
Serdica J. Computing 13 (2019), No 1�2, 71�80 Serdica
Journal of Computing

Bulgarian Academy of Sciences
Institute of Mathematics and Informatics

ON FUZZY MATCHING OF STRINGS
∗

Lyubomir Filipov, Zlatko Varbanov

Abstract. Fuzzy matching is a widely used technique in computer-assisted
translation and some other �elds (it is implemented in most database engines
and is used in autocompleting of data, for example). In this paper, fuzzy
matching in the aspects of approximate string matching is investigated. Ba-
sic algorithms like Soundex, Bitap, Boyer-Moore [1, 2] are covered. Using
the results about those algorithms, several database engines are compared
and a new way of handling fuzzy matching is o�ered.

1. Introduction. Fuzzy matching is known technique that is proven
to work with matches that are not 100% perfect when �nding correspondences
between segments of a text and entries in a database. In some database engines
(PostgreSQL, MongoDB) fuzzy matching is implemented but practically its usage
is in the aspects of approximate string matching. Our research is focused to
database systems and for that reason here we do not consider the aspects of fuzzy

ACM Computing Classi�cation System (1998): H.3.3, I.5.4.
Key words: fuzzy matching, approximate string matching.
*This research was partially supported by University of Veliko Tarnovo Science Fund under

Contract FSD-31-653-07/19.06.2017.

72 Lyubomir Filipov, Zlatko Varbanov

matching related to computer-assisted translation (about this topic see [6], for
example).

In fuzzy matching if we have �Thomas Johnes�, �Tom Johnes�, and �Tomas
Johnes�, three of them will be all linked to the same person because it depends on
how they sound and how they are pronounced. One of the best known algorithms
based on homophones (a word that is pronounced the same as other word but
varies in meaning) is Soundex. As is pointed out from Knuth [3] the �rst letter
of input is retained and after that numbers are assigned to the remaining let-
ters. Soundex could be named the ancestor of all homophones based algorithms.
Soundex is used in ASR (Automated Speech Recognition)[5] because it is faster to
match names preprocessed with the algorithm to the correct corpus entry. Bitap
algorithm [4] is widely related to fuzzy matching and it is used in the Unix agrep

function. Such algorithms are used within DNA pairs [7]. A common approach is
used behind one of the top e�ective Unix functions grep.

2. Preliminaries. Generally, the problem for recognition of similar
names in their various versions is an important practical task but in the current
work the initial interest to this subject arose from a practical problem related to
public utilities (electric power companies, water supply systems, natural gas com-
panies, etc.). Some companies use only their websites where to post information
there will be issues with the corresponding public utilities (no automated system
to alarm via web services, SMS, or email messages). It is not convenient for the
clients to watch over their websites all the time.

It is the main reason to create a speci�ed web crawler that checks given
website in every �ve minutes and it noti�es all the people that were on the queue.
After downloading the information for some time we have noticed that there are
some mismatches between the ways how the streets and neighborhoods are named.
It occurred because there are people that write the names of the streets/neigh-
borhoods on keyboard without using a common name system. Because of typos
and di�erent styles of spelling the names there are mismatches in the data. For
that reason we started to test di�erent database engines and systems that could
help us to determine what is the exact name of the street/neighborhood that is
referenced.

Approximate string matching [4]. The approximate string matching
problem is to �nd all locations at which a query of length m matches a substring
of a text of length n with k-or-fewer di�erences.

Fuzzy matching is a partial case of full-text search. It refers to searching
a single sequence or collection in a full text database. It di�ers from search based

Fuzzy Matching of strings 73

on metadata or on parts of the original texts represented in databases (titles,
abstracts, selected sections, or bibliographical references). It examines all of the
words in every stored document as it tries to match the search criteria. Unix grep

tool is performing full-text search with a strategy called �serial scanning� which
scans the contents of the documents directly on the �y. In database platforms
this search is organized using indexes (scanning the text of all the documents and
building a list of search terms) and queries are performed on the referenced index,
not on the original text.

Test Preparation. In order to compare several sources of information
we need a common database shared among all items. We have generated a special
database that contains company names. The relational database table contains
only two �elds id , which is of type INT and companyName which is of type
VARCHAR(255). The generated table consists of 50 000 rows of unique
company names. This database was applied to di�erent database engines and
the results were compared.

MySQL is a relational database management system based on SQL (Struc-
tured Query Language). The application is used for a wide range of purposes,
including data warehousing, e-commerce, and logging applications. However, the
most common use of MySQL is for the purposes of web databases.

Fuzzy Matching with MySQL. If we have the company name �Agamba�
and there is one typo in it, we have to make 3∗n+1 queries where n is the length
of the string (company name in our case). This is very important because if there
are any issues we have to check the actual letter, the symbol before the actual
letter, and the symbol after that. In the case for �Agamba�:

_Agamba, gamba , _gamba , A_gamba, Aamba, A_amba, Ag_amba,
Agmba, Ag_mba, Aga_mba, Agaba , Aga_ba , Agam_ba, Agama ,
Agam_a, Agamb_a, Agamb, Agamb_, Agamba_

In MySQL, it has to be implemented using LIKE query. However (accord-
ing to the documentation), LIKE queries could not be optimized and this means
that they are going to perform a full search. The actual SQL query in MySQL
looks like this:

SELECT ∗ FROM
` companyList `

WHERE
`companyNames ` LIKE '%_Agamba%'

OR `companyNames ` LIKE '%gamba%'
OR `companyNames ` LIKE '%_gamba%'

74 Lyubomir Filipov, Zlatko Varbanov

OR `companyNames ` LIKE '%A_gamba%'
OR `companyNames ` LIKE '%Aamba%'
OR `companyNames ` LIKE '%A_amba%'
OR `companyNames ` LIKE '%Ag_amba%'
OR `companyNames ` LIKE '%Agmba%'
OR `companyNames ` LIKE '%Ag_mba%'
OR `companyNames ` LIKE '%Aga_mba%'
OR `companyNames ` LIKE '%Agaba%'
OR `companyNames ` LIKE '%Aga_ba%'
OR `companyNames ` LIKE '%Agam_ba%'
OR `companyNames ` LIKE '%Agama%'
OR `companyNames ` LIKE '%Agam_a%'
OR `companyNames ` LIKE '%Agamb_a%'
OR `companyNames ` LIKE '%Agamb%'
OR `companyNames ` LIKE '%Agamb_%'
OR `companyNames ` LIKE '%Agamba_% ';

Tests were performed on an Intel(R) Core(TM) i3-2350M CPU @ 2.30GHz
with 8GB DDR2 RAM, with a regular HDD. The results on that machine were
15 results in 30 ms. MySQL is not e�ective to be used for fuzzy matching.
If we have a sequence with two mistakes, then we have to perform (3 ∗ n + 1)2

checks.

Apache Lucene is a search engine library written in Java, that is marked
as high-performance and full-featured. It is pointed out to be suitable for any
application that requires full-text search.

Algolia is a hosted full-text, numerical, and faceted search (exploring
information by applying multiple �lters on information elements with multiple
explicit dimensions) engine capable of delivering real-time results from the �rst
keystroke. Its model is �exible enough to accept the evolution and the multi-
faceted nature of entities. As the number of documents is not bound to any
limitation, then the scalability is an important expectation [2].

Fuzzy Matching with Algolia. Algolia is a paid service which runs
over the top of Apache Lucene. The power of Algolia comes from their structure
and servers. Compared to the others it is a hosted service which means that
all the data should be hosted on their servers (it would be a drawback for certain
cases where the data is really sensitive). It is a paid service which means that it
is not suitable for all kinds of projects. When data be applied, the desired indexes
are auto built which is easier than building the indexes by hand (especially when
the user is not a database expert). It also supports fuzzy matching calls by default

Fuzzy Matching of strings 75

without running extra query or writing custom functions. The results acquired
from Algolia were 15 results in 1 ms.

ElasticSearch (or simply Elastic) is a search engine based on Lucene. It
provides a distributed, multitenant-capable full-text search engine with an HTTP
web interface and schema-free JSON documents. ElasticSearch is developed in
Java and it is released as open- source under the terms of the Apache License.

Fuzzy Matching with Elastic. It is open-source and it could be in-
stalled on own servers. Elastic supports fuzzy matching by default but it has a
limitation of up to two mistakes in a string sequence. It is not really straightfor-
ward to move all the data from another database or service to Elastic. When it
comes to use Elastic, the users have to build the indexes by themselves. Building
the correct indexes in this structure is very important (otherwise the results won't
be correct). Using Elastic we have received 15 results in 5ms, but we have to
notice that Elastic was installed on our machine, not on a hosted server environ-
ment. Compared to Algolia, Elastic could be used if the data is sensitive and
should not be open, if there are enough server resources and if there is database
expert who can create the correct indexes.

3. Modi�cation. After careful investigation, it was found that the
mistakes occurred when typing on a keyboard are well processed in Google's
services.

Google Suggest Queries. When search in Google, there is a feature
that helps someone to get the desired content. If one is searching for �coding
thoery�, the message �Did you mean: coding theory� will appear. The Google
search engine analyses all the searches that have been made and it is storing
information about the location from which the search is coming, the results that
have been shown and how many times user has clicked on certain items from the
list. All this information based on the region and the users preferences is held by
Google.

If we perform a query to

http : //suggestqueries.google.com/complete/search?output = toolbar&hl =
en&q = ninaj

trying to �nd an information, we will get the following JSON response:

[" n ina j " ,
[" n in j a " ,

" n in j a t u r t l e s " ,
" n in j a b lender " ,

76 Lyubomir Filipov, Zlatko Varbanov

. . .
] ,
{ " goog l e : s ugg e s t r e l e vanc e " : [

1250 ,
601 ,
600 ,

] ,
. . .

}
]

In Table 1 the query parameters and the corresponding descriptions are
listed. First part of JSON array shows what we have been searching for ninaj
which is typo of the word ninja. After that we get the most famous results among
other users that have type ninaj, which are also marked with suggestrelevance.
From the result we could see that ninja is the �rst suggestion.

http : //suggestqueries.google.com/complete/search?output = toolbar&hl =
bg&q = ninjas

Table 1. The query parameters and their descriptions

Parameter Description

output Type of response you want.
hl Language's 2 letter abbreviation.
q Your search item.

The API is really powerful giving the opportunity to select what kind of output
the user expects (XML or JSON). Using the hl property the end users could
provide the API with information from which region they need results (whether
it will be based on all the stored results from Bulgaria, USA, Germany, etc).

Typos. When typing on keyboard people are making lots of typos but
most of them are already well investigated in SEO optimization of websites.
If we have to classify typos we could point out: Skip letter, Double letters,
Reverse letters, Skip spaces, Missed key, Insert key.

We need to generate all possible errors in the words that we have if
the set of words is known and it is not so large. In our case we have to generate all
possible typos that could be made with the names of the streets/neighbourhoods.
After that, we have to process all of these typos to the Google Suggest API and
store the received results in a database. This means that each time when we get

Fuzzy Matching of strings 77

no 100% match we could check our database in order to �nd the valid name of
the street/neighbourhood.

The generation of typos can be made on keyboard press and it will not
be based on the keyboard layout. It is easier to �nd all possible combinations of
keyboard press typos and then apply di�erent keyboard layouts over them.

Table 2. The keyboard enumeration used

∼K1
1K2

2K3
3K4

4K5
5K6

6K7
7K8

8K9
9K10

0K11
−K12

TABK13
QK14

WK15
EK16

RK17
TK18

YK19
UK20

IK21
OK22

PK23
[K24

Caps lockK25
AK26 SK27 DK28 FK29 GK30 HK31 JK32 KK33 LK34 ;K35

′
K36

<K37 ZK38 XK39 CK40 VK41 BK42 NK43 MK44 ,K45 .K46

If we use the standard keyboard, we could get all the neighbouring keys of �J� ,
which are H, K, U, I, N, M. In Table 2, a map of these with ids like Q�is K14,
W�K15, E�K16, etc., is presented. This means that J will be K32, H�K31, K�
K33, N�K43, M�K44, U�K20, and I�K21. With respect to the key �F� (K29)
the neighbouring keys are: R�K17, T�K18, D�K28, G�K30, C�K40, V�K41.
Once we have this map generated we could apply di�erent layouts on it. For
example, we could apply Bulgarian Phonetic Layout and generate all the possible
typos with the letter �É� or �Ô� . The essential idea is that we are not restricted
by the layout in order to generate all possible combinations with six neighbours.
It doesn't require a special algorithm but is only a list of all possible neighbours.

K1�K2, K13, K14

K2�K1, K3, K13, K14

K3�K2, K4, K14, K15

K4�K3, K5, K15, K16

K5�K4, K6, K16, K17

K6�K5, K7, K17, K18

K7�K6, K8, K18, K19

K8�K7, K9, K19, K20

K9�K8, K10, K20, K21

K10�K9, K11, K21, K22

K11�K10, K12, K22, K23

K12�K11, K23, K24

K13�K1, K14, K25

K14�K2, K3, K13, K15, K25, K26

K15�K3, K4, K14, K16, K26, K27

78 Lyubomir Filipov, Zlatko Varbanov

K16�K4, K5, K15, K17, K27, K28

K17�K5, K6, K16, K18, K28, K29

K18�K6, K7, K17, K19, K29, K30

K19�K7, K8, K18, K20, K30, K31

K20�K8, K9, K19, K21, K31, K32

K21�K9, K10, K20, K22, K32, K33

K22�K10, K11, K20, K22, K33, K34

K23�K11, K12, K22, K24, K34, K35

K24�K12, K23, K35, K36

K25�K13, K26

K26�K13, K14, K25, K27, K37, K38

K27�K15, K16, K26, K28, K38, K39

K28�K16, K17, K27, K29, K39, K40

K29�K17, K18, K28, K30, K40, K41

K30�K18, K19, K29, K31, K41, K42

K31�K19, K20, K30, K32, K42, K43

K32�K20, K21, K31, K33, K43, K44

K33�K21, K22, K32, K34, K44, K45

K34�K22, K23, K33, K35, K45, K46

K35�K23, K24, K34, K36, K46

K36�K24, K35

K37�K25, K26, K38

K38�K26, K27, K37, K39

K39�K27, K28, K38, K40

K40�K28, K29, K39, K41

K41�K29, K30, K40, K42

K42�K30, K31, K41, K43

K43�K31, K32, K42, K44

K44�K32, K33, K43, K45

K45�K33, K34, K44, K46

K46�K34, K35

Once having the list above we could apply di�erent layouts to it in order
to generate the possible mistakes (according to Table 2). It is easy by simply
providing an array containing the layout data. In order to do this, we need an

Fuzzy Matching of strings 79

initial array of the possible typos related to the layout that we are interested in
and an input string sequence S = s1, s2, ..., sn of length n. For each symbol si
(1 ≤ i ≤ n) we �nd the corresponding symbol in the layout array. After that we
generate all possible typos related to that symbol according to Table 2, and store
them in the output array.

4. Conclusions. If there is a known set (with relatively small number
elements) of fuzzy information, we could generate all the possible typos corre-
sponding to any string sequence with elements from this set and after that to
store the obtained results in a database. Once we have all the data we could
make queries to Google Suggest Queries API and get the most common infor-
mation that was expected when having a given typo (Skip letter, Double letters,
Reverse letters, Skip spaces, Missed key, Insert keys). After matching the typos
with the correct phrases we could continue with scraping our data making sure
that we could handle everything that is coming.

The proposed approach is usable in autocomplete and search with typos
related to di�erent systems. It is not practically usable for large sets of data.

Remark: The authors are aware that in some database engines fuzzy
matching is implemented as an internal command, but the current approach is
speci�c to similar problems as described above (related to issues of companies for
public utilities).

REFERENCES

[1] Boyer R., J. Moore. A fast string searching algorithm. Communications

of the ACM, 20 (1977), No 10, 762�772.

[2] Dessaigne N., J. Martinez. A Model for Describing and Annotating Doc-
uments. In: Proceedings of the Conference on Information Modelling and
Knowledge Bases XVII, 2006, 1�19.

[3] Knuth D. E. The Art of Computer Programming. Volume 3: Sorting and
Searching. Addison-Wesley, 1973, 394�395.

[4] Myers G. A fast bit-vector algorithm for approximate string matching based
on dynamic programming. In: Proceedings of 9th Annual Symposium on
Combinatorial Pattern Matching (CPM '98), Piscataway, New Jersey, USA,
July 20�22, 1998, 1�13.

80 Lyubomir Filipov, Zlatko Varbanov

[5] Raghavan H., A. James. Using Soundex codes for indexing names in ASR
documents. In: Proceedings of the Workshop on Interdisciplinary Approaches
to Speech Indexing and Retrieval at HLT-NAACL 2004 (SpeechIR '04),
22�27.

[6] Vanallemeersch T., V. Vandeghinste. Improving fuzzy matching
through syntactic knowledge. In: Proceedings of the 36th Translating and
the Computer Conference, Westminster, London, UK, 2014, 90�99.

[7] Wu S., U. Manber. Fast text searching: allowing errors. Communications

of the ACM, 35 (1992), No 10, 83�91.

Lyubomir Filipov

Department of Informational Technologies

University of Veliko Tarnovo

2, T. Tarnovski Str.

Veliko Tarnovo, Bulgaria

e-mail: lubomir_g_1991@abv.bg

Zlatko Varbanov

Department of Informational Technologies

University of Veliko Tarnovo

2, T. Tarnovski Str.

Veliko Tarnovo, Bulgaria

e-mail: vtgold@yahoo.com

Received August 31, 2018

Final Accepted June 29, 2019

