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Abstract. Numerical integration is a key problem with numerous appli-
cations, including the boundary integral equation method (BIEM). GSL [7]
provides powerful implementations of a broad variety of well-known numer-
ical methods and algorithms. However, its routines have certain limitations:
the numerical integration based on QUADPACK library [2] is implemented
only in the case of one-dimensional functions.

In this paper we present an extension of the GSL numerical integration
routines for the special case of two-dimensional complex-valued functions.
The presented approach is part of our e�ort to build a BIEM software sys-
tem for solving a 3D elastodynamics problem for wave propagation in a
continuously inhomogeneous half-space.
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1. Introduction. Numerical integration is a well-known problem in
numerical analysis [8], however the practical approach to the implementation
of algorithms, even in the case of standard methods, is not a straightforward
problem [6]. Especially in the case of �badly-behaved� integrands [1], and functions
that contain singularities, special care must be taken in the implementation of
numerical methods. In this way, the investigation of such algorithms and the
implementation of programs turns to be an extensive project on its own. For
this reason, in many practical applications, reliable software systems are adopted
when numerical calculation of integrals are needed, especially when the integrands
are actually derived from real-world applications.

Depending on the needs of the experiment, such a software system can be
the environment for technical computing and numerical analysis MATLAB or its
open-source alternative GNU Octave [10]. Another powerful approach is relying
on a system for symbolic calculations, such as Wolfram Mathematica [11, 54�62].
The latter is extremely appropriate when solving problems that are mathemat-
ically formulated, and can perform the needed experiments for rather complex
models, such as in the work of Marinov and Rangelov [9]. The use of systems
for technical computing and symbolic calculations is also an irreplaceable tool for
method veri�cation and prototyping, and is often the preliminary stage prior to
the implementation of the software that provides the �nal tool needed for the
numerical experiment.

In some cases the use of computational systems like Mathematica is not
enough, and speci�c programs need to be implemented. These are applications
that need speci�c methods and algorithms, and also that have to process bigger
amounts of data, or applications that are designed to serve speci�c user needs.
In the latter case, the software is supposed to answer all the requirements of a
complete software system.

The implementation of scienti�c software using a programming language
like Fortran, C/C++, Java or Python can be a complicated and time-consuming
task. For this reason, when standard methods and algorithms need to be im-
plemented, it is better to choose an appropriate scienti�c library that provides
a set of routines. The implementation of such a library is reliable, robust and
su�ciently tested, so that actually the e�ort to re-implement its functionalities
is justi�ed only if these concrete methods are the subject of the investigation. A
good example is the FFTW (�Fastest Fourier Transform in the West�) [5] that is
even used by commercial software systems like MATLAB.

Numerical integration itself completely falls into this category of standard
algorithms, and a number of numerical computational libraries exist that provide
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such a set of routines. For our project, the most appropriate choice is GSL [7],
for a number of reasons. First of all, GSL is well-known and reliable tool. It is
written in the programming language C, while our project is written in C++,
which makes them compatible. Also, GSL provides a broad set of tools besides
numerical integration, which are also needed in our implementation. And lastly,
GSL is part of the GNU Project and is available under GNU General Public
License.

Numeric integration in GSL is based on the QUADPACK library [2], which
was originally written in FORTRAN 77. GSL provides the C re-implementation
of these routines that include algorithms for both non-adaptive and adaptive in-
tegration of general functions. The library covers the following special cases:
quadrature over semi-in�nite ranges, integration of functions that contain singu-
larities, computation of Cauchy principal values, and integrands with an oscil-
latory factor [7]. Regardless of the wide range of provided routines, there is the
signi�cant restriction that all of them calculate the quadrature of one-dimensional
functions.

For many applications, and for our particular application as well, the
integration of much more complicated integrands is needed. Besides, the GSL
routines are written in the language C, and there is the additional restriction
that they work only with global and static functions, when an address of a func-
tion has to be passed as an input of a routine. In this paper we describe an
approach to extend the functionalities of the GSL integration routines to the case
of complex-valued two-dimensional functions. The same approach is applicable if
the integrand is a function of higher dimension. Also, we show an approach to
extend the functionalities of the GSL integration routines in a C++ project.

The presented approach is a part of our implementation of boundary inte-
gral equation method (BIEM) for solving a 3D elastodynamics problem for wave
propagation in a continuously inhomogeneous half-space.

2. GSL Integration of a One-dimensional Function. We start
with the basic example of numeric integration of a function f(x) over [a, b] which
is the standard GSL one-dimensional function quadrature calculation. We will
use the QAGS adaptive integration with singularities, but any other routine in
the library can be applied in absolutely analogous way. In the next sections we
will extend this example �rst to integration of two-dimensional function, and then
to integration of two-dimensional complex-valued function.

First of all, let us de�ne the function used for the example. We will use a
simple function that allows us to verify the result of the integrator:
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(1) f(x) =
logαx√

x
.

The integration routine takes as a parameter the address of a structure
that contains the address of a global function that we would like to integrate. For
that reason the signature of the function to integrate has a prede�ned shape:

Listing 1. De�nition of the one-dimensional integrand

double func ( double x , void * params )
{

double alpha = *( double *) params ;

re turn log ( alpha * x ) / sq r t ( x ) ;
}

The function in Listing 1 must return a double value, and must have two
parameters: a variable of type double that is the argument of the function x, and
a void pointer to store the address of the parameter, in the case of (1) is α = 1.

Then in a program scope after the de�nition of the integrand, we must set
the needed parameters for the integrator. For this basic example it can be done
in the main().

We prepare the structure that represents the function to be integrated:

Listing 2. De�nition of the GSL function structure

double alpha = 1 ; // parameter v a r i a b l e
gs l_funct i on intgr_func ; // GSL func t i on
intgr_func . func t i on = &func ; // address o f the func t i on
intgr_func . params = &alpha ; // parameters

Allocate memory for the integration algorithm workspace that will contain the
sub-interval ranges.

gs l_integrat ion_workspace * wrkspc =
gs l_integrat ion_workspace_al loc (WRKSPC_SIZE) ;

And after that, invoke the integration algorithm using the GSL routine:

Listing 3. Invoke the GSL integration routine

gs l_integrat ion_qags (
&intgr_func , // func t i on s t r u c tu r e
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0 , // l e f t boundary o f the i n t e r v a l
1 , // r i g h t boundary o f the i n t e r v a l
0 , // abso lu t e e r r o r l im i t
ACC, // r e l a t i v e e r r o r l im i t
WRKSPC_SIZE, // workspace s i z e
wrkspc , // workspace
&r e su l t , // est imated r e s u l t
&e r r o r // est imated e r r o r

) ;

where intgr_func is the function structure to be integrated, the integration is
over [0, 1], absolute error limit is 0, ACC is a constant that de�nes the relative
error limit, WRKSPC_SIZE is a constant the de�nes the workspace size, wrkspc is
a pointer to the workspace, result will contain the estimated quadrature, and
error will contain the estimated error.

Finally, we must free the allocated memory:

gs l_integrat ion_workspace_free ( wrkspc ) ;

Running this example will give us the following result:

Result : −4.00000000000008527
Exact r e s u l t : −4
Estimated e r r o r : 1 .35447209004269098 e−13
Actual e r r o r : −8.52651282912120223e−14
I n t e r v a l s : 8

which as expected for this input function shows a very good accuracy of the GSL
implementation of the integration algorithm. The challenging task in our case is
to �nd a way to apply the routine to functions of type g(x, y), where x, y ∈ R,
and g ∈ C.

3. Extension to Two-dimensional Functions. Since GSL provides
integration of one-dimensional functions only, we have to �nd a way to apply these
procedures to two-dimensional functions, calculating the double integral. Here we
use the idea expressed by Fubini's theorem that allows us to represent a double
integral as an iterated integral (see [4, 919]).

Theorem 1. Let f(x, y) is a continuous function on the rectangular region R :
a ≤ x ≤ b, c ≤ y ≤ d. Then the following equality holds:
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(2)

∫∫
R
f(x, y) d(x, y) =

∫ b

a

∫ d

c
f(x, y) dy dx.

To implement the iterated integral, �rst we have to present the function
f(x, y) in the form that can be accepted by the GSL routines. The simple function
that we will use for the purpose of the example this time is:

(3) f(x, y) = xky,

where k is a given constant.

Listing 4. Two-dimensional function (3) that has to be integrated

double func ( double x , void * params )
{

double y = ( ( double *) params ) [ 0 ] ;
double k = ( ( double *) params ) [ 1 ] ;

r e turn pow(x , k ) * y ;
}

Note how the pointer params is used to store both the second variable y and the
parameter k. The signature of the function has the same shape, as the signature
of the one-dimensional function in Listing 1.

The function that represents the outer integral is a function of y, and for
each particular value of y the integration on x is performed:

(4)

∫ (∫
f(x, y) dx

)
dy.

The implementation of (4) again is a function with a signature in the
format, that can be passed to the GSL integration routines:

Listing 5. Outer integrand has the prede�ned shape of the function signature

double out In teg r ( double y , void * params )
{

$\ ldo t s $
re turn r e s u l t ;

}
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To perform the integration of f(x, y) with �xed y, and x as an integration
variable, y has to be set as a parameter of the inner integrand. Then the GSL
function structure is built, and the integrator is invoked, just like in the case of
Listing 3.

( ( double *) params ) [ 0 ] = y ;

// memory f o r the sub−i n t e r v a l ranges ,
// r e s u l t s and e r r o r e s t imate s
gs l_integrat ion_workspace * wrkspc =

gs l_integrat ion_workspace_al loc (WRKSPC_SIZE) ;

// v a r i a b l e s to pass to i n t e g r a t i o n func t i on
double r e s u l t = 0 ; // est imated r e s u l t
double e r r o r = 0 ; // est imated e r r o r

// func t i on to i n t e g r a t e
gs l_funct i on intgr_func ; // GSL func t i on
intgr_func . func t i on = &func ; // address o f the func t i on
intgr_func . params = params ; // parameters

// i n t e g r a t i o n a lgor i thm : inner integrand
gs l_integrat ion_qags ( $\ l do t s $ ) ;

As �nal step in the function outIntegr (Listing 5), we must free the
allocated memory for the workspace, and return the result:

gs l_integrat ion_workspace_free ( wrkspc ) ;
r e turn r e s u l t ;

Now the outer integrand function must be integrated by itself in a separate
function, lets say, integrate(). This time there is no restriction to the signature
of the function, because this function itself is not going to be an input of an
integration routine.

First the parameter k must be set as a second element of the parameter
array:

const i n t PRM_NUMB = 2 ;
double params [PRM_NUMB] ;
params [ 1 ] = k ;
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Again, the memory for the workspace must be allocated:

gs l_integrat ion_workspace * wrkspc =
gs l_integrat ion_workspace_al loc (WRKSPC_SIZE) ;

Build the GSL function structure:

g s l_funct i on intgr_func ; // GSL func t i on
intgr_func . func t i on = &out In teg r ; // address o f the func t i on
intgr_func . params = params ; // parameters

And �nally, call the integration routine, free workspace memory, and return the
result of the iterated integral:

g s l_integrat ion_qags ( $\ l do t s $ ) ;
gs l_integrat ion_workspace_free ( wrkspc ) ;
r e turn r e s u l t ;

The call of the function gsl_integration_qags() is similar, as in the case of
Listing 3.

The value of integral calculated in this basic example is 0.0116279, and
as a simple veri�cation shows, this is the expected valued for the example input
function over the interval [0, 1].

It is important to note that the functions that can be passed as an input
of the GSL integration routines must be global functions, or if they are class
member functions, they must be static. Unfortunately, this restriction makes
almost pointless the e�ort to pass a member function to the integrator. Also,
the memory that is used for the integration workspace is allocated once for the
integration of the outer integrand, and then it is allocated and deleted each time
the inner integrand is passed to the integrator. If many integral values must be
calculated, this process may impede signi�cantly the execution of the program.

4. Extension to Two-dimensional Complex Functions. The
�nal stage is to extend the idea from the previous section for the speci�c case of
complex-valued functions of real-valued arguments:

(5) g(x, y), where x, y ∈ R, and g ∈ C.

First of all, we will go around the problem of workspace allocation and
de-allocation, by setting the pointer to the integration workspace as a global
variable. Also, we will keep the address of the complex-valued function that has
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to be integrated in a global pointer, that will allow us to keep the signatures of the
functions in the format that is required by the GSL procedures (see the signature
of the function in Listing 1).

Listing 6. Global variables, enclosed in a workspace, preserve the shape of the functions
signatures and prevent multiple memory allocation

namespace i n t e g r
{

complex<double> (* ptr_func_cmlx_glb )
( double , double ) = nu l l p t r ; // complex func t i on

double left_lmt_x_glb = 0 . 0 ; // lower l im i t o f x
double rght_lmt_x_glb = 0 . 0 ; // upper l im i t o f x
i n t wrksp_size_glb = 0 ; // workspace s i z e
gs l_integrat ion_workspace * // i n t e g r a t i o n workspace

ptr_wrkspc_glb = nu l l p t r ;
}

We enclose the needed global variables in a name space that introduces a certain
level of naming security. Using global pointers and variables, memory for the
workspace can be allocated only once in the client program before the whole inte-
gration process, and then de-allocated only once when integration is completed.
Thus, the number of memory management operations is considerably reduced.

The integration of the complex-valued function is initiated in a function
intgrt2dc() that has the following form:

Listing 7. Integrated a complex valued function of two real arguments

complex<double> // r e s u l t i n g complex number
i n t g r t 2dc (

complex<double> (* ptr_func )
( double , double ) , // func t i on to i n t e g r a t e

double left_lmt_x , // lower l im i t o f x
double rght_lmt_x , // upper l im i t o f x
double left_lmt_y , // lower l im i t o f y
double rght_lmt_y // upper l im i t o f y
)

{
// i n i t i a l i z e g l oba l v a r i a b l e s
i n t e g r : : ptr_func_cmlx_glb = ptr_func ;
i n t e g r : : left_lmt_x_glb = left_lmt_x ;
i n t e g r : : rght_lmt_x_glb = rght_lmt_x ;
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complex<double> r e s u l t ;

// i n t e g r a t e r e a l part o f the func t i on
r e s u l t . r e a l ( i t r I n t g rndRea l ( left_lmt_y , rght_lmt_y ) ) ;

// i n t e g r a t e imaginary part o f the func t i on
r e s u l t . imag ( i t r IntgrndImag ( left_lmt_y , rght_lmt_y ) ) ;

// s e t g l oba l v a r i a b l e s to zero
i n t e g r : : ptr_func_cmlx_glb = nu l l p t r ;
i n t e g r : : left_lmt_x_glb = 0 ;
i n t e g r : : rght_lmt_x_glb = 0 ;
i n t e g r : : wrksp_size_glb = 0 ;

re turn r e s u l t ;
}

The real and imaginary parts of the resulting complex number in Listing 7 are
integrated separately, the complex number is constructed, and then returned as
value of the function integral. The real and imaginary parts are integrated anal-
ogously, that is why we will describe the real part calculation.

The iterated integral for the real part of the function is calculated in the
procedure itrIntgrndReal(), following the example from the previous section,
in which the GSL integration routine is triggered:

double r e s u l t = integrGSL (
&outIntgrndReal , // outer integrand
&par , // s t o r e parameter
left_lmt_y , // lower l im i t o f y
rght_lmt_y , // upper l im i t o f y
i n t e g r : : ptr_wrkspc_glb , // i n t e g r a t i o n workspace
i n t e g r : : wrksp_size_glb , // workspace s i z e
GSLPRC_ACC // accuracy bound

) ;

The outer integrand that is iterated over is a function outIntgrndReal that trig-
gers the GSL integration routine by passing the address of a function funcReal().
The role of the latter one is to calculate the real part of the input complex-valued
function using the global pointer ptr_func_cmlx_glb:
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double y = * ( ( double *) params ) ;
r e turn i n t e g r : : ptr_func_cmlx_glb (x , y ) . r e a l ( ) ;

In this way the real part of the function g(x, y) is integrated as an iterated
integral, but also the workspace is going to be allocated only once for the whole
set of integrals that have to be calculated by the client program. The integration
of the imaginary part of the function is performed in the same way.

5. Conclusions. The presented extension of the GSL routines for the
case of the complex-valued two-dimensional functions is part of our project that
implements BIEM software system for for solving a 3D elastodynamics problem
for wave propagation in a continuously inhomogeneous half-space. We have tested
the approach with calculation of integrals of a fundamental solution of the method,
where each separate integral is calculated for a 3 × 3 functor of complex-valued
functions. The integrals that are calculated per experiment are at least 3528 in
the minimal case, and the time consumed by the method is around 7 minutes
on standard PC with Intel Core i3-3220 CPU 3.30GHz × 4, running on a Linux
distribution.

We must note that because of the characteristics of the fundamental so-
lution, in some cases it may be considered a �badly-behaved� integrand and it
contains singularities that cannot be processed by the regular integration algo-
rithms, even by the QAGS adaptive integration GSL implementation. In these
cases we adopt a Monte Carlo method for integration. The reason why we do not
process all integrands using the Monte Carlo method is that the execution time of
the program rises dramatically, and also the traditional worse accuracy of those
methods.

A future improvement of the presented approach is to ensure that the
integration procedures are thread-safe, and to adopt parallel computing of the
separate independent integrals.
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