
Serdica J. Computing 13 (2019), No 3–4, 123–138 Serdica
Journal of Computing

Bulgarian Academy of Sciences
Institute of Mathematics and Informatics

A SET OF CONCEPTUAL GUIDELINES FOR REVERSE
ENGINEERING USING ONTOLOGY-BASED

MATERIALIZED VIEWS

Oumar Sy

ABSTRACT. Data reuse and meta-data handling remain tricky problem for
both the designers and managers, especially when schemas reverse
engineering is on demand and that some data are stored in materialized
views. In this paper, we tackle such problem by using ontology-based
meta-materialized views. Indeed, ontologies, which are semantics-based,
ensure the stability of the underlying schemas of the data repositories and
to ease the overall access and processing of the data and meta-data. Our
proposal is sustained by a set of conceptual guidelines and outlined
through a case study example.

1. Introduction. Legacy databases and advanced databases systems,
on one hand, and the ontologies, on the other hand, must permanently be up
to date. In such context, reverse engineering is helpful for the understanding of
these systems. However, data reuse remain tricky problem for both the
designers and managers, because of the need of handling meta-data.
Nonetheless, already in the early 90s, CASE (Computer-Aided systems-
Engineering) tools were used to maintain and enhance existing systems [1].

 ACM Computing Classification System (1998): H.2.1, H.2.2, H.2.3, H.2.8, K.6.1.
Key words: relational database, conceptual modelling, reverse engineering, materialized
view, ontology.

124 Oumar Sy

Fortunately, the use of ontologies for creating more intelligent and effective
enterprise information systems has increased considerably in recent years [2].
Indeed, ontologies allow the specification of high-level formal
conceptualizations [3]. However, most of the proposed approaches, e.g., [2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12], are not domain independent. Therefore, data reuse is
not easy to achieve or not achieved at all because of the common trend to
approach the problem of reverse engineering with object-oriented techniques.

Indeed, according to [3], reverse engineering consists of producing a
semantic model based on the code in which the data model or the knowledge
model (e.g., an ontology) is implemented. Moreover, to the best of our
knowledge, only [9, 10, 11, 13, 14] have dealt with the problem of ontologies’
materialization. However, rather than the use of materialized views with
ontologies for reverse reengineering, the authors only discussed ontologies’
storage, without conceptualization of materialized views in the design process,
and it is not clear how ontologies’ models are linked to the business-data.
Conceptual modelling approaches of ontologies for data integration and reuse
have been well developed in [4, 15, 16], but materialized views were not
considered. In [6] ontologies are not mentioned. In addition, despite efforts
made in the field of reverse engineering in [3], ontologies’ storage within DB
repositories has not been sufficiently investigated.

In brief, without loss of generality, the posed problematic is how reverse
engineering – rebuilding – the semantic-based data model, e.g. with EER or
UML, of a given universe U. On this basis, we advocate that the most reliable
solution reside on the use of ontologies, assuming the existing of a well-
designed meta-model that links the business-data to the ontologies.
Accordingly, we tackle the problem of reverse engineering from the semantic
models point of view, by focusing our concern on ontologies-based materialized
views. To this end, we propose an approach powered by a set of conceptual
guidelines for schemas reverse engineering by using ontology-based materialized
views for reverse engineering, we name Ontology-Based Materialized Views for
Reverse Engineering (OBMV4RE).

Starting example: Let U = {R, E, L} where, respectively, R, E, and L
represent Rice Seed, Cereal Seed and Plot-land, and U is the universe of
discourse of the application domain.

Let VARIETY (V), STAMP (S), PURITY (P) and GERMINATION
(G) be the properties of E, as shown in Fig. 1. Knowing the value of S and P,
the database manager may update column G of the underlying table E, using
the following instruction:

UPDATE E SET G=93 WHERE (S=‘J’) AND (P=’A’);

A Set of Conceptual Guidelines for Reverse Engineering … 125

Moreover, one would like to propagate those update to all data related
with the updated table. This is feasible through triggers, based on keys and
foreign keys. A simplified syntax of such triggers is as follows:

CREATE TRIGGER <trigger_name>
BEFORE | AFTER INSERT |UPDATE | DELETE
ON <table_name> FOR EACH ROW
 <trigger_body>

Fig. 1. UML sub-schema of Cereal Seeds ontology

Therefore, let Ri (Ki, Ai, …, Ak) and Rj (Kj, Bi, …, Bl, #Ki) be two n-
ary relations that represent the concepts Ci and Cj of a given UML-based
semantic model, with Ci C≤ j (meaning that Cj inherits of all the properties
and features of Ci). Clearly, Tj T⊆ i, where Ti and Tj are respectively instances
of Ri and Rj.

Now, let us denote by Mv (EID, V, G, LID) a materialized view where
LID represents the plot-land identifier. Accordingly, a state of Mv contains the
instances of all cereal seeds and plot-lands where they have been seeded. ∎

The rest of the paper is organized as follows. In Section 2, we give a
theoretical background comprising conceptual foundations of the notions of
view and of materialized view, the notion of ontology, and their use in schemas
reverse engineering process and reengineering, as well. Section 3 presents the
related work. In Section 4, we discuss the OBMV4RE approach based on a set
of conceptual guidelines, and present a case study overview. Section 5
concludes and outlines the direction of our future work.

2. Background knowledge. In this section, we present the notions
of reverse engineering and materialized views.

2.1. Reverse engineering. Reverse engineering originates from the
hardware system analysis [1]. In the field of software systems, several
formulations have been proposed for defining the notion of reverse engineering.
Moreover, according to [1], there is a confusion between reengineering and

126 Oumar Sy

‘‘reverse engineering”. In the aim of clarification, these authors proposed a
categorization of the notion of “reverse engineering” using six terms:

1. Forward engineering — Forward engineering is the traditional
process of moving from high-level abstractions and logical,
implementation—independent designs to the physical
implementation of a system;

2. Reverse engineering — Reverse engineering is defined as “a process
of analyzing a subject system to identify the system’s components
and their interrelationships and to create representations of the
system at a higher level of abstraction”;

3. Redocumentation — Redocumentation is the creation or revision of a
semantically equivalent representation within the same relative
abstraction level;

4. Restructuring — Restructuring is the transformation from one
representation form to another at the same relative abstraction level,
preserving the subject system’s external behavior;

5. Design recovery — Design recovery is a subset of reverse engineering
in which domain knowledge, external information, and deduction or
fuzzy reasoning are added to the observations of the subject system
to identify meaningful higher level abstractions beyond those
obtained directly by examining the system itself;

6. Reengineering — Reengineering is the examination and alteration of
a subject system to reconstitute it in a new form and the subsequent
implementation of the new form.

The relationships between these terms have been rigorously related and
defined based on a three-level’s abstraction architecture (see Fig. 2.),
conceptually quite similar to the ANSI/X3/SPARC architecture dedicated to
databases’ schemas design.

In [2], the notion of reverse engineering is defined as “a process which
includes the extraction of information from source codes, and documentations;
the abstraction of the extracted information; and the representation of the
obtained abstraction”.

However, according to [17], there is no universally accepted definition of
software re-engineering, commonly called reverse engineering.

Thus, in our concern, we consider reverse engineering as the process for
the production of a conceptual model based on the code and or the metadata
in which the “system object”, namely both the data and the ontology, has been
implemented. Moreover, we emphasize that “reverse engineering” is the

A Set of Conceptual Guidelines for Reverse Engineering … 127

opposite process of “forward engineering” which is the traditional top-down
process for databases’ schemas design starting from the requirements analysis
to the internal level, based on the ANSI/X3/SPARC architecture.

More precisely, “reengineering” is a process between or within
abstraction levels while “reverse engineering” is a process that covers the entire
three-level architecture, starting from the internal level up to the views’ level,
i.e. the well-known external level, also called level of views according to the
ANSI architecture.

For a better understanding, borrowing the schema given in [1], these
two processes are illustrated in Fig. 2.

Fig. 2. Reverse engineering and related processes between or within abstraction levels [1]

Such an architecture stands as the cornerstone in our approach, when
aiming to conciliate databases (DB) and ontologies, without redefinition of
terms, concepts and methodologies [18, 19]. In [19] a meta-model designed in a
single lifecycle efficiently ensure the reverse engineering of both the DB and
the domain ontology by using materialized views because of its high semantic-
based abstraction degree. Indeed, a suitable approach for reverse engineering is
to store the roles’ names in the underlying DB [19], even though UML does
not provide an “explicit marking of two arbitrary associations as inverses of
each other” [16].

2.2. Data view vs. materialized view. A typical data view is a
simple named SPJ query executable by the database system. Such named
query, which consist of a set of n-ary tuples, is launched each time a user
accesses it. For example, the SQL code below returns, if any exists, the name
N, the germination G and the cultivated area of all rice seeds and the plot of
lands where they are growing.

128 Oumar Sy

SELECT "N" As "Name", "LID" AS "Plot land", "G" As
Germination, "Cultivated_area" FROM "R", "E"

WHERE "R"."EID"="E"."EID";
The relational data view [20] is shown at Fig. 3.

Fig. 3. Data view dvGrowingSeeds

Now, let assume that a new tuple of an existing seed variety, e.g. corn,
has been sowed in the plot of land number 5. Subsequently, whenever some
data are added, the user must re-run the query dvGrowingSeeds above, e.g. for
knowing the current state of the cultivated cereals and the data they relate to.

Better still, according to [17, 21, 22], “all views that are theoretically
updatable must be updated by the system”. Thus, materialized views can be
useful by caching the result of queries and allow refreshing them, once a user
needs to access their content.

As example, the dvGrowingSeeds data view, theoretically updatable,
and that we call mvGrowingSeeds, is materialized as follows:

CREATE VIEW public."mvGrowingSeeds"
WITH (check_option=local) AS
 SELECT "N" As "Name", "LID" AS "Plot land", "G" As

Germination, "Cultivated_area" FROM "R", "E"
 WHERE "R"."EID"="E"."EID";

The above view is easily maintainable up to date based on foreign keys
and triggers. However, difficulties can occur for the practical updatability with
respect to the data and meta-data, especially when the queries become more
complex. In such cases, the answer may take more time. Thus, novelty in the
methodologies, rather than in the concepts, is necessary for efficient solutions.
Nevertheless, such complex queries are not in consideration in this work. Our
proposal is the use of ontology-based materialized views to permit the reverse
engineering, for recovering or improving conceptual schemas.

A Set of Conceptual Guidelines for Reverse Engineering … 129

As an example, let us assume that we want to add seed of wheat (W)
and, at the same time, a new tuple of sowed wheat. Given the sub-schema (see
Fig. 4) that describes the context, the materialized view above
(mvGrowingSeeds) is still updatable and it allows the rebuilding, i.e. reverse
engineering, the semantic model of Fig. 1., which by the same time represents
its external schema.

{dis joint}

GrowingOn0..1
1

R E
EID
V
S
P
D
...

L
LIDW

Fig. 4. UML sub-schema of Cereal Seeds ontology (updated)

3. Related work. As previously emphasized, only [9, 10, 11, 13, 14]
tackled ontologies’ materialization. Thus, we concentrate ourselves on these
closely related works to ours and give a precise insight in the following.

Globally, in [9, 10, 11], reasoning over “large ABoxes” by “abstraction
refinement” was the focus. More precisely, arguing that “updates of ontology
definitions are equivalent to the updates and new definitions of rules, whereas
existing maintenance techniques only address the update of ground facts”,
these works “present a technique for the incremental maintenance of
materialized ontologies”.

Mainly, the above works are based on logic databases, using
“Description Logic Programs (DLP)” as equivalent to the “OWL’s Abstract
Syntax” [9, 10, 11].

For illustration, let us consider the following properties at Table 1,
where the first column contains OWL’s representations and those on the
second column, the DLP’s representations.

Table 1. “OWL’s Abstract Syntax” vs. “Description Logic Programs (DLP)”

N° OWL DLP

1 domain(Ci) Ci(x):-P(x, y).

2 range(Rj) Rj(y):-P(x, y).

3 Transitive P(x, z):-P(x, y), P(y, z).

However, according to our definition [19] formalizing an ontology as
OD= {Σ, τ≤, A, Ω, ρ, φ}, these properties fully hold as follows:

130 Oumar Sy

1. To each relation Ri the function ρ assigns a domain ρdom: Ri →Σ×Σ;

2. To each relation Ri the function ρ assigns a range ρrange: Ri →Σ×Ω;

3. The transitive property (line 3) is abstracted with the subsumption
relation τ ≤ such that if τ≤(Ci, Cj) and τ≤(Cj, Ck) then τ≤(Ci, Ck).

Indeed, RDB’s Attributes (Columns) and Foreign keys are equivalent to
Resource Description Framework (RDF)’s Property (rdfs: Domain | rdfs:
Range), while Relations (Tables) correspond to RDF’s classes (rdfs: Class).
Better still, each concept Ci either is represented by a unary relation, or relates
to a binary relation. All these foundations of our approach are recalled in
Section 4.1, and are sustained with Proposition 1 and corollaries 1, 2, 3, as well
as with a semantic UML data model.

Further, for differentiating TBox axioms (intensional predicates) from
ABox assertions (extensional rules), we emphasize that the former are
represented by unaries and binaries relations, while assertions simply
correspond to tables’ facts. We also point out that all other properties, such as
roles, functional dependencies, domain and or functional constraints and
multiplicities are encompassed as semantics in the UML data model, which
stands as conceptual schema of the TBox. We recall that TBox means
Terminological Box, and ABox refers to Axioms Box.

Moreover, in [9, 10, 11], on one hand, materialized views were not used
for reverse reengineering, and on the other hand, the content – state – of an
ontology ABox, obviously, is larger than the number of axioms in its TBox.
Besides, the comparison that these authors made between “the number of
different concept names” and “the number of different individuals” is fuzzy.

Incremental maintenance of materialized ontologies was also discussed
in [13, 14].

The work in [13] focused on reasoning over ontologies through
materialized views. However, the work is especially declined for the Web
Semantic ontologies, namely RDF/RDFS and the well-known Ontology Web
Language (OWL), while our interest relates to RDBs and conceptual modeling.

In [14], the authors are mainly interested on ontology-based
materialization views, but the technical approach is still based upon logic
databases, and the ontology-based materialized views are not used or related
to schema reverse engineering as in [9, 10, 11], whereas such purpose is the
main goal of this paper.

Nonetheless, as demonstrated in [19], the semantic meta-model we
conceived is suitable for some kind of reasoning by using the roles and the
multiplicities which are fundamental features in semantic models. The main
difference between RDBs and Semantic Web Languages (SWL) such as OWL

A Set of Conceptual Guidelines for Reverse Engineering … 131

resides in the fact that the former are Close World Assumption (CWA)
oriented while OWL is mainly used for reasoning under the Open World
Assumption (OWA).

Accordingly, we propose a set of conceptual guidelines for OBMV4RE
with the aim to create the missing link between the use of materialized views,
ontologies, and reverse engineering. Those guidelines are sustained with
theoretical foundations, as depicted in the following section.

4. OBMV4RE: Toward a set of conceptual guidelines.

4.1. Ontology-based materialized view. In the Web Semantic
community literature, ontology is defined as a “formal, explicit specification of
a shared conceptualization” [23]. However, there is no consensually accepted
definition of the notion of ontology. Thus, in this paper, an ontology is under-
stood as “a formalization of the universe of the discourse as an organized struc-
ture, and constrained by a set of axioms, according to the knowledge domain”
[19]. Thus, following [24], we defined an ontology as “a formalization of the
universe of the discourse as an organized structure, and constrained by a set of
axioms, according to the knowledge domain” [23]. More precisely, we advocate
an ontology as a 6-tuple set, formalized as OD= {Σ, τ≤, A, Ω, ρ, φ}, where:

 Σ is a set of concepts {C1, …, Cn} of the knowledge domain, and assigned
with the subsumption relation τ≤ (Ci, Cj) abstracting the Is-A
relationship;

 A is a set of attributes of the universe of discourse, describing of the
concepts in Σ;

 Ω is a set of unary and binary relations;

 ρ is a relation over Ω assigning to each R i Ω a domain ρ∈ dom: Ri →Σ×Σ
and a range ρrange: Ri →Σ×Ω;

 φ is a set of axioms and rules that Σ and Ω must hold.

Thus, based on our above definition, we give an insight of the domain
ontology as a “system of categories” through the following example.

Example: Let Σ = {Maintainer, Rice seed, Cereal seed, Corn seed, Plot
land, Rice crop, Farm land, Research station, Seed Variety, E, Contractual,
Private Seed Operator} The semantic UML data model at Fig. 5 give an
insight of the domain ontology and the data as well.

Consequently, an ontology-based materialized view (OBMV), is a view
built on the basis of O such that it contains semantic-based knowledge, e.g.
rice seed is a cereal seed, or rule-based knowledge, e.g. a plot of land is either a
“rice crop”, a “farm land” or a “research station”. Now, since views are built

132 Oumar Sy

upon concept-based relations over Ω which involve attributes of A, let Fc be
the FROM clause of the SPJ query. We define an OBMV as follows.

Fig. 5. Ontology-Business data subschema: cultivated cereal seeds

Definition — A view V materialized with the CREATE VIEW
instruction is an OBMV if and only if Fc satisfies the following condition:

Fc R⊃ i Ω ∈ ∧ ∃Cj Σ | τ∈ ≤ (Ci, Cj) τ∨ ≤ (Cj, Ci) (1)

This means that Fc contains at least one concept-based relation and it
exist a concept Cj such that Cj τ≤ Cj or conversely.

Proposition 1 — Based on the properties of the subsumption relation
τ≤, an OBMW is an updatable view.

Corollary 1 — A well-defined OBMV is an OBMV such that its Fc

contains two concept-based relations Ri, Rj ∧ ∃Ci, Cj Σ | τ∈ ≤ (Ci, Cj) τ∨ ≤ (Cj, Ci).
Better yet, the semantic model M of an ontology contains at least one

taxonomic relation.
Corollary 2 — The semantic external model MOV of an OBMV can be

rebuilt using reverse engineering based on properties of the subsumption
relation τ≤.

Corollary 3 — The ontology-based model MO of a given universe Σ can
be reconstructed by reverse reengineering according to a unique well-defined
OBMV and MOV.

The foundation of the above Proposition and corollaries relies on the
relational schemas Ri (Ki, Ai, …, Ak) and Rj (Kj, Bi, …, Bl, #Ki) that represent

A Set of Conceptual Guidelines for Reverse Engineering … 133

Ci and Cj, where Ci C≤ j (or conversely) and allowing the underlying UML-
based sub-model to be redesigned according to reverse engineering principles.
Moreover, the taxonomic relation τ≤ intrinsically implements the well-known
functional dependencies (FD) in RDBs. Better still, any FD graph constitutes
a theoretic access structure to the DB content, including the met-data of the
DB system. Thus, the relational database (RDB) schema can be rebuilt too.

4.2. OBMV4RE: A set of conceptual guidelines. In the aim
to develop an efficient methodology for reverse engineering using ontology-
based materialized views, we propose a first set of useful conceptual guidelines
as follows:

 Guideline 1: We assume that the DB catalog contains meta-data
related to the ontology meta-model [19], which completes and enriches
the DB schema.

 Guideline 2: Build an OBMV MOV.

Such an ontology meta-model called KBSM (Knowledge-based
Semantics Data Model) was proposed in [19].The KBSM (see Fig. 6) is a
common meta-schema establishing a logical link between RDBs and ontologies.

Fig. 6. Knowledge-based Semantics Data Model (KBSM) of Domain ontologies [19]

 Guideline 3: Based on Corollary 2, building of a semantic external
model of MOV, by reverse engineering;

 Guideline 4: According to Corollary 3, and based on the meta-data
of the DB catalog enriched by the KBSM whose stored instances

134 Oumar Sy

contain relationships’ names, roles’ names and multiplicities that are
the core of a conceptual model, re-build the global model MO.

4.3. OBMV4RE: A case study example. An overview of our
application domain (certified cereal seeds) is given at Fig. 7. In this context,
e.g., given a variety Vi of certified rice seed, one would like to know its breeder
(maintainer) and the plot of land where it is growing or where it has been
produced.

Fig. 7. Ontology-Business data subschema: A case study overview

Accordingly, let mvBreeders be the materialized view that stores all
farmers (name, country, e-mail) who are rice seed breeders (rice name). The
SQL code is the following:

CREATE VIEW public."mvBreeders"
WITH (check_option=local) AS
 SELECT "LName", "Email" FROM "Breeder" As "B"
WHERE EXISTS (SELECT 1 FROM "Cultivation" AS "C"

WHERE "C"."PID"="B"."PID" AND "B"."TYPE"=’F’);

As the relation Breeder in the FROM clause of the mvBreeders view is
concept-based and it is subsumed by the concept Person, then mvBreeders is
an OBMV. Thus, mvBreeders is updatable. Furthermore, based on the
KBSM’s DB (see Fig. 6) and corollaries 2 and 3, the semantic models of Fig. 5
and Fig. 7 can be rebuilt.

5. Conclusion. In this paper, we tackled the tricky problem in
information systems and software systems maintenance, namely data and
meta-data reuse, especially schemas reverse engineering based on ontology-
based materialized views.

Thus, we first gathered the literature for a suitable support of related
works. Next, we selected the works which are concerned with at all or at least
one of our concern, namely the notions of “ontology”, “materialized views” or

A Set of Conceptual Guidelines for Reverse Engineering … 135

“reverse engineering”. Better still, we have shown that most of the works, which
have dealt with one or more of these topics, were not inclusive, because the
reverse engineering based on ontologies materialized was left out, but
nonetheless on demand. Accordingly, we only retained those related to both
the ontologies and the materialized views, in the aim to point out the
differences between these works and ours. Moreover, we clarified one again the
use and the signification of the term “reverse engineering” often confused with
reengineering.

Finally, for improving the process of reverse engineering, we proposed
useful methodology named OBMV4RE to overcome the existing drawbacks.
Such our proposal is based on a set of conceptual guidelines with theoretical
bases and supported with a coherent semantic metamodel with which they are
compatible and fully applicable to ensure the reverse engineering of any
database schema integrated to its underlying domain ontology.

On this basis, examples of data models are given in UML and SQL
code. However, these guidelines are not yet implemented as a complete system.
Thus, the next step in our future work is the experimentation of their
theoretical foundations based of advanced conceptual schemas as ontology-
based ones, for allowing full comparison with existing methods. To this end, we
started with the .NET Framework and the C# language. Indeed, the
ADO.NET framework allows the creation and the distribution of shared data,
by using the DataSet which is one of core elements of the Framework. Better
still, XML that is used for data exchange over the Web is the default
serialization format of ADO.NET, such that we are looking at taking the data
sources to the Web.

REFERENCES

[1] CHIKOFSKY E., J. CROSS. Reverse engineering and design recovery:
A Taxonomy. IEEE Software, 7 (1990), No 1, 13–17.

[2] REYNARES E., M. L. CALIUSCO, M. R. GALLI. A set of ontology design
patterns for reengineering SBVR statements into OWL/SWRL
ontologies, Expert Systems with Applications, 42 (2015), 2680–2690.

[3] GÓMEZ-PÉREZ A., D. ROJAS-AMAYA. Ontological Reengineering for
Reuse. In: D. Fensel, R. Studer (eds). Knowledge Acquisition, Modeling

136 Oumar Sy

and Management. EKAW’99, Lecture Notes in Computer Science, 1621
(1999), 139–156.

[4] RISTIC S., S. ALEKSI, M. CELIKOVI, V. DIMITRIESKI, I. LUKOVI. Database
reverse engineering based on meta-models. Central European Journal of
Computer Science, 4 (2014), No 3, 150–159.

[5] ZHANG Q., A. KARCHER. System Reverse Engineering to Requirements
and Tests. In: Proceedings of the Seventh International Conference on
Systems (ICONS), Saint Gilles, Réunion Island, 2012, 35–38.

[6] MÜLLER H. A., J. H. JAHNKE, D. B. SMITH, M.-A. STOREY,
S. R. TILLEY, K. WONG. Reverse engineering: A roadmap. In:
Proceedings of the Conference on the Future of Software Engineering
(ICSE’00), Limerick, Ireland, 2000, 47–60.

[7] SHATNAWI A., A.-D. SERIAI, H. SAHRAOUI, Z. ALSHARA. Reverse
engineering reusable software components from object-oriented APIs,
Journal of Systems and Software, 131 (2016), No C, 442–460. DOI:
10.1016/j.jss.2016.06.101.

[8] ALI M. A., A. A. A. FERNANDES, N. W. PATON. MOVIE: An
incremental maintenance system for materialized object views. Data &
Knowledge Engineering, 47 (2003), No 2, 131–166.

[9] GLIMM B., Y. KAZAKOV, T. LIEBIG, T.-K. TRAN, V. VIALARD.
Abstraction Refinement for Ontology Materialization. In: P. Mika,
T. Tudorache, A. Bernstein, C. Welty, C. Knoblock, D. Vrandečić,
P. Groth, N. Noy, K. Janowicz, C. Goble (eds). The Semantic Web—
ISWC 2014. Lecture Notes in Computer Science, 8797 (2014), 180–195.

[10] BRENNER M., B. GLIMM. Incremental Materialization Update via
Abstraction Refinement, In: Proceedings of the 30th International
Workshop on Description Logics, Montpellier, France, 2017.
http://ceur-ws.org/Vol-1879/paper19.pdf, 15 July 2020.

[11] GLIMM B., Y. KAZAKOV, T.-K. TRAN. Ontology Materialization by
Abstraction Refinement in Horn SHOIF. In: Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence, San Francisco, CA,
2017, 1114–1120.

A Set of Conceptual Guidelines for Reverse Engineering … 137

[12] KOCH C., D. LUPEI, V. TANNEN. Incremental View Maintenance For
Collection Programming. In: Proc. of the 35th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems (PODS’16),
San Francisco, CA, 2016, 75–90. DOI: 10.1145/2902251.2902286.

[13] VOLZ R., S. STAAB, B. MOTIK. Incremental Maintenance of Materialized
Ontologies. In: R. Meersman, Z. Tari, D. C. Schmidt (eds). On The Move
to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE.
Lecture Notes in Computer Science, 2888 (2003), 707–724.

[14] VOLZ R., S. STAAB, B. MOTIK. Incrementally Maintaining Materializa-
tions of Ontologies Stored in Logic Databases. In: S. Spaccapietra,
E. Bertino, S. Jajodia, R. King, D. McLeod, M. E. Orlowska, L. Strous
(eds). Journal on Data Semantics II. Lecture Notes in Computer Science,
3360 (2005), 1–34.

[15] ALBERTS R., E. FRANCONI. An Integrated Method using Conceptual
Modelling to Generate an Ontology-based Querying Mechanism. In: 9th
OWL: Experiences and Directions Workshop (OWLED), Heraklion, 2012.
http://webont.org/owled/2012/papers/paper_9.pdf, 15 July 2020.

[16] ZEDLITZ J., N. LUTTENBERGER. Conceptual Modelling in UML and OWL-2.
International Journal on Advances in Software, 7 (2014), No 1–2, 182–196.

[17] RICK F. VAN DER LANS. Is Actian PSQL a Relational Database Server?
A Technical Whitepaper. R20/Consultancy, 2014. https://www.r20.nl/
WhitepaperPSQLMarch2014V2.pdf, 15 July 2020.

[18] SY O., M. LO, D. DUARTE. Integrating Ontologies in Database Scheme:
Ontology-Based Views Conceptual Modeling. In: Proceedings of the 6th

International Conference on Signal-Image Technology and Internet-Based
Systems, SITIS, Kuala Lumpur, Malaysia, 2010, 269–276.

[19] SY O., D. DUARTE, G. DAL BIANCO. Ontologies and Relational
Databases Meta-Schema Design: A Three-Level Unified Lifecycle. In: 5th
International Conference on Control, Decision and Information
Technologies (CoDIT), Thessaloniki, Greece, 2018, 518–523.

[20] CODD E. F. A relational model of data for large shared data banks.
Communications of the ACM, 13 (1970), No 6, 377–387.

138 Oumar Sy

[21] CODD E. F. Is Your DBMS Really Relational? Computerworld,
14 October 1985, 1–9.

[22] CODD E. F. Does Your DBMS Run by the Rules? Computerworld,
21 October 1985, 49–64.

[23] STUDER R., V. R. BENJAMINS, D. FENSEL. Knowledge Engineering:
Principles and methods. Data & Knowledge Engineering, 25 (1998),
No 1–2, 161–197.

[24] GUIZZARDI G. On Ontology, Ontologies, Conceptualizations, Modeling
Languages, and (Meta)Models. In: O. Vasilecas, J. Eder, A. Caplinskas
(eds). Databases and Information Systems IV: Selected Papers from the
Seventh International Conference DB&IS’2006. Frontiers in Artificial
Intelligence and Applications, 155 (2007), 18–39.

Oumar Sy
Section d’Informatique
U.F.R de Sciences Appliquées et de Technologie
Université Gaston Berger de Saint-Louis
CP. 32000, BP. 234, Saint-Louis, Sénégal
e-mail: oumar.sy@ugb.edu.sn

Received October 22, 2019
Final Accepted January 28, 2020

