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Abstract. All it takes to identify the computer programs which are Arti-
�cial Intelligence is to give them a test and award AI to those that pass the
test. Let us say that the scores they earn at the test will be called IQ. We
cannot pinpoint a minimum IQ threshold that a program has to cover in or-
der to be AI; however, we will choose a certain value. Thus, our de�nition
for AI will be any program whose IQ is above the chosen value. While this
idea has already been implemented in [3], here we will revisit this construct
in order to introduce certain improvements.

1. Introduction. We will use a test to determine what AI is. The test
will produce a certain score, and we say that this is the program's IQ. Then we
decide that all computer programs the IQ of which is above a certain level satisfy
the AI de�nition.
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In order to explain this concept, let us make an analogy with the admission
tests given to candidates who wish to become university students. The problems
given at the test are selected randomly, but all candidate students receive the
same problems. Withal, solving the problems should require logical thinking,
because we aim to enroll students who think logically rather than the lucky ones
that may hit the right answers haphazardly. The score is based on the number of
problems solved by each candidate student. We cannot say how many problems
should be solved, because we do not know how many candidates will show up at
the test, nor do we know how well or unwell they will perform. We may say set
a certain score (e. g., 4.50) and say that we intend to admit all candidates who
earn more than 4.50. However, it would be better to �x the minimum score after
the test is done. Then we will take the score earned by the nth ranking candidate
(e. g., if n is 100 we take the score of the candidate whose score puts him in the
100th position in the ranking and thus we enroll the top 100 candidates).

This analogy describes well the AI test, but when the candidates are
computer programs, we cannot select the 100 top performers, because in this case
there will be in�nitely many candidates. A better analogy is perhaps a recruitment
contest for the CEO of a corporation with a test that drags on over time. The
test will stop when a candidate earns a su�cient number of points. How many
points are enough? While we may select a certain level in advance, we can adjust
this level later if the initial level turns out to be too low or too high.

A similar construct was already put forward in [3] whereby the various
programs were given di�erent scores (IQ ∈ [0, 1]). Here we will revisit this con-
struct in order to improve it. The reasons for which [3] needs improvement are:

1. In [3] we dealt concurrently with the questions of `What is AI?' and `How
can we create AI?'. Mixing up `what' and `how' is not a good idea. Here
we will reduce ourselves just to the `What is AI?' question and will not deal
with how to �nd such a program.

2. In [3] we de�ned AI as a program and here we will de�ne AI as strategy.
In [3] AI is a program and the world AI lives in is a program, too. Thus we
end up with two programs playing against each other, which is somewhat
perplexing. It is better to de�ne AI as a strategy and have a program playing
against a strategy. Certainly, the strategy will be computable, because it
is �nite. Our AI program will be any program which implements an AI
strategy for the �rst 1000 games. What the AI program does after 1000
games will remain undetermined, however it is hoped that the program will
continue to behave intelligently thereafter.
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3. In [3] the world was presented by means of non-deterministic Turning ma-
chines. This is a futile complication. It would have made sense if there
were no relation between the individual games and if the machine tape
were erased (reset) after each game. And because the tape is not erased,
each next game depends on what happened in the previous game (what has
remained on the tape). For this reason we will use deterministic Turing
machines which are simpler, while the fact that they depend on what has
remained on the tape makes their behavior in the various games di�erent
(non-deterministic).

4. At each step we have Action and Observation. Actions and Observations
in [3] consisted of a single symbol, while here the Action will consist of
n symbols and the Observation will be of m symbols. We can certainly
code multiple symbols into one, but this will be at odds with the idea that
unnecessary coding should be avoided [6]. The world is complicated and
hard to understand enough. Adding one unnecessary coding will make it
even less understandable.

5. While in [3] it was assumed that all moves are correct, here we will add
the concept of incorrect move. On one side it is important to assume
that incorrect moves may exist. On the other side, this will spare us the
indiscriminate shutdowns of the Turing machine, which we did in [3] in order
to avoid cycling.

6. The Turing machine is a theoretical model which does not need e�ciency.
Here we will harness this model in real work and will therefore modify it in
order to boost its e�ciency. The complication of the model is the price to
be paid for the so obtained higher e�ciency.

7. In [3] we used the Turing machine in order to describe a logical world. If
it is computable it should be logical. However, the world described by the
Turing machine is not very logical. Everything is recorded on a single tape
and the program is not structured at all. It jumps indiscriminately from one
command to another (`spaghetti code', as software engineers have tagged
this pattern). The way such a program operates is rather illogical and we
will address this by adding subprograms and more tapes so the machine
becomes a multi-tape one.

8. In [3] we de�ned IQ as an arithmetic mean which cannot be calculated
precisely because of combinatorial explosion. What we say there is that
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it can be calculated approximately through a statistical sample. Here we
will introduce the terms `Global IQ' � which cannot be calculated precisely,
and `Local IQ' � which is readily computable through a speci�c statistical
sample. The Local IQ will approach to the Global IQ when the size of
the statistical sample approaches to in�nity. The set of worlds we use for
calculating the Global IQ is �nite (enormous, but still �nite). Nevertheless,
the size of the statistical sample can tend to in�nity because there may
be repetitions in the sample (although repetitions are unlikely due to the
hugeness of the set from which the sample is recruited).

2. Related work. In [7], Turing proposes his de�nition of AI (the
�Turing test�). The idea is that if a machine can successfully imitate a human,
then this machine is AI. In the Turing test, as in our article, we have an exam
and in order for a machine to be recognized as AI, it has to pass the exam.
One di�erence is that there is an interrogator there, while we have a test with
�xed tasks. That is, the Turing test is subjective, which is why it is an informal
de�nition of AI. However, the main problem of Turing's de�nition is not in its
subjectivity and informality, but in the fact that it does not de�ne an intellect,
but something more. It de�nes an educated intellect. For an intellect to pass
the Turing test, it must be educated. We can even assume it has an Anglo-
Saxon education because if it does not speak English it would not perform well
on the test.

Intellect and educated intellect are two di�erent things, just like a com-
puter without software and a computer with software are two di�erent things. If
you ask a mathematician what a computer is, he will answer you: �the Turing
machine�. If you ask a child the same question, the child will answer: �A computer
is something that you can play games on, watch movies, etc.� That is, mathe-
maticians perceive the computer only as hardware, while the child perceives the
computer as an indivisible system of software and hardware. When Turing gave
a de�nition of a computer (the Turing machine), he described only the hardware,
but when he de�ned intellect, he described an indivisible system of intellect and
education.

Despite the Turing test de�nes educated intellect, Turing understands very
well the di�erence between educated and uneducated intellect. In the end of [7]
he asked the question: �Instead of trying to produce a program to simulate the
adult mind, why not rather try to produce one which simulates the child's?�

The AI de�nition we give in this article answers to this question. It
does not include education and the tasks in the test do not imply any preliminary
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knowledge. That is, with every task we will assume that we are starting anew, and
that in the course of solving the task we are learning, i. e., we �nd dependencies
and learn from our mistakes.

In [8], McCarthy says that the distinctive feature of AI is �the ability to
achieve goals in the world�. We will not argue with McCarthy, but we will only
clarify what he has said. We will specify what a world is and what a random
world is and what are the goals that AI needs to achieve. On this basis, we will
create an IQ test where programs that achieve more goals have a higher IQ.

McCarthy also says that there is no �de�nition of intelligence that does
not depend on how it relates to human intelligence.� Indeed, in this article we
calculate the value of IQ without being related to human intelligence, but to say
if a program is AI, we have to say what the minimum for the IQ is. For this
minimum, we chose the number 0.7. This number is arbitrarily chosen and we
will change it if this level turns out to be much lower or much higher than the IQ
of the human. That is, in our de�nition human intellect is also used, but this is
only for comparison and we use it only to determine one special constant.

Yet another question McCarthy asks is: �Can we ask a yes or no question?
Is this machine intelligent?� The answer is �no� and we fully agree because we do
not known what the minimum for the IQ is.

However, we will not agree with McCarthy's answer to his next question.
He asks: �Do computer programs have IQs?� And he answers with �no�. In this
article, as in [3], we've showed that IQ can be de�ned for programs. With his
answer McCarthy probably wanted to say that IQ tests for people are not suitable
for computer programs. The test we o�er is not for people but for programs.

In some articles (for example, in [9]), the question is how to create a
program that can solve IQ tests designed for humans. In our article, the issue
we are dealing with is the opposite one. Here we create IQ tests designed for
programs (for strategies). The tests we will o�er will not be suitable for humans,
although it is possible for a human to learn to solve them after some training.
The trained human will note down what has happened and will analyze to �nd
dependencies. The untrained human will not note down and will not be able to
notice the dependencies unless they are presented in visual form or in other way
which is convenient for perceiving by a human.

It is very di�cult to think of a human as a strategy for the following
reasons. First, humans are not deterministic, that is, they do not implement a
deterministic strategy. (A human can be seen as a not deterministic strategy or
as a set of strategies from which one is randomly chosen.) Secondly, it is unclear
how much time we have given the human to make a move. Third, it is unclear how
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seriously the human will approach the task (if he approaches more seriously, he
will get a better result). Fourthly, humans are always trained and never start from
scratch. Even a newborn baby has gone through some training in the mother's
womb. Therefore, when a human implements a strategy, the outcome largely
depends on his education, training, experience.

In [10], Detterman threatens to �develop a unique battery of intelligence
tests� that will be able to measure the IQ of computer programs. In this article,
as in [3], we do not threaten, but we are creating such a test.

It is a bit confusing that Detterman uses �computer� when he means �the
system comprising of a computer and a program�. It is better to call this system
a program because when we know the program, it's not very important which
computer we'll run it on because the di�erence between two computers is only in
their speed. Conversely, if we run two di�erent programs on one computer, the
di�erence in their behaviour will be enormous.

Detterman intends to test computer programs by using IQ tests for people.
That is, he, just like Turing, does not make a distinction between intellect and
educated intellect. Therefore, Detterman's test will not provide time to learn, but
will assume that the computer program that is being tested has been pre-trained.

Detterman relies on the fact that computers are better than people in
�nding factual information. This is an ability of computers that is not directly
related to the intellect. Similarly, computers are very powerful in arithmetic
operations, but that does not make them smart.

There is one thing in which we agree with Detterman. He notes that with
hoc algorithms many tasks can be solved, but the real intellect must be able to
�nd the solution on its own.

In [11], the authors set the ambitious task of developing an IQ test that
is appropriate for both AI and humans, and for programs like Siri and AlphaGo
that are not AI. We can not compare AI with programs that are not AI because
the �rst is a program that can be trained for a random task and the second is
a program written for a speci�c task. For example, how do I compare a chess
program with AI? The only thing a program designed to play chess can do is to
play chess while AI can do everything although not immediately but after being
trained. That is, the only way to compare these two programs is to let them play
chess, and the chess program will have an advantage because AI will waste time
learning, while its opponent would not need to learn how to play chess because it
knows how to do it. If we compare the chess program with AI which is trained to
play chess then the �rst program would still have some advantage over AI, just like
the specialized hardware (i. e., hardware made specially designed for a particular
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task) takes precedence over a computer program running on a computer. That
is, the idea of comparing AI with programs that are not AI is not good.

The authors of [11] refer to concepts such as: abilities to acquire, master,
create, and feedback knowledge. It is like explaining a term whose meaning we
do not know by means of other terms whose meaning we do not know.

[12] discusses very comprehensively and competently how AI's IQ is mea-
sured. Also in [12], a very good overview of the di�erent works devoted to this
topic has been made. One minor disadvantage of [12] is that there is some con-
troversy there. On the one hand, the article says �IQ tests are not for machines
yet�. On the other hand, in earlier articles by Orallo [13, 14] a formal de�nition
of AI based on the IQ test is given. It seems like Orallo is taking a step back and
relinquishes the previous results. Another contradiction in [12] is that, on the one
hand, it says �human IQ tests are not for machines�. This is something we fully
agree with, as we agree with the arguments that accompany this statement. On
the other hand, in the same article, the authors say they agree with Detterman
that �there is a better alternative: test computers on human intelligence tests�.

In [12], as well as in [11], a universal IQ is sought, which is applicable to
all programs and even to humans. Here we di�er from the authors of [11, 12]. We
have already explained why it is not a good idea to compare AI with programs
that are not AI. We also explained why it is not a good idea to use the same tests
for AI and for humans.

Article [13] is of signi�cant importance because this is the �rst article that
talks about a formal de�nition of AI, and this is also the �rst article introducing
the IQ test for AI. Indeed in [13] this test is called C-test, but it is explicitly said
that it is an IQ test for AI. We have to apologize for omitting to quote [13] in [3].
This is an omission that we are now correcting.

Despite the seriousness and comprehensiveness of [13], there are some
inaccuracies that we have to mark. The fact that we pay attention to some
omissions and inaccuracies in [13] does not in any way mean that we underestimate
the signi�cance of this article. There are no perfect articles, and inaccuracies can
be found in any article. Usually the �rst article that appears in a new area is
slightly confused and unclear. Normally, in later articles, things get clearer and
more precise.

The most serious inaccuracy of [13] is that it does not de�ne AI but
something else. We will call that another thing an �observer�. We could say that
an observer is a program that has only input and no output, but that would be
too restrictive. That is why we will say that an observer is a program whose
output does not a�ect the state of the world but the output can in�uence the
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reward that the program will receive.

An example of an observer is when we play on the stock market with a
virtual wallet. We do not in�uence stock prices because we do not play with
real money. (Even if we played with real money, it can still be assumed that
our actions do not a�ect the stock exchange, because when playing with small
amounts our in�uence is negligible.) When playing with a virtual wallet, at every
step we change our investment portfolio and after each step the value of the
portfolio changes depending on the change in stock prices. The reward we receive
will be our virtual pro�t or loss.

The fact that the program de�ned in [13] can not in�uence the world is
substantial problem, because as people say: �You have to touch to learn.� There
are other proverbs that say that we can not learn by watching only. By depriving
AI of the opportunity to experiment, we are seriously restricting it.

In [5] it is noted that there are two problems that AI needs to solve. The
�rst is to understand the world (to build a model of the world), and the second
problem is to plan its actions based on the chosen model. That is, the �observer�
solves only the �rst problem without solving the latter.

In [13] the de�nition is limited to �observers�, but to give the term �ob-
server� a de�nition is a task su�ciently meaningful by itself because it is half of
the things AI needs to do. Unfortunately, this task is not fully solved because the
observer de�ned in [13] is a little more special. It either understands the world
wholly or not at all. That is, it is observer who works on the principle �all or
nothing�.

[13] suggests random strings, which can be continued in only one possible
way. That is, it is supposed that there is a single simple dependence and this
dependence will either be found or will not be found. This approach is too re-
strictive because it implies only observers who understand the world completely.
This is only possible in very simple worlds. Any more complex world can not be
fully understood and that's why it has to be understood only partially.

The authors of [13] are making serious e�orts to make the dependencies
exceptions-free. The de�nition of exception-free given in [13] is very interesting.
However, we would not go that way because if dependencies included exceptions,
that would be a way to allow a partial understanding of the world. Seeking a
single exception-free dependence to describe everything is the reason why the
observer de�ned in [13] relies on the �all or nothing� principle.

We have a few other minor recommendations for [13].

We give some time to AI to �nd dependence. The question is whether we
will give this time at once or we will distribute it in many steps. In general, AI
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is searching for dependencies throughout its entire live. That is, in many steps.
In [13], dependency is sought in just one step. In our article, we assume that in
life the steps are approx. one million (a thousand games with a thousand steps
each one). This means that we must give the program, which is de�ned in [13], a
million times longer time. Our recommendation is for dependences to be sought
after each step, not only after the last one.

In [13] we do not like also the fact that the program that generates the
test is not working due to combinatorial explosion. This is the program called
�The Generator�. That is, [13] does not present a test, but only shows that such
a test exists theoretically.

Yet another problem is that two restrictions have been imposed. When
the �observer� makes a prediction, it must bet all on single result only and always
bet the same amount. It would be better to have the freedom to bet on more
than one result, and to decide what amount to bet. When we are more con�dent
we bet more, and when we hesitate, we bet less or we pass. These two limitations
do not change things fundamentally, because the smart will prove to be smart
even with these limitations, but that blurs the picture. If there were no such
restrictions, the di�erence between the IQ of the clever and the stupid would be
greater.

We also do not like the fact that the more complex tasks in the [13] have
a greater weight than the simpler ones, when it should be the opposite. (There
is a coe�cient e, which is assumed to be non-negative and would be better to be
negative.) It is true that when we make a test we give more points to the more
di�cult tasks, but that's because we suppose that students will lose more time
on the more di�cult task. This is not the case here. Here, for every task we
give the same time. Therefore, if a simple task can not be solved, it is a serious
problem and this should be re�ected in the score. Moreover, sometimes we will
guess the solution of a di�cult problem randomly, so those must be given less
weight, otherwise they will result in undeserved rise in the IQ.

We have the concepts of global and local IQ (these two concepts are de-
�ned in our article). Global IQ is something accurate that can not be accurately
calculated (because of a combinatorial explosion). Local IQ is not something ac-
curate because it depends on the choice of the speci�c tasks in the test, but for
speci�c tasks it can be easily and accurately calculated. What is de�ned in [13]
is local IQ, not global IQ. However, let's not forget that the local IQ approaches
the global IQ, but [13] says nothing about the �nerd� program, which is the main
problem of local IQ.

How are we to correct the de�nition given in [13] in order to get a de�nition
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of the observer that does not follow the principle �all or nothing�?

Instead of taking a special k-comprehensible sequence, we will take a to-
tally random program and the sequence that this random program generates.
Instead of predicting the next symbol a single time, we will predict it at every
step. We will not bet everything on a single prediction, but we will allow the
bet to be divided between several predictions. We will also allow the bet to be
di�erent. (For example, we will assume that the sum of bets for the last �ve steps
is limited to a given constant, but that we have the freedom to choose when to
bet.) The reward to a sequence will be the sum of the rewards of all steps. Local
IQ will be the arithmetic mean of the rewards to the sequences we have included
in the test.

In this way, we will not want the �observer� to understand the world
completely because it can grasp some dependencies and thus, through a partial
understanding of the world, get a relatively high IQ.

A problem with [13] is that the program it de�nes is actually the program
[1]. This is a simple program that predicts the next symbol on the basis of the
simplest dependency that can generate the beginning of the sequence.

I even dare go a bit further and say: No program satisfying the de�nition
given in [13] is better than [1]. That none is better as a result is clear, but I
say that even as a matter of e�ciency none is better because the de�nition in
[13] does not give us any opportunities to play tricks and discover dependencies
partially (step by step), leaving us the only option to foolishly go through all
possible dependencies.

Interestingly, in his more recent articles Orallo (as in [14]) has obviously
understood the main omission made in [13], and what he de�nes there is no longer
an �observer� but a program that can in�uence the world. Unfortunately this
program is not AI again. [14] de�nes a program that plays a game which consists
in going round a labyrinth (graph) by chasing something good and running away
from something bad. To play this game one de�nitely needs intelligence, but the
program playing this game is not AI just like the program playing chess is not AI.

Again in [14] the authors speak of reinforcement learning. That is, it is
clear that they know very well what the general form of AI is. Why, then, do
they not use this general form, but restrict themselves to the worlds of one speci�c
game? I think the reason is that they are trying to avoid the worlds where fatal
errors are possible. The problem with fatal errors is mentioned even in [2], but
fatal errors are not really a problem. We humans also live in a world with fatal
errors, but that does not prevent us showing who does better and who does worse.
Well yes, it's a problem for people because we live only one life, but the IQ test
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consists of many tasks, each of which is a separate life. Even if fatal errors occur
in several lives, this will not signi�cantly a�ect the average score. Even with
humans, life is not just one. From the point of view of the individual, life is one,
but from the point of view of evolution, lives are many. Some of our heirs will die
because of fatal mistakes, but others will survive. Thus the average score of our
successors will not be signi�cantly a�ected by the fact that some of them have
made fatal errors.

It is true that in this article, as in [3], we also do not use a random world,
but we only take computable worlds, but this constraint is not essential, because
every time-limited world is computable, and we can easily assume that all worlds
are limited in time. That is, by limiting ourselves to the computable worlds, we
are not limited at all, but only give more weight to the worlds that are simpler
(according to Kolmogorov complexity).

In [14] there is one more thing we do not agree with. This is something
called the �discount factor�. Of course, this is not something conceived by the
authors of [14], but is something widespread among people working in the �eld of
reinforcement learning. The idea of the �discount factor� is that the past is more
important than the future. Life is potentially endless, and to evaluate an endless
life, we have to devalue the future. However, the past being more important than
the future is not a good idea. It would be better to do the opposite, because in
the past we have not yet been trained, and in the future we have already been
trained. With humans, we do not count how many times a person wet his bed
while he was a baby. Instead, we see what achievements the person has attained
in his adult age. Therefore, the approach we have adopted in [3] and this article is
that there is no �discount factor� but life is limited. In other words, the approach
here and in [3] is that the discount factor to be equal to one until a given moment
in time (the end of life) and to be zero from that moment on.

3. Formulation of the problem. Let us have a Device which lives in a
certain World. At each step the Device produces n symbols (this is the Action) and
then receivesm symbols from the outer world (in our terminology the �rst one will
be `Reward' and the remaining m−1 symbols will be `Observation'). The Reward
can have �ve possible values: {nothing, victory, loss, draw, incorrect_move}.

We will use the words `move' and `action' interchangeably. If we perceive
life as a game it is more appropriate to say move rather than action. Likewise,
we will use the words `history' and `life' as synonyms.

Let one step of the Device be a triple consisting of 〈Action, Reward,
Observation〉. The `life' of the Device will be a sequence of steps resulting from
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the interaction of the Device with some World.

`Real life' will be life without incorrect moves. Therefore, all 〈Action,
Reward, Observation〉 triples where the Reward value is incorrect_move must
be removed from the life and what remains is the real life.

A `moment' will be a sequence of steps where the last step before the
sequence and the last step of the sequence are correct and all steps in between
are incorrect. That is, in life there may be more steps than moments, but in
real life the number of steps is equal to the number of moments.

We will assume that the behavior of the Device and of the World is de-
terministic. In other words, we will assume that if we know which is the Device
and which is the World then we know which is the history.

The behavior of the Device can be presented as a strategy, i. e., as a
function which de�nes the next move of the Device for each start of life. Likewise,
the World's behavior can be presented as a strategy which for each start of life and
for each Action of the Device delivers the Reward and the Observation which the
Device will get at the next step. It should be noted that the World's strategy does
not depend on incorrect moves. Hence, we can imagine the strategy of the World
as a function of real life. Conversely, the strategy of the Device will depend on
incorrect moves (these moves will provide additional information for the Device
to use).

The Device and the World can be thought as two strategies playing against
one another, but that would not be accurate, because the Device has an objective
and the World has not. Therefore, the World does not play against the Device.
We assume that the World is simply there and does not care whether the Device
feels good or bad.

Presenting both the World and the Device as strategies is not a very good
idea, because a strategy remembers everything (i. e., depends on entire life until
the moment). It makes sense to assume that the Device may not necessarily
remember everything. A similar statement can be made in respect of the World.
There may be a world the entire past of which (previous life until the current
moment) can be reconstructed out of its internal state. It may be, however,
that the world does not remember everything, which leaves us that two di�erent
histories can lead to the same internal state of the world. This is the reason why,
we will present the Device and the World as functions.

Let us have two sets, Q and S. These will be the sets of the internal states
of the Device and of the World. These sets will be �nite or countable, at the most.
Let q0 and s0 be the initial states of the Device and of the World. We will assume
that these states are �xed, because life will depend on the initial states we start
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from, but we want life to depend only on the Device and on the World.

The Device and the World will be the following functions:

Device : Q×Rewards×Observations× 2Actions −→ Actions×Q

World : S ×Actions −→ Rewards×Observations× S

For each Internal State of the Device, Reward, Observation and Set of Moves
which are con�rmed as incorrect at the moment, the Device function will return
an Action and a new State of the Device. We will assume that the Device never
returns an Action which is con�rmed as incorrect at the moment.

The Internal State of the Device will re�ect everything the Device has
remembered. What can it have remembered? It can remember everything that
has happened until the moment plus its last Action. That is why our expression
is Actions × Q, rather than Q × Actions. We wish to stress that the Internal
State of the Device can remember the last Action.

For each Internal State of the World and Action, the World function will
return a Reward, Observation and a new Internal State of the World. It makes
sense to assume that there are moments (Internal States of the World) in which
a speci�c action is impossible or incorrect. It is natural to assume, therefore,
that the World function is a partial one. We will supplement the de�nition of the
function so as to accommodate those moments as well, and in this way will extend
the function to a total one. In these moments Reward will equal incorrect_move,
the Observation value will be irrelevant and the new internal state will be the
same as the previous one although this is irrelevant, too.

The Internal State of the World will re�ect what the World has remem-
bered. What can it have remembered? It can remember everything that has
happened until the moment plus the last Reward and Observation. That is why
our expression is Rewards × Observations × S, rather than S × Rewards ×
Observations. We wish to stress that the new Internal State can remember the
last Reward and Observation.

In [2] and [3] we de�ned the new 〈Reward, Observation〉 as a function of
the new internal state. So we assumed that they must be remembered, but now
we dispense of this requirement. Let us take a world in which we play chess. The
chess game ends and the new internal state of the world is a chessboard with the
initial lineup. In this case we do not have to remember who won the last game.
Such requirement would be one unnecessary care.

This is what the life of the Device looks like: 〈a1, r1, o1〉, 〈a2, r2, o2〉, . . . ,
〈 at−1, rt−1, ot−1〉.

Let us see how the Device and the World function de�ne life.
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〈ai+1, qi+1〉 = Device(qi−j , ri−j , oi−j , incorrect_actionsi)

〈ri+1, oi+1, si+1〉 = World(si−j , ai+1)

In this case, i− j is the last correct step before i+1. The incorrect_actionsi set
contains the con�rmed incorrect actions at this moment. The set has j elements.
Therefore, incorrect_actionsi = {ai−j+1, . . . , ai}. The incorrect_actions0 set
will be an empty set, because there will not be any con�rmed incorrect actions in
the �rst moment before the �rst step is made.

In order to de�ne life, we must �x the �rst Reward and the �rst Ob-
servation (r0, o0). We do not wish life to depend on the �rst Reward and the
�rst Observation, so decide that the value of all symbols of these two vectors is
nothing. This is a sensible decision, because it is quite natural that in the �rst
moment we do not get any reward and do not see anything signi�cant (i. e., what
we see in the �rst moment is the zero step). We will not de�ne the zero action
a0, because we do not use it.

Now that we have �xed (q0, s0, r0, o0, incorrect_actions0) we can build life
up to step t and this life will depend only on the functions Device and World.
〈a1, r1, o1〉, 〈a2, r2, o2〉, . . . , 〈at−1, rt−1, ot−1〉

In addition to life, we will also construct the series of internal states of the
Device and of the World, as well as the incorrect_actionsi series of con�rmed
incorrect moves at the relevant moment. Let us note that at each given moment
there may be many incorrect actions, but the con�rmed ones are only those which
we have tried and have thus veri�ed that they are indeed incorrect at that moment.

We will assume that the Device function always returns a move which is
not con�rmed as incorrect. The opposite will lead to cycling. What shall we do if
all moves turn out to be con�rmed incorrect moves? (i. e., if incorrect_actionsi
coincides with the entire Actions set.) In this case we will assume that the Device
function is not de�ned. This is the case when we end up in a blind alley and there
are no possible next moves.

Note: The de�nitions ofDevice as a function and as a strategy are almost
identical save that if we consider Device as a strategy, the order in which we tried
the incorrect moves may matter at some moments, while in the function de�nition
it would not matter. This di�erence can be resolved in two ways. The �rst one:
when de�ning a function, instead of the set of con�rmed incorrect moves we
take the list of these moves. The second one is to limit our exercise only to those
strategies which are insensitive to the order in which we tried the incorrect moves.
In this study it would not matter what happens if the strategy tries the incorrect
moves in another order, because we assume the strategy to be deterministic and
the order in which it tries the incorrect moves is �xed.
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Note: We assume here that when we try to play an incorrect move nothing
happens and all we get is information that the move has been incorrect. We can let
the Device check whether a move is correct or not even without necessarily playing
that move (as we have done in previous studies). In this case we need to modify
the formulation of the problem and add an additional reward correct_move. The
Device function will need one more argument containing the con�rmed correct
moves. When we try a con�rmed correct move we will assume that we shall
play this move. Where a move is not in the set of con�rmed correct moves,
then we assume that we only try it. The World function will have another
Boolean parameter to indicate whether the move is actually played or just tried. In
the latter case, the function will return either correct_move or incorrect_move
rewards. Then the move will not be played but will only be added to the next set
of con�rmed correct or con�rmed incorrect moves.

A game will be a stretch of life located between two consecutive �nal
rewards. In our terminology, `�nal rewards' stands for the values {victory, loss,
draw}. We will assume that the length of each game is limited to 1000 moves
(i. e., 1000 moments, while the number of steps may be greater because of incorrect
moves).

We will de�ne which strategy is an AI strategy and our de�nition will
depend on a number of parameters. We will �x the values of the majority of these
parameters to one thousand, because 1000 is a nice round number. Another good
round number is one million. Replacing one thousand with one million would
produce another AI de�nition, which will not be much di�erent from the one we
are dealing with.

4. Parameters. These are the parameters:
Number of Action symbols � n
Number of Observation symbols � m
Number of symbols possible for each Action symbol � k1, . . . , kn, ki ≥ 2.
Number of symbols possible for each Reward and Observation symbol � kn+1, . . . , kn+m,
ki ≥ 2, kn+1 = 5.
Tape symbols count � MaxSymbols = 10 +maxi∈[1,n+m]ki
Global tapes count � 7 (from 3 to 9)
Internal states count � 1000
Test worlds count � 1000
Maximum number of games per life � 1000
Maximum number of moves per game � 1000
Maximum number of Turing machine steps per one life step � 1000
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Probability by means of which the machine is generated �
1

10
= 10%

Minimum IQ required for a strategy to be recognized as AI � 0.7 = 70%

The �rst four rows of the table above provide the parameters which de-
scribe the AI input and output. They tell us what the format of the sought AI
is. Thus, we cannot vary these parameters randomly. The next eight parameters
in�uence the choice of worlds selected for the test and, therefore, in�uence the IQ
we get, and thus the AI de�nition as such. The last parameter also in�uences the
de�nition. This means that if we varied the last nine parameters we would also
vary the AI de�nition.

The table does not include other parameters which also in�uence the AI
de�nition. For example, it does not say which pseudorandom numbers generator
we will use in order to select the test worlds. Thankfully this parameter's bearing
on the de�nition is insigni�cant.

The possible symbols for the ith Action symbol will range from 0 to ki−1.
Likewise, the possible symbols for the ith Observation symbol will range from 0
to kn+1+i − 1. Let us call the 0 symbol `nothing'. The �rst Observation symbol
will be the Reward. When it comes to the Reward, we will name the symbols 1,
2, 3 as `victory', `loss', `draw', and these will be the �nal rewards. The reward
4 (incorrect move) will not be returned by the Turing machine as a result of the
invocation of the command q1. This reward will be returned only when Turing
goes cycling (makes more than 1000 steps without reaching a �nal state) or crashes
(e. g., invokes a return command when the stack is empty).

The tape symbols will be as many as needed for coding the Action and
the Observation, i. e., the maximum ki for i from 1 to n+m. To that we will add
another 10 utility symbols the �rst of which will be empty symbol l.

5. How will the test work? We will select 1000 worlds for the test.
In each of these 1000 worlds, the candidate will live one life consisting of not more
than 1000 games. Finally we will calculate the number of victories, losses and
draws. This will give us an IQ, which is an arithmetic mean where victory is 1,
loss is 0 and draw is 1/2.

We will pick the worlds randomly, but we want the selected worlds to
be �xed, so we will use pseudorandom selection by setting the pseudorandom
generator to 1 before starting the selection process. Thus we will always use the
same worlds in the test.

In many of the generated worlds we will win every time or we will loss
every time (doesn't matter what we do). It is meaningless to include such worlds
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in the test so we will discard all of them from test. Thus we will be left with 1000
meaningful worlds.

6. What is a World? In newspapers one can come across problems
such as `Which is the next number in the series?' If all possible series are equally
probable, the next number may be any one. When looking for the next number
in a series we assume that simpler series are more probable than more complex
series. We therefore use the principle known as `Occam's razor'.

The situation with worlds is similar. If we perceive the world as a strategy
and all strategies are equally probable, then there is no way we can tell the future
and a basis for preferring one move over another is lacking. We will therefore
apply Occam's razor to the worlds and will assume that more simple worlds are
more probable. What makes one world simpler than another world? We will use
the Kolmogorov complexity. That said, if the world is a strategy, the more simple
strategy is the one which is generated by a Turing machine with less states.

We have limited the life so all strategies are �nite. Therefore, all strategies
are computable. So we will assume that a world is some Turing machine which
calculates some strategy.

7. Which will be the set of all worlds? The set will be limited to
Turing machines with 1000 states. This set includes machines with less than 1000
states, because each machine can be �lled up with unreachable states. Turing
machines which use more than 1000 states (and cannot be simpli�ed) will be
excluded from the set. We will consider these worlds as too complex and will
accordingly exclude them from the de�nition.

The result is a huge set of strategies (worlds). The more simple strategies
here will bear more weight (will be more probable), because there are generated
by more Turing machines (from the set).

Furthermore, we will assign some weight to each Turing machine. Hence
we will prefer some machines over others. For example, if a machine tends to
use more states with lower numbers, we will prefer it to the one which uses more
states with higher numbers.

There are two reasons why we assign di�erent weights to the di�erent
Turing machines. The �rst one is that we give more weight to more simple
machines (e. g., the ones with less reachable states are simpler). The second
reason is that we wish to randomly generate a machine which works, and this is
very di�cult. The machines which have a greater chance of being working ones
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will have more weight, therefore we increase the probability of selecting these
machines and accordingly our chances of hitting a working machine.

The weight of a machine is equal to the probability of this machine to be
selected by us. We will not calculate this probability. That would be a rather
di�cult calculation. We simply select a machine randomly and by this selection
we induce probability as a parameter of the formula. That is, the probability will
not be calculated when the Local IQ is calculated. When calculate the Global IQ,
we should consider all Turing machines in order to calculate the success rate of
the Device with any of these machines and the probability that this very machine
is selected. We have to multiply these numbers and sum up the values for all ma-
chines. This is an impossible calculation because of combinatorial explosion. The
fact that we complicate the calculation by adding the calculation of probabilities
is not a problem. We do not change anything in this way. While the Global IQ
remains theoretically computable, in practice it is still uncomputable, even more
uncomputable than before.

8. How to calculate the IQ of a particular computer pro-
gram? We may say that the IQ is the arithmetic mean of success rates of all
worlds. (Note that the worlds are not equally probable and we need to multiply
the success rate by the probability (weight) of each world.)

We will call the so obtained IQ a Global IQ. The Global IQ de�nition
is very nice save that Global IQ cannot be calculated. To be precise, it can be
calculated in theory, but not in practice because of the huge number of worlds
which we have assumed to be possible.

Nevertheless, we can still calculate the Global IQ by approximation using
statistical methods. We will select randomly 1000 worlds and will calculate the
arithmetic mean for these worlds. The result obtained would be close to the
Global IQ.

The problem with this approach is that di�erent selections of test worlds
will yield di�erent Global IQ approximations. What we need is a program which
awards to the candidate the IQ this candidate deserves, withal it must be a
speci�c value rather than an approximation of something else. Hence we will �x
the randomly selected 1000 worlds and will say that the Local IQ is the average
success rate across these 1000 worlds. (In this case di�erent worlds will not have
di�erent weights, because the weight is already accounted for in the selection of
test worlds. The more weighty ones are more likely to be selected.)

The idea of �xing the randomly selected worlds is tantamount to giving
the same problems to all candidate students.
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The Local IQ is an easily computable function and describes well our
understanding of what IQ is. There is just one problem. There is one program
which we will call a `crammer'. This program is designed speci�cally for the 1000
test worlds and its Local IQ is very high, but its Global IQ is low. How should
we resolve this issue? We will use the Local IQ in order to �nd the AI. When
we hit a program with a very high Local IQ and suspect that this program is
a crammer, we will give it additional problems, so that we calculate a second
local IQ. This means that we will take the next 1000 random worlds and derive
another arithmetic mean from these worlds. We can go on with a third and fourth
Local IQ.

9. How does the Turing machine make a move? We present
the world as a Turing machine. Thus, our machine must take Actions as inputs
and deliver Observations as outputs.

The �rst m+ 1 states of the machine will be special. The qm+1 state will
be the initial and the �nal state of the machine. In states q1 to qm we will use in
order to output the Observation symbols.

When the machine makes its �rst move, all tapes will be empty (i. e., they
will be covered with the l symbol). The �rst running tape will be No 3 (Nos. 0,
1 and 2 are reserved for utility purposes).

Turing machine will make a move by starting from the initial state qm+1

and �nishing in the same state (which is also the �nal state). In the beginning of
the move, a word of n symbols (the Action word) will be recorded on the current
tape under the head of the machine (anything previously written in the �rst n
symbols on the tape before the recording of the word will be deleted).

At every step it will be observed if the states q1 to qm are called up.
When these states are called up, the Observation symbols will be outputted.
If the qi state is called several times within one move, only the �rst call will
be considered. If it is not called up at all, the ith Observation symbol will be
nothing. If it is called up at least once, ith Observation symbol will be the value
of the `head memory' at the moment following the �rst call on the qi state. If the
ith Observation letter is too big (equals or exceeds the kn+i), the machine will
crash in a cycling-like fashion.

10. Incorrect moves. When the Turing machine fails to make a move
because it goes cycling or crashes for some other reason, we will deem that the
input Action entered at the start of the move is incorrect or impossible. In this
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case we go back and try to enter another Action. More precisely, it is not us who
go back, instead we will turn back the world (the Turing machine). We give the
Device an incorrect_move reward and take the next move the Device chooses
to give us. We continue with this move as if the Device has played it instead of
the incorrect move. (If the Device plays the same incorrect move, we disqualify
it because it cannot try the same move twice in a single moment.)

Taking the Turing machine back is a perfectly natural operation. All we
need is to memorize the total state of the machine before the start of the move.
If we reconstruct this total state, we can enter another Action and continue was
if it were the �rst action we ever tried.

Another approach was applied in [3], where it was assumed that all moves
are correct and the cycling problem was resolved by aborting the execution of
the program, awarding a utility draw and restarting the program from its initial
state. With this type of restart the tape remains in the state it was at the time
of abortion. This is very poor practice. You will know that to turn down your
PC you should enter the `Shut Down' command. The other option is to pull the
plug o� the socket, but this will leave the hard disk in the state it was when the
plug was pulled o�. This treatment would make your PC behave in a bizarre
and illogical manner. The same can be said when a Turing machine is shut down
randomly and then restarted from its initial state. We want the world to be as
logical as possible and take care to avoid these abortions.

Now that we have opened the gate for incorrect moves, we should know
what to do when all moves are incorrect. Let us assume that we have about 100
possible Actions. We try them all and all of them prove to be incorrect. So we
will say that we have ended in a blind alley with no way out.

If life is the sequence of 1000 games, then life ends with a natural death
after 1000 games or with a sudden death (blind alley). How to reward a life that
ends prematurely? We can reward only the games played until death. Then our
AI strategy will prefer to commit a suicide (enter a blind alley) as soon as it
realizes that things in the current life have gone wrong and only losses lie ahead.

We do not want suicidal AI strategies and will therefore opt for another
solution. When a strategy is caught in a blind alley, we shall say that all remaining
games up to 1000 are losses. This will provide assurance that the strategy will
not go in blind alley on its own will, but will keep �ghting to the end.

Will the strategy realize that it is entering a blind alley? One cannot
learn this by trial and error because you fall in a blind alley just once. But, if
the strategy is very smart, it may be able to predict that some blind alley is
forthcoming. For example, if the number of possible moves is decreasing, this is
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not a good sign, because in the end of the day one may run out of possible moves
and enter in a blind alley. People can be another example. Let us have someone
who has never died. He or she has no experience of their own but can still predict
a few potentially fatal situations.

11. We penalize beating around the bush. We said that a game
cannot be longer than 1000 moves. What shall we do if a game continues for more
than 1000 moves? We shall then award a utility draw. Note than by doing so
we do not interfere in the workings of the Turing machine as it continues to play
the same game. The intervention concerns only the strategy, because it will get
a draw reward when the world (Turing machine) has awarded nothing. The fact
that we do not abort the machine guarantees that the machine will maintain its
logical behavior.

If another 1000 moves are played without a �nal reward, we award a utility
loss. That is, we penalize strategies which kick the can down the road. We want
an AI strategy which aims to close the game quickly and start the next one.

By penalizing early death and procrastination we vary the IQ of the ran-
dom strategy. If we play heads or tails, the expected IQ is 1/2. To earn a higher
IQ one must purposefully aim to win. For a lower IQ, one must purposefully aim
to lose. By declaring all post-death games lost, we reduce the IQs of all strate-
gies. Similarly, the inclusion of utility losses will lead to a likewise reduction. This
solution means that the IQ of the random strategy will be less than 1/2.

We will be able to calculate the exact IQ value of a random strategy once
we write the program which calculates the Local IQ. Naturally, a random strategy
is non-deterministic meaning that we should test it a few times and take the mean
value. Hence, the IQ of the random strategy will be an approximate value. Only
deterministic strategies have exact Local and Global IQ values.

12. A more logical and more e�cient Turing machine. As
announced already, we will rede�ne the Turing machine in order to make it more
logical and more e�cient. To this end, we will make Turing a multi-tape machine
and will enable it call subprograms.

Why would such a machine deliver a more logical world?

First, it is the multiple tapes of the machine. It is legitimate to present
the state of the world as a Cartesian product of many parameters which are in
weak correlation with one another. That is why a multi-tape Turing machine
produces a more logical model of the world than the single-tape machine.
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Second, the machine will have subprograms which can be called up from
many points. This is more logical than calling a di�erent subprogram each time.
When no stack is in place, we have to remember where we should go back after
the subprogram is executed. To this end, each subprogram should be called up
from one point only (otherwise it will not know where to go back).

When we invoke a subprogram we give it a clean tape so it can write its
intermediate results. In the opposite case the subprogram will have to use for this
one of the common tapes and this will largely frustrate its logic due to the weird
interactions that will occur among di�erent calls of the subprogram.

Why would this machine make less steps and have less internal states?

Higher e�ciency means less steps and, more importantly, less internal
states. It is important that the steps are not too many, because a machine making
more than 1000 steps per move will be presumed to be in a cycling situation
and will be stopped. It is also important that internal states are not too many,
because we have limited our set to machines having less than 1000 states. Hence
our machine should preferably use less states.

Having multiple tapes in the machine means there will be less steps, be-
cause a single tape will force the head make a lot of movements in order to write
intermediate results. It would be easier to write these results on another tape.

More signi�cantly, we will reduce the number of internal states of the
machine. A classical Turing machine uses a huge number of internal states (it
memorizes everything that needs to be memorized in its internal state). For
example, when a subprogram has been called up we must remember where the
subprogram was called from (where it must return). If we want to move a symbol
from one place to another we must remember which symbol we have pulled up.

Thus, we complicate the Turing machine so that, in addition to its internal
state, it should also remember which is the running tape, the stack index (for
subprograms) and a `head memory' symbol.

13. A stacked Turing machine. How would the program of this
machine look like? It will be a table of 1000 × MaxSymbols, where 1000 are the
possible commands and MaxSymbols are the possible symbols. In each �eld of
the table there will be �ve commands.

The �rst command is `Write on tape'. MaxSymbols+2 possible values:
(unchanged, previous value of the head memory, concrete symbol).

The second command is `Change the head memory'. MaxSymbols+2 pos-
sible values: (unchanged, previous value of the symbol on tape, concrete symbol).
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The third command is `Move head'. Three possible values: (left, right,
stay there).

The fourth command is `Subprogram'. There are two �elds: `State', the
value of which is in the interval [0, 1000] (where 0 is the command NULL). `New
current tape', the value of which is in the interval [0, 9] (where 0 is the previous
current tape, 1 is the current tape of the parent program, 2 is the temporary tape
created especially for this invocation of the subprogram and 3�9 are the global
tapes).

The �fth command is `Next state'. The value is in the interval [0, 1000]
(where 0 is the command return).

When a subprogram is called up, what do we write in the stack? Three
things: where shall we go back after return (the �fth command), which is the pre-
vious current tape (so that we recover it after return) and which temporary tape
is created especially for this invocation of the subprogram. The new temporary
tape should also be written somewhere. Let it not be in the stack, but somewhere
else. When the return command is executed, the corresponding temporary tape
will be destroyed.

14. Populating the table. In order to create a random Turing ma-
chine, we must populate 1000 × MaxSymbols with random commands. Before
we do that let us say how a random command is selected. We must generate 6
numbers (the fourth command has two �elds). These numbers may be equally
probable, but we prefer smaller numbers to be more probable than larger num-
bers. Why would we prefer so? Because if all states are equally probable, the
program will be stretched over multiple di�erent states, while we wish certain
states to be used more frequently than others. Likewise, we want some tapes to
be used more often than others. This also applies to utility symbols (but does
not apply to non-utility ones).

How shall we select a number from 0 to k with a decreasing probability?
Let us toss a coin and if it is heads we select with a probability of 1/2 the number 0,
if it is tails we toss again and if we get heads we select with a probability of 1/2
the number 1 and so forth. If do not get any heads all the way to k, we restart
from 0.

A probability of 1/2 produces a very steep decrease of the probability of
the next number. That is why we will use a probability of 1/10 to select all the
6 numbers. What we actually use is the geometrical distribution.

Note: Only the number of the subprogram will be assigned di�erently.
In this case 0 will be taken with a probability of 9/10 instead of 1/10. (Thereafter
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we continue with 1/10.) This is so because we do not want subprograms to be
invoked too often and the stack to be populated redundantly. In this way the
probability of the return command will be equal to the probability of invoking a
subprogram.

Now that we have explained the generation of commands (one box in the
table), let us explain the generation of one column consisting of MaxSymbols
boxes. We will imagine the command of this machine as a switch with MaxSym-
bols cases. When we write program and use a switch, we describe only some of
the cases rather than all cases. The remaining cases are described as default (i. e.,
all other cases are the same). A program will be more logical if the same com-
mand applies to the majority of the cases. Therefore, we will select randomly how
many di�erent commands will exist in the column. We will use the decreasing
probability procedure as explained above. Once we know how many di�erent po-
sitions are there, we select randomly which these positions will be (again, smaller
numbers will be more probable). Finally, we populate the positions that need to
be di�erent with di�erent commands, and will put the same command in all other
positions.

So we have an algorithm for populating one column and can populate 1000
columns. In the end of the process we have the �rst random Turing machine. This
however is a cumbersome process, so we derive the second machine from the �rst
one just by changing the �rst m+ 1 states (which are special ones) and another
10 random states. This change is su�cient because the vast majority of the states
are not used and by changing the special states we start using other states. Thus,
the new Turing machine will be substantially di�erent in terms of the states it uses
even though the two machines are almost identical in terms of their unreachable
states.

15. Discarding the slag. So we have a fast and simple procedure
to generate 1000 test worlds. The problem however is that most of these worlds
are useless. Across 1000 worlds there may be as little as 2 or 3 interesting ones.
Therefore, we will discard all useless worlds and do our test with 1000 interesting
worlds.

Example for a useless world is if the very �rst move leads to a blind alley.

We will verify that a world is interesting by letting the random strategy
live one life in that world. In this life, we do not want to see the strategy caught
in a blind alley. We want at least one victory and at least one loss. We do not
want more than 10 utility draws and utility losses. If all these conditions are met
in this random life, we will deem that the world is interesting.
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How to construct a test with 1000 interesting worlds? First, we initialize
the pseudorandom numbers generator with the number 0. Then we generate
randomly World Zero. Then we initialize the generator with 1 and apply a minor
change to World Zero so as to generate World 1. If World 1 is interesting, we
set the generator to 2 and generate World 2. If World 1 is useless we initialize
the generator with 2, 3, 4, 5, etc., until we obtain from World Zero an interesting
World 1. We keep going until we generate 1000 interesting worlds. We will not
save them all, but will only save an array of 1000 numbers. These are values which
we should use to initialize the generator in order to obtain a new interesting world
from the previous interesting world.

Note: Please observe that we select di�erent Turing machines with dif-
ferent probabilities. These di�erent probabilities are the di�erent weights of the
di�erent machines. We need this clari�cation, because we aim to provide an
accurate de�nition of Global IQ. The de�nition is:

Global IQ(Strategy) =

TM∈Interesting∑
TM

P (TM|Interesting).Success(Strategy, TM)

In this equation, P (TM |Interesting) is the conditional probability that the ma-
chine named `TM' is selected if the world is interesting. Success(Strategy, TM) is
the arithmetic mean calculated after the strategy named `Strategy' has lived one
life in the world de�ned by the machine named `TM'. The sum total is across all
machines with 1000 states the worlds of which are interesting.

The above Global IQ practically cannot be calculated and it is the theo-
retical value which we try to approximate by means of the Local IQ.

The Local IQ therefore is:

Local IQ(Strategy) =
1000∑
i=1

Success(Strategy,TMi)

Where TMi is the ith preselected test world (Turing machine).

16. The �nal de�nition.

De�nition: An AI is any strategy the Local IQ of which exceeds 0.7.

Here we selected the same value as we did in [3]. Both here and in [3] the
value (0.7) is selected arbitrarily. Likewise, a corporation may announce that it
is looking for a CEO and will be happy to employ anyone who solves 70% of the
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problems given in the test. The corporation may have to adjust this level later if
the bar proves too low or too high.

De�nition: An AI is any computer program if the strategy it plays in
the �rst 1000 games is an AI strategy.

17. Analogy with the Grandmaster de�nition. We will provide
another explanation of the AI de�nition by repeating the same construct, but this
time we will de�ne a chess playing program. We have already done so in [4], but
as the present study revisits and updates the construct described in [3], here we
will also revisit the construct in [4] and will re�ect the relevant adjustments.

We will de�ne a chess playing program as a program which plays like a
grandmaster. If someone wants to be a grandmaster, he or she should earn an
ELO rating (calculated by the ELO rating system) of at least 2500. The bad
news is that the ELO rating calculation is based on his or her performance in
playing against other people. To obtain an objective assessment of how good
is the player, we will replace the other players with a �nite set of deterministic
computer programs. Then our chess player will play one game against each of
these other players and his or her result will be the arithmetic mean of the results
achieved in the individual games. In case a player halts (goes cycling) and does
not make it until the end of game we will award a utility victory to the opponent.
The same we will do if the player plays incorrect move. That is, a program which
aspires to become a grandmaster must play correct moves and had better avoid
cycling because in the opposite case we will penalize it with a utility loss. This
applies both to the chess playing program and to computer programs in the �nite
set against which we assess the performance of our program.

Which will be the �nite set of deterministic computer programs that used
in the grandmaster test? We can take all programs that do not exceed a prede�ned
length. Most of these will play randomly, will go cycling often and will make
many incorrect moves. It would be reasonable to screen them and leave only
the interesting ones (programs that play too mindlessly are a ballast which only
makes the test more cumbersome). Interesting programs will be those that do
not cycle, do not make incorrect moves and, on top of all, play relatively well.

When looking for interesting worlds to use in the AI test we used the
brute-force search method. This method will cannot be used here because it is
very unlikely to randomly hit a program which does not cycle and makes only
correct moves. Hence, instead the set of all programs which do not exceed a
certain length, we will take a speci�c set of programs whereby all programs are
interesting (do not cycle, do not make incorrect moves and play relatively well).
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Let us take a particular program, which calculates the next �ve moves and
distinguishes between three types of positions: winning (victory within the next
�ve moves), losing (loss within the next �ve moves) and undetermined (all other
positions). Which move will this program play? It will pick randomly one of the
winning positions. In the absence of a winning position, it will chose randomly
one of the undetermined positions. If an undetermined position is also lacking,
the program will go ahead randomly with a losing position.

What we described above is a non-deterministic program. If we reckon
how many deterministic strategies this program can implement, they are far too
many (but still �nitely many, because the length of the game is limited). Each
of these strategies is calculated by in�nitely many programs, but we shall assume
that for each strategy we have selected one program which calculates this strategy.

As a result, we obtained a huge set of programs and may be tempted to
say that our ELO rating will be calculated on the basis of the games with all
these programs. Unfortunately these programs are far too many and we cannot
calculate the ELO in this way because of combinatorial explosion. Instead, let
us select 1000 of these programs and calculate the ELO after 1000 games (one
game played with each program). We will select these programs randomly, but
will select them only once and will always calculate the ELO on the basis of the
same test programs.

How can we make a deterministic program out of a non-deterministic one?
That is easy, instead of picking a random move we pick a pseudorandom move.
Before starting the game, we will initialize the random number generator with
the number one (1). Thus we obtain one deterministic program. We need 1000
deterministic programs. We will initialize with the numbers from 1 to 1000 and
will obtain 1000 di�erent deterministic programs (among these 1000 there might
be some identical programs, in particular where the random numbers generator
is not as good as it should be). These will be the programs from which we will
derive the ELO rating.

Let we say that a program will become a grandmaster if the so-calculated
ELO is more than 90%. This is an arbitrary value picked by us. It may turn out
that the value should be higher. We may even have to adjust the test worlds and
ask them to calculate maybe the next 10 moves rather than 5 moves.

Then we stumble upon the crammer issue again. It is perfectly possible
to learn by heart how to beat some of these 1000 programs. Remember these are
deterministic programs and if we beat a deterministic program once we can beat
it as many times as we want by replaying the same game.

A fairly good analogy emerges between the grandmaster and AI de�ni-
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tions. In the �rst case we refer to an ELO rating and in the latter case to an IQ
rating. In the �rst case we play chess against 1000 opponents and in the latter
case we live 1000 lives in 1000 worlds. The di�erence is that in the chess sce-
nario we play one game against each opponent and in the IQ scenario we play one
thousand games in each life. This is so because in the �rst case the rules of the
game are �xed and it is expected that a grandmaster program knows the rules
and knows how to play (rather than learning how to play while it plays). In the
second case, the AI does not know the rules of life and needs one thousand games
in order to discern these rules and learn how to live successfully.

18. Conclusions. In this study we described an exam (test) which
enables us calculate the IQ of any program. More precisely, we speci�ed the
program which will conduct the test and tell us what the candidate's IQ is. Given
the deep granularity of our speci�cation, we can now relax and ask some student
to do the coding for us, perhaps as a course project.

This program will enable us do the AI test in the matter of minutes. This
the time which the examiner program needs to calculate the test result. We should
then add the thinking time we a�ord to each candidate. When we consider AI as a
strategy, we need not ask the question of how much time the candidate will spend
thinking. When we consider AI as a program which calculates an AI strategy, we
must announce how much time we a�ord to the program for calculating one step.

So, the time for the test will be some minutes to calculate the test result,
plus the thinking time which we a�ord to the candidate, plus some time for
generation of the test (construction of the array of 1000 numbers). The last time
we do not consider because it will be spend only once.

Let us think about what this test can be used for. If someone comes to us
with a particular program, we would test it and say what the IQ of that program
is. But, we do not have any AI-candidate programs. So we have nobody to apply
this test to.

One possible application of the test described in this study is �nding the
AI. We might use the brute-force search method. Of course we can search with
this method, but combinatorial explosion would not let us go too far with this
method. There is, however, a smarter way of searching. We can construct a
genetic algorithm. We will sit at one powerful computer, create a population
of AI candidate programs, and calculate each candidate's IQ. We shall combine
candidates with higher IQs in order to obtain o�spring with even higher IQ.
We shall kill the low-IQ candidates in order to make room for more promising
programs. Using this natural selection approach we shall obtain programs with
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very high IQs.

The genetic algorithm is one way of �nding the AI, but we will end up with
a program the inner workings of which are enigmatic to us. If we are to control a
program, we better write it ourselves rather than generate it automatically. For
this reason, I am a proponent of the direct approach for creating AI. Therefore, I
assert that we should write this program with our own hands.
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