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Abstract. The aim of this paper is to evaluate stationary propagating
wave solutions to the two dimensional Boussinesq equation. To solve the
resulting nonlinear fourth order elliptic problem we use a combination of high
order �nite di�erence schemes, an iterative procedure and new asymptotic
boundary conditions. A number of numerical results are obtained for the
validation of the method and for the dependence of the wave's shape on the
velocity c and dispersion parameters. We also give a comparison with the
numerical results and best-�t formulae given in [4, 5].

1. Introduction. In this paper we consider the two dimensional Boussi-
nesq Equation (BE)

utt −∆u− β1∆utt + β2∆2u+ ∆f(u) = 0 for(x, y) ∈ R2, t ∈ R+,(1)
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u(x, y, 0) = u0(x, y), ut(x, y, 0) = u1(x, y) for (x, y) ∈ R2,

u(x, y)→ 0,∆u(x, y)→ 0, for
√
x2 + y2 →∞,(2)

where f(u) = αu2, α > 0, β1 > 0, β2 > 0 are dispersion parameters, and ∆
is the Laplace operator. The BE is famous with the approximation of shallow
water waves or also weakly non-linear long waves. It is often used for simulation
of various physical processes e.g. turbulence in �uid mechanics, vibrations in
acoustics etc. A derivation of the BE from the original Boussinesq system can be
found in [1].

The goal of the article is to seek for solutions to (1) of the type u(x, y, t) =
U(x, y − ct), which are stationary solitary waves (SSW) traveling in y direction
with velocity c. In a forthcoming paper the SSWwill be applied as initial condition
(IC) of the hyperbolic BE (1)�(2). Thus it is useful to have accurate, �exible and
robust IC in order to test various scenarios with two or more traveling waves
colliding with each other.

The SSWs to (1) are computed by a Galerkin spectral method in [2, 3].
In [4] a second order �nite di�erence scheme is used, while in [5] the perturbation
series method with respect to the small parameter c is applied. Moreover in [5]
the resulting numerical solution is approximated by best-�t formulae. These exact
expressions are used further as initial conditions in numerical simulations of the
unsteady BE (1)�(2), see [6, 7]. These papers show that for velocities c < 0.3 the
resulting SSW disperse in the form of ring wave expanding to in�nity or blow up
after some period in time. Thus the traveling wave solutions of the hyperbolic
equation (1) are very fragile, i. e., the wave easily blow up or fall apart with time.
The relationship between the dispersion and nonlinearity in (1) is very sensitive
and the balance between them is easily destroyed. Moreover it is well known that
in the one dimensional case the solitary waves are unstable for small wave speeds c
while they are stable in form for velocities c close to 1.

Having in mind these observations, we focus on the more accurate eval-
uation of SSW U to (1), especially for velocities c > 0.7, since it is fundamental
for the construction of initial data of the unsteady BE (1).

Note that the stationary solitary waves U(x, y−ct) = u(x, y, t) satisfy the
following nonlinear fourth order elliptic equation

(3) c2(E − β1∆)Uyy = ∆U − β2∆2U −∆f(U),

where E is the identity operator.
The evaluation of the solution to (3) described here follows the steps pre-

sented in [4, 8], but new modi�cations are introduced to meet the higher require-
ments reported above.
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First, for the numerical solution of (3) we choose to apply an uniform grid
with equal step size hx = hy = h in the computational domain Ωh instead of a
nonuniform grid. The reason for this is that the computed solutions to (3) will be
used as initial conditions in the hyperbolic problem (1) and these solutions will
travel in time, thus we have to have more mesh points not only close to the peak
of the waves, but everywhere in the computational domain.

In order to increase the precision of the numerical method, we apply �nite
di�erence schemes (FDS) with local approximation of forth O(h4) and sixth O(h6)
order, i. e., we approximate second order spatial derivatives with high order �nite
di�erences. These FDS allow one to evaluate the numerical solution with high
accuracy on relatively coarse grid.

A new boundary condition on the computational boundary is also used
[9], together with uniform grid and local approximation order of O(h4) and O(h6).
The numerical solution of the fourth order elliptic problem (3) is replaced with
an iterative procedure, which involves solution of an appropriate parabolic type
problem at every iteration step. At the end of each iteration procedure the residual
de�ned in (12) of the discrete equation, approximating (4) is of order 10−5, 10−6

and the distance between two consecutive iterations of the solution is of order
10−7, which is much smaller than the discretization step size h.

In the last section we examine the solution shape and the dependence of
the solution on the input parameters�the velocity c and the relative dispersion
β = β1/β2. It is shown that these qualitative properties of the numerical solution
are very similar to those given for the numerical solution in [4, 5]. The results
here are compared with the best-�t formulae given in [5], which approximate the
numerical solution in [4, 5]. The analysis shows that these best-�t formulae do
not satisfy the equations in the neighborhood of the origin in the classical sense
because their fourth order derivatives have singularities at the origin. The di�er-
ence (measured in the maximal norm and in L2 norms) between our numerical
solution and the corresponding best-�t formulae is also high, especially for large
velocities c.

The paper is organized as follows. In Section 2 we formulate the problem.
The numerical method is given in Section 3 and validated in Section 4. Various
numerical experiments are reported in Section 5 and a comparison with the best-
�t formulae from [5] is given in Section 6.

2. General Formulation. By the change of variables x =
√
β1x,

y =
√
β1y, U(x, y) = v(x, y) equation (3) is rewritten in the form

(4) c2β(E −∆)vyy = β∆v −∆2v − β∆f(v)
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with β = β1/β2. The solution v to (4) and its derivatives tend to zero as |x2 +
y2| → ∞. In the following we use notations x, y instead of x, y.

If the condition c2 < min(1/β, 1) holds then (4) is an elliptic equation of
fourth order and the linear second order derivatives in (4) form a second order
elliptic equation. In this paper we consider velocities c which ful�ll this inequality.

Problem (4) can be rewritten as a system of two elliptic equations of
second order in di�erent ways. We expect that the derivatives vxx in x direction
will be smaller than the derivative vyy in y direction (since the solution travels
in y direction). Therefore the equality vyy = ∆v − vxx is substituted in (4) and,
after introducing an auxiliary function w, we obtain the system, equivalent to (4),

(5) −(1− c2β)∆v + β(1− c2)v − αβv2 = w,

(6) −∆w = c2β(E −∆)vxx.

We seek non-trivial solutions to (5), (6). To avoid the trivial solution we proceed
as in [4, 8]: we �x the value of the solution v at the point (0, 0), v(0, 0) = θ and
introduce new functions: v̂ = v/θ and ŵ = w/θ. Thus v̂(0, 0) = 1 and

−(1− c2β)∆v̂ + β(1− c2)v̂ − αβθv̂2 = ŵ,

−∆ŵ = c2β(E −∆)v̂xx.
(7)

The value of θ is found from the equation

(8) θ =
(1− c2β)∆v̂ − β(1− c2)v̂ + ŵ

αβv̂2
|x=0,y=0.

In order to evaluate numerically the solution to (7) we introduce arti�cial time,
add false time derivatives and get

∂v̂

∂t
− (1− c2β)∆v̂ + β(1− c2)v̂ − αβθv̂2 = ŵ,

∂ŵ

∂t
−∆ŵ = c2β(E −∆)v̂xx.

(9)

Thus the solution to the steady coupled elliptic system (7) is replaced by solving
the pertinent transient equations (9) until their solutions v̂ and ŵ cease to change
signi�cantly in time.

3. Numerical Method. First we replace the unbounded domain by a
su�ciently large computational domain Ω. Due to the obvious symmetry of the
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problem, we can look for the solution only in the �rst quadrant Ω = [0, Lx]×[0, Ly].
Then a uniform grid Ωh is de�ned in the following way

Ωh = {(xi, yj) : xi = ih, yj = jh, i = 0, · · · , Nx, j = 0, · · · , Ny},

where the discretization step h satis�es h = Lx/Nx = Ly/Ny. In the implementa-
tion of the numerical method the step size τ may vary according to the residual of
the computed solution. This is a crucial point because it permits to automatize
the control of the error. The value of the function v at mesh point xi, yj , tk is
denoted by vki,j .

We discretize the spatial derivatives in (9) using centered �nite di�erences
and extending the stencil:

(10) vx̂x,p(x) :=
1

h2

p/2∑
i=−p/2

div(x+ ih),

Here p is equal to 2, 4 or 6. The weights di taken from [10] are 1,−2, 1 for p = 2,
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approximation error of formulae (10) is O(hp). Replacing the Laplace operator
in (9) by the discrete Laplacian

∆h,pvi,j := (vi,j)x̂x,p + (vi,j)ŷy,p

we obtain �nite di�erence schemes with high order of approximation O(h4) for
p = 4 and O(h6) for p = 6. The application of FDS with high order of approxi-
mation leads to a high rate of convergence of the method for su�ciently smooth
solutions. In this way more accurate solutions can be produced on a coarse grid.

Symmetry conditions are used to impose the values of the discrete Lapla-
cian at mesh points close to (0, y), and (x, 0). Near the computational boundaries
(x, y) : x = Lx and (x, y) : y = Ly we do not change the stencil. The discrete
Laplacian is de�ned there by using the values of the discrete solution given in
(13), (14) below at points outside the computational domain.

The Euler explicit rule is applied for approximation of time derivatives.
The nonlinear terms in (4) are computed on time level tk. Thus, the numerical
solutions at time level tk+1 are evaluated directly by the values of the numerical
solution at time level tk:

v̂k+1
i,j − v̂ki,j

τ
− (1− c2β)∆h,pv̂

k
i,j + β(1− c2)v̂ki,j − αβθ(v̂ki,j)2 = ŵki,j ,

ŵk+1
i,j − ŵki,j

τ
−∆h,pŵ

k
i,j = c2β(E −∆h,p)v̂

k
i,j,x̂x,p.

(11)
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This method for solving equations (7) can be considered also as �the simple it-
eration method� for solving linear and nonlinear equations (see [11]). Last but
not least, in order to start the procedure we need initial values for functions v̂, ŵ.
These initial values are taken from the formulae in [5].

3.1. Time Step Control. It is possible to use varying time step τ to
optimize and speed up the algorithm. When the time step becomes too big the
solution starts to diverge and becomes jagged. Fortunately these signs appear
�rst in the residual R, i. e., it starts to grow and jag simultaneously while the
solution is still �ne. When this happens, an arbitrary cross-section of it looks
like a discrete function which alternates positive with negative values on the grid.
This is a clear sign that the time step has to be lowered, otherwise it is increased.
Changing the arti�cial time is done automatically at each iteration by a factor
fττ =: τnew, where fτ ∈ (0.72, 1.015).

The residual Rki,j of the discrete approximation to (4) at the mesh point

(xi, yj , t
k) is de�ned as:

(12) Rki,j := c2β(v̂ki,j)ŷy,p + ∆h,p(−βv̂ki,j − c2β(v̂ki,j)ŷy,p + ∆h,pv̂
k
i,j + αβθ(v̂ki,j)

2).

3.2. Asymptotic conditions on the boundaries x = Lx and y = Ly.

The behavior of the solutions v and w as r =
√
x2 + y2 →∞ is studied in details

in [4, 5, 9]. The following formulae

(13) v̄(x, y) = µ
((1− c2)x2 − y2)

((1− c2)x2 + y2)2

and

(14) w̄(x, y) = µ̃(1− c2)
((1− c2)x2 − y2)

((1− c2)x2 + y2)2

given in [9] are found to describe very well the unknown functions v and w on the
computational boundary ∂Ωh.

In order to resolve the boundary functions (13) and (14) completely one
needs µ and µ̃ parameters. We obtain them iteratively, at each time level of (11),
by the following minimization procedure. For given solutions vki,j and w

k
i,j at time

level tk we choose µ and µ̃ as minimizers of

µ = min
µ>0
‖v̄(xi, yj)− v̂ki,j‖L2,Ω̂

, µ̃ = min
µ>0
‖w̄(xi, yj)− ŵki,j‖L2,Ω̂

.(15)
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3.3. Stop Criteria. Usually the calculations of v̂k+1 by equations (11)
are terminated if

max
i,j
|v̂k+1
i,j − v̂

k
i,j | < εmax

i,j
|v̂ki,j |,

where ε is a prescribed accuracy. But the solution decays as ∼ 1/r2 for r → ∞,

r =
√
x2 + y2. Thus for large x and y, the following expressions

(16) x2U(x, 0, t) ∼ cx and y2U(0, y, t) ∼ cy

have asymptotics of constant functions cx and cy respectively. There exist start

Fig. 1. Stop Criteria Intervals

points xs and ys for which the asymptotic conditions are valid inside the intervals
[xs, xend] and [ys, yend]. Furthermore, (16) are also valid on intervals [xm, xend]
and [ym, yend], where xm and ym are the midpoints, i. e., xm = (xs + xend)/2 and
ym = (ys + yend)/2.

At each kth successful iteration k ∈ N , the two expressions in (16) are
approximated by constant functions (zero order polynomial) cx(xi) = cx and
cy(yi) = cy with xi ∈ [xm, xend] and yi ∈ [ym, yend] respectively.

Between each two k iterations, the approximations are evaluated and com-
pared with each other, i. e., if the linear �ts cx and cy

(17) |cnx − c(n−k)
x | < ε and |cny − c(n−k)

y | < ε

cease to change signi�cantly between k iterations then the solution has converged.
Here the superscript n is the current iteration number and cnx means the value of
cx at the nth iteration.

3.4. Basic Algorithm Steps. The following are the most important
milestones during the implementation of the algorithm.

1. Resolve proper initial condition (v0, w0) on the grid Ωh. Set parameters ε
and τ .
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2. Suppose (vk, wk) are known.

(a) Find current θk from the discrete approximation of (8).

(b) Evaluate the solution on the computational boundary.

(c) Evaluate ∆h,pv̂
k and ∆h,pŵ

k.

(d) Calculate (v̂k+1, ŵk+1) on the time level tk+1 by the Euler explicit
scheme (11).

(e) Calculate the residual Rk+1
i,j from (12) and check the stop condition

(17).

(f) Control the time step size τ . Set tk+1 = tk + τ .

3. Continue steps (2a�2f) with the next time level tk+1 till condition (17) is
satis�ed.

4. Validation. In this section we give several numerical results con-
cerning the veri�cation of the presented numerical method. We use FDS with
di�erent approximation errors and several sets of parameters c, α, β, which are
shown in each table.

In this series of tests we evaluate the numerical solution of (9) using FDS
with approximation errors O(h2), O(h4), O(h6) and parameters α = 1, β = 3,
ε = 10e − 5, Lx = 30, Ly = 30. The initial conditions for the arti�cial parabolic
problem (11) are taken from [5]. Using the values of numerical solution on three
nested meshes, we compute the numerical rate of convergence (Conv. Rate) in
L2 and L∞ mesh norms by Runge method as (logE1 − logE2)/ log 2. Here v[h],
v[h/2] and v[h/4] represent the numerical solution over three nested meshes and
E1 = ‖v[h] − v[h/2]‖ , E2 = ‖v[h/2] − v[h/4]‖. Table 1 contains the errors in L2 and
L∞ norms and the corresponding numerical rate of convergence for the numerical
solutions obtained by FDS with second, fourth and sixth order of approximation
and velocities c = 0.1 or c = 0.45. We observe that the experimental rate of con-
vergence approximates well the approximation error of the di�erence schemes�the
FDS are of almost the same order of convergence as the order of approximation.
An additional observation is that for the same step size h the schemes with higher
order of approximation (O(h4), O(h6)) lead to a more precise solution than the
scheme with O(h2) approximation error.

5. Results. In this section we apply the presented numerical method
to study the characteristic properties of the obtained numerical solution. Many
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Table 1. Convergence test for FDS with di�erent approximation errors (O(h2), O(h4)
and O(h6)). Errors Ei are measured in L2 and L∞ norms

FDS h errors EiinL2 Conv. Rate errors EiinL∞ Conv. Rate

c=0.45 0.2

O(h2) 0.1 0.010413 0.009363
0.05 0.002451 2.0870 0.002258 2.0517

c=0.1 0.2

O(h2) 0.1 0.009880 0.008483
0.05 0.002332 2.0827 0.002033 2.0609

c=0.45 0.2

O(h4) 0.1 0.000782 0.000824
0.05 0.000050 3.9582 0.000054 3.9226

c=0.1 0.2

O(h4) 0.1 0.000678 0.000662
0.05 0.000044 3.9550 0.000044 3.9046

c=0.45 0.4

O(h6) 0.2 2.0975e-02 2.9341e-02
0.1 3.5348e-04 5.8909 5.8346e-04 5.6521

c=0.1 0.4

O(h6) 0.2 3.7059e-03 3.7572e-03
0.1 7.4723e-05 5.6321 8.3359e-05 5.4942

parametric dependencies of the numerical solution, discovered in [4, 5], such as
dependence of the solution's shape on the velocity c and on the relative dispersion
parameter β, are con�rmed here once again. We also compare the best-�t formu-
lae, built up in [5], with the numerical solution developed here. Such comparison
is still missing in the literature. Recall that the best-�t formulae are used as
initial data for our algorithm.

5.1. Solution residual. In the left-hand picture in Fig. 2 we present the
residual (12), saved on the last time level of the numerical scheme (11), for β = 5
and c = 0.3, while the residual, evaluated for problem with β = 1, c = 0.9, is
demonstrated in the right-hand part of Fig. 2. Here ε = 10e − 6 and the FDS
is of 6th order of approximation. In these cases the di�erence between the last
two iterations is 3.7749e − 007 for the �rst data set and 1.2726e − 007 for the
second data set. These results show that the equation (4) is satis�ed numerically
with high accuracy. Note that similar results about the residual for the numerical
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β = 5, c = 0.3 β = 1, c = 0.9

Fig. 2. Residual at the last step of iteration process (11)

scheme in [4] are not reported there. Concerning the best-�t formulae from [5]�
it is obvious to conclude from these formulae that the third, fourth and so on
derivatives of the best-�t solution are unbounded in the neighborhood of the
point (0, 0). Thus the residual, which includes fourth order derivatives of the
solution, could not be considered and evaluated in the classical sense. Therefore
the equation (4) is not satis�ed in the neighborhood of the origin by the best-�t
formulae from [5]!

Table 2. Errors in L2 and L∞ norms and convergence rate for fourth order discrete
derivative evaluated by FDS with O(h2) and O(h6) approximation errors

FDS h errors in L2 Conv. Rate errors in L∞ Conv. Rate

c=0.45 0.8

O(h2) 0.4 2.9698e-01 4.2497e-01
0.2 6.8742e-02 2.1111 8.6465e-02 2.2972

c=0.1 0.8

O(h2) 0.4 3.4849e-01 3.0271e-01
0.2 8.7696ee-02 1.9905 7.5691e-02 1.9998

c=0.45 0.8

O(h6) 0.4 1.0766e+00 1.2316e+00
0.2 3.5768e-02 4.91117 5.8927e-02 4.3855

c=0.1 0.8

O(h6) 0.4 8.0095e-01 9.8911e-01
0.2 1.5680e-02 5.6747 2.1238e-02 5.5414
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5.2. Solution derivatives. We have mentioned already that the best-�t
formulae from [5] have singularities near the origin. Now we demonstrate that the
discrete fourth order derivatives of the numerical solution converge numerically
as the step size h goes to zero. We apply the Runge test, evaluating the discrete
fourth order derivative vx̂xxx of the solution on three nested meshes with step
sizes h, h/2, h/4 (see Section (4)). The results are demonstrated in Table 2. We
conclude that the discrete derivative vx̂xxx is bounded and converges numerically
for h → 0. The tests for the other fourth order derivatives are similar to the
derivative vxxxx and we do not present them here.

5.3. Solution shape. First, two aspects of the solution for di�erent com-
binations of c and β are plotted in Fig. 3. Both numerical solutions are computed
on the domain Ω = [0, 25]× [0, 25] with h = 0.1 and then extended symmetrically
to [−25, 25] × [−25, 25]. Only the essential part of the wave (near the center) is

c = 0.9, β = 1 c = 0.5, β = 3

Fig. 3. 2D and 3D pro�les of the numerical solution u to (8) and (9)
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shown on these pictures. Top �gures are level plots showing the waves from above
and the bottom �gures are three dimensional showing the structure of the wave
in space.

We perform a detailed study of the numerical solution's shape with respect
to main parameters�the relative dispersion β = β1/β2 and the velocity c. Fig. 4
shows di�erent aspects of the solution at x = 0 and y = 0 cross-sections. The
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Fig. 4. Cross-sections of the numerical solution for β = 1 and several c

parameter α is �xed as one (α = 1) but parameters β and c vary. We apply
the computational procedure with Lx = Ly = 50, h = 0.2, ε = 1.0e − 06. In
Fig. 4, parameter β = 1 is held constant and the wave dependence on the phase
velocity c for c = 0.1, 0.3, 0.5, 0.7, 0.9 is demonstrated. Linear plots of the solution
are presented on the upper row while log�log plots of the absolute value of the
solution are shown on the lower part. These types of plots help us to establish
the size of the computational box.

One can observe that as the phase velocity c increases the wave's support
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along x direction increases too, but the maximum of the wave decreases. The
linear part of the solution on the log�log plots is under the governance of the
boundary function.

6. Comparison with best-�t formulae from [5]. Fig. 5 and
Table 3 demonstrate the absolute value of the di�erence between the solution v∗

by formulae [5] and the �nal solution of our procedure.

Table 3. Di�erences between the numerical solution v and best-�t solution v∗ from [5]

β c ‖v∗ − v‖∞ ‖v∗ − v‖2 β c ‖v∗ − v‖∞ ‖v∗ − v‖2
1 4.4002e-02 1.4371e-01 1 0.1 4.0554e-02 1.4802e-01
3 0.3 3.6519e-02 9.0714e-02 1 0.5 6.7063e-02 1.6766e-01
5 7.6927e-02 1.2936e-01 1 0.9 8.2821e-01 2.1671e0

On the left-hand side of Fig. 5 the phase velocity c = 0.3 is �xed and β
changes. On the right-hand side the dispersion parameter β = 1 is kept constant
while c changes. The experiments are done on a [−50, 50] × [−50, 50] domain
but only the results near the zero point are plotted. For each of the examples
shown in Fig. 5 a more detailed estimate (using numbers) is given in Table 3.
The di�erence is measured in the maximal and L2 norms. One observes that
for larger wave velocities c and dispersion parameters β the distinction becomes
more pronounced. For example, for β = 1 and c = 0.9 the di�erence between the
numerical solution obtained in this paper and the formulae v∗ from [5] becomes
≈ 0.8!

7. Conclusion. Fourth and sixth order �nite di�erence schemes are
applied for numerical evaluation of the stationary traveling wave solutions to the
Boussinesq equation in this paper. The high accuracy of the method applied
is demonstrated on several experiments. The numerical solution obtained here
performs similarly to the numerical solutions given in [4, 5] with respect to solution
shape and the dependence on the velocity c and relative dispersion β. The best-�t
approximation formulae from [5] fail to satisfy the initial equation in the classical
sense in the neighborhood of the origin. In the future, we will exploit the obtained
stationary traveling wave solutions as initial data to the corresponding Boussinesq
equation in order to seek two dimensional solitary wave solutions to (1).
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referees for their valuable comments and suggestions.
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c = 0.3
β = 1, 3, 5 (top to bottom)

β = 1
c = 0.1, 0.5, 0.9 (top to bottom)

Fig. 5. Di�erence between the numerical solution v and best �t formulae v∗ from [5]
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