels will have the same width. Of course, this can
be done for β > 0, but there will be less e�cient.
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Only two of these quadruples,

(5377, 6253, 7209, 7297), M ≈ 1, 768.1015, k = 40,

(5129, 6041, 6921, 8173), M ≈ 1, 752.1015, k = 40,

have balancedness parameter β = 0. These two quadruples have the largest
dynamical range M among all obtained.

Then come four quadruples with the next possible β = 9/16 = 0.75,
namely

(641, 1025, 1249, 1269), M ≈ 1, 041.1012, k = 32,

(1559, 2667, 2987, 3355), M ≈ 4, 166.1013, k = 36,

(2167, 3943, 4039, 7235), M ≈ 2, 496.1014, k = 38,

(2533, 4353, 4421, 5453), M ≈ 2, 658.1014, k = 38.

The whole list of all 165 quadruples obtained is available from the second
author upon request.

6.2. p = 3 There are 229 quadruples with SQ = 3k and mi ≤ 10000,
i = 1, 2, 3, 4, with dynamical range M between 31450 and ≈ 1, 192.1015. The
parameter k takes all values between 9 and 25 except 10.

The smallest β is 9/16 = 0, 75, attained by 9 quadruples. One of them,

(3457, 6985, 6986, 6989), M ≈ 1, 178.1015, k = 25,

is remarkable with its three very close entries.
The whole list of all 229 quadruples with SQ = 3k is available from the

second author upon request.
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