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ABSTRACT. In this paper the role of advanced information technologies 

such as Internet of medical imaging Things and analytics in support and 

promotion of precision medicine is revealed considering a case study of 

early thyroid cancer diagnostics. The concept of precision medicine is 

presented and analyzed from the point of view of computational science 

and the new paradigm for scientific research. The focus of the paper is on 

the intersection of Internet of medical imaging Things and analytics 

ecosystem and precision medicine. The computational flow of in silico 

knowledge data discovery is presented and analyzed and the beneficial 

outcomes for the case study of thyroid cancer diagnostics revealed. Finally, 
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the architecture of experimental framework for in silico knowledge data 

discovery is proposed based on thyroid cancer imaging analytics. 

1. The problem area. In the Digital Era, modern society faces the 

challenges of advanced knowledge that technology helps us create. Advanced 

information and communication technologies facilitate the efficiency of 

scientific research in all areas—life sciences, technology, and humanities. The 

computational paradigm in scientific research involves computer-based models 

and simulations (in silico experimentation) that offer greater potential and 

facilities for investigation than theoretical analysis does. Globally, this resulted 

in the accumulation of huge amounts of in silico experimentation data that 

can be subjected to analysis in order to extract value. The fourth scientific 

research paradigm – Data Intensive Science Discovery – revolutionized 

fundamental and applied scientific research [1, 2]. Innovative modern 

technologies, such as Big data analytics, Internet of Things, cloud computing, 

give researchers powerful opportunities for Knowledge Data Discovery and 

intelligent decision making [3, 4, 5, 6]. Personalizing patient treatment is a 

difficult and expensive task and instead, in the case of precision medicine, 

patients are grouped according to their specifics and are assigned treatment 

optimal for their target group. The main objective of the Precision Medicine 

Initiative is individualized healthcare. The deployment of precision medicine 

into patient care involves considering three crucial factors: genetic specifics, 

environmental factors and individual lifestyle. 

Precision medicine [7] is one of the hottest topics nowadays and 

involves disease treatment that takes into account the individual genetic 

profile, environmental specifics, and lifestyle of the individual. In 2015, US 

President Barack Obama launched the Precision Medicine Initiative with the 

aim to improve health and disease therapy by means of tailoring the treatment 

and prevention strategy to fit the specifics of the individual patient in lieu of 

the “one-size-fits-all” approach (average patient). “Doctors have always 

recognized that every patient is unique, and doctors have always tried to tailor 

their treatments as best they can to individuals”, President Obama noted in 

his State of the Union address [8]. 

Cancer is a severe disease that progresses in many forms. All of these 

are described in multiple subtypes. One particular type is thyroid cancer. 



 Internet of Medical Imaging Things and Analytics … 49 

 

As with most other types, early diagnostics is a key factor in successful 

treatment. One of the ways for its timely detection is imaging diagnostics. 

Visually, changes in the thyroid gland are recorded through ultrasound 

examination of the patient. Due to the large amount of data accumulated in it, 

considering the number of patients, it is necessary to introduce automated 

methods for the analysis of sonographic images. Already many approaches 

have been tested for this purpose—Artificial Neural Networks, Bayes Networks, 

Decision trees, Support vectors, and so on. 

The results obtained from automated analytics need to be presented in 

a compact form. In it, they can later be validated and presented in a handy 

appearance for the medical staff. They can also be distributed among different 

healthcare institutions (clinics, hospitals, institutes) for educational and 

research purposes, published in specialized online and offline editions, and 

archived for a long time. This provides an opportunity for future comparison 

with newly received data for the same patient in assessing the development of 

his/her health status. It is also possible to combine them with other 

information obtained from different types of built-in biosensors, recording 

many other indicators, for a more detailed picture of the patient’s condition. 

In this paper the IoT ecosystem and its intersection with an analytics 

ecosystem and healthcare is presented. The specifics and classification of 

imaging data with respect to thyroid cancer diagnostics are discussed. Finally, 

an experimental framework for medical imaging analytics and in silico 

knowledge data discovery for the purpose of early detection of thyroid cancer 

is proposed. 

2. The Intersection of Internet of medical Things and 

analytics ecosystem and healthcare. In contrast with the current 

fragmented healthcare, the interconnection model of the IoMT ecosystem [9, 10] 

contributes the possibility of updating the medical crew on the most promising 

treatment scenario by the extensive support of Internet of Things (IoT) (Fig. 1). 

The latter makes it possible to enable uninterruptable monitoring 

without medical personnel being present and waving proper alarms when needed. 

Geographical position is no longer an obstacle before placing a correct diagnosis, 

effective superintendence and adaptive treatment. The patient is given the 
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possibility to send data of his/her own health status. In addition to th

functionality, by the application of various connected de

for introducing personalized care over

delivery model assures optimizing the care costs by promotion of preventive and 

proactive medical actions rather than taking only reactive measures.

Fig. 1. The intersection of Internet of medical things ecosystem and analytics and 

The space of connected devices, which lays grounds for the wide 

variety within the Internet of Things (IoT) with medical application, may be 

represented in the following groups [

 invasive devices
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ECG, ventilators, blood glucose meters and heart rate monitors;
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 wearables—activity tracker, pedometer, sleep apnea detector; 

 capital intensive devices—implants, prostheses, MRI/CT/Ultrasound 

scanners. 

The Internet of Medical Imaging Things (IoMIT) is the next step 

towards expanding the ever-growing role of medical imaging devices by 

interconnecting them in a unified network environment. Apart from classical 

medical imaging techniques, such as Magnetic Resonance Imaging (MRI), 

Computer Tomography (CT) and Ultrasound Imaging (US), two new 

modalities emerge recently which deserve attention—Digital Breast 

Tomosynthesis (DBT) and 3-D Ultrasonic Holography [12, 13, 14, 15]. The 

first technique provides better lesion visibility leading to better performance in 

early cancer diagnosis. 

A series of images are obtained along the breast helping for more 

detailed spatial reconstruction. The second approach does not employ 

dangerous radiating emissions, making it a preferred solution for preventive 

and post-operative examination. The achieved resolutions are higher than 

those registered by ordinary ultrasound imagers. Computer-based data 

interpretation is better as a consequence of this enhancement. 

One of the most successful solutions for healthcare industry in the 

IomT-enabled infrastructure is the mobile applications for remote health 

monitoring system, i. e., the Digital Health Advisors that facilitate 

communications between patients and doctors over a secured connection. 

Wireless body area network (WBAN), also called body sensor network 

(BSN), actually make it possible to acquire and accumulate personal medical 

data out of a wide spectrum of wearable devices (physiological biosensors), 

embedded in or on the surface of the body or suitable for wearing in clothes, 

bags, etc. The data acquired in situ about the physiological status of a person 

is transmitted via Internet and thus is made accessible in reasonable time and 

in a secure way to doctors regardless of the patient’s location. 

The concept of interconnecting and remote monitoring of medical 

imaging equipment over the Internet dates back to approximately 20 years ago. 

The Big Three medical imaging companies Siemens Healthcare, Philips 

Healthcare and GE Healthcare built up together a strategy for establishing 

“All-in-one Health Cloud” in 2015 [16, 17, 18]. The major aim is to move 
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computer-intensive image processing to the Health Cloud ecosystem.  

According to HealthIT Analytics (Intelligent Network Media), imaging 

analytics is “the first step to personalized medicine” [19, 20]. 

Signal processing is playing an increasingly important role in modern 

times, mostly due to the ever-increasing popularity of IomT devices. Analysis 

of IomT data in medicine helps doctors to make a reliable and accurate disease 

diagnosis and prognosis, for predicting disease progression and the effect of 

treatment as well as for drug target identification. 

Medical imaging refers to techniques and processes used to create 

images of various parts of the human body for diagnostic and treatment 

purposes within digital health [11]. Medical image in healthcare helps early 

diagnostics of diseases and prescribing more effective therapy [21, 22]. 

Internet of medical imaging Things is an important subarea of IomT 

technologies and is of crucial importance for imaging diagnostics. Euro-

BioImaging European Research Infrastructure for Imaging Technologies in 

Biological and Biomedical Sciences (Euro-BioImaging, EuBI) will provide open 

access for users to a wide range of state-of-the-art Biological and Medical 

imaging technologies for biologists in Europe and beyond [23]. It will offer 

support and training of imaging data for users and infrastructure providers 

and will continually evaluate and incorporate new imaging technologies to 

provide state-of-the-art services in a sustainable way such as image data 

repositories and analysis tools. EuBI will consist of a set of complementary, 

highly interconnected and geographically distributed nodes – special image 

processing devices – to reach European scientists in all Member States. The 

infrastructure will be managed by a strong supportive and coordinating 

organization that is at the center of EuBI. The Hub will provide the virtual 

access point from which users will be targeted to their desired image 

technology by serving the relevant EuBI nodes. The Center will coordinate 

data management and training activities tailored to the needs of users of the 

imaging infrastructure. 

Next to genomics, medical images are one of the fastest growing Big 

clinical data sources in the healthcare space. The amount of storage volume 

needed to house medical images has more than tripled since 2005, and is 

projected to double up as a sustainable trend in the near future. So, healthcare 
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facilities are more often looking to the cloud to ensure high-capacity medical 

image storage. Medical imaging cloud technologies offer web-based imaging 

analytics platforms. Cloud imaging services comprise ultra-fast cloud computing 

(supercomputing) infrastructures, advanced visualization, deep learning and 

cloud medical imaging storage and sharing. The conceptual model of Internet of 

medical Things and analytics ecosystem is presented in Fig. 2. 

 

Fig. 2. The conceptual model of Internet of medical Things and analytics ecosystem 

The cloud-based technology platform Medimsight [24] is a cloud 

marketplace offering picture archiving and communication systems (PACS) 

services running over the Google cloud infrastructure providing secure, 

unlimited, fast and affordable (free for research) cloud services with an open 

API to integrate with other vendors at all levels, including AI analysis, storage 

and analytics. 
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On the diagnostic imaging side, deep learning will facilitate selecting 

and extracting features from medical images as well as constructing new 

predictive ones [25]. IBM Watson recently boosted itself with more than 

$4 billion worth of new assets through the acquisition of Phytel (population 

health), Explorys (cloud), Merge (imaging), and Truven (analytics). Obviously, 

collecting and accumulating patient-generated health data from IomT devices 

is a key to population health management healthcare. Big data analytics 

becomes a key competency for society to acquire the necessary competency to 

ensure high quality patient care. Typical Electronic Health Records (HER), 

such as RxNORM, LOINC, DICOM, and SNOMED CT, are now being put to 

deep semantic analysis in order to extract general profile knowledge. Thus, the 

Internet of Knowledge (IoK) emerges as the next stage in generalizing medical 

data placing the accuracy of early diagnosis to higher levels.  

All the data registered by various sensors within IoT, most of which 

employ embedded design, needs to be entered into a unified environment and 

further properly formatted and processed [25]. Prior to that, means for 

visualization and source processing in the form of client applications 

considering both the Quality of Service and power efficiency also should be 

interconnected with their related information to this framework. 

3. Imaging data specifics and classification for thyroid 

cancer diagnostics. Thyroid cancer diagnostics is based on ultrasound 

image analysis using Thyroid image reporting and data system (TI-RADS) [26, 

27]. Thyroid lesions are classified based on the risk stratification system TI-

RADS approved by the American College of Radiology (ACR). There is also a 

standardized scoring system for diagnosis. Sonographic TI-RADS include the 

elements TI-RADS 1–6, the first of which corresponds to a normal thyroid 

gland, followed by benign lesions, then probable benign lesions, suspicious 

lesions, probably malignant lesions and finally biopsy-proven malignancy. In 

TI-RADS 2 echogenic specks are observed of colloid type I, typical for 

avascular anechoic lesions as well as non-encapsulated nodules embodied in 

colloid type II peripheral halo and expansile vascular nodules (colloid type 

III)—all of them pose no risk of malignancy. Hyperechoic, iso-echoic and 

hypoechoic nodules appear, sometimes with partially formed capsule or 
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peripheral vascularity, in TI-RADS 3 category. Here the risk of malignancy is 

less than 5%, still the lesions are mostly benign. TI-RADS 4 is divided into 

three sub-categories—4a for one suspicious feature, 4b for two and 4c for three 

or four. TI-RADS 5 includes all five suspicious features. These features are 

solid component, markedly hypoechoic nodule, microlobulations or irregular 

margins, microcalcifications, and taller-than-wider shape. The associated risks 

of malignancy are 5–10%, 10–80% and more than 80% respectively by 

increment of the category. 

ACR proposed TI-RADS uses reporting system for the observed 

thyroid nodules. It is a standardized scoring system (Table 1), which helps on 

making recommendations for fine needle aspiration (FNA) or additional 

ultrasound imaging at a later stage. One score is taken from each category. 

When multiple nodules, typically more than four, are observed, then only four 

with the highest scores are reported and possibly followed up. The relation 

between scoring and classification is: TR1 0 points—benign, TR2 2 points—

not suspicious, TR3 3 points—mildy suspicious, TR4 4–6 points—moderately 

suspicious, and TR5 ≥ 7 points—highly suspicious. FNA is not recommended 

for TR1 and TR2. Follow up is required in 1, 3 and 5 years for sizes ≥ 1.5 cm 

at TR3 and ≥ 1.0 cm at TR4 (in 2 years as well), also for ≥ 0.5 cm at TR5 

where annual follow-up is required for up to 5 years. FNA is recommended for 

all these cases for sizes ≥ 2.5 cm, 1.5 cm and 1.0 cm respectively. 

Table 1. Ultrasound findings scoring in five categories [26, 27] 

Composition 
(choose 1) 

Echogenicity 
(choose 1) 

Shape 
(choose 1) 

Margin 
(choose 1) 

Echogenic 
Foci 

(choose all 
that apply) 

Cystic or 
almost 

completely 
cystic—
0 points 

Anechoic—
0 points 

Wider than 
tall—0 points 

Smooth—
0 points 

None or large 
comet tail 
artefact—
0 points 

Spongiform—
0 points 

Hyperechoic 
or isoechoic—

1 point 

Taller than 
wide—
3 points 

Ill-defined—
0 points 

Macro-
calcifications—

1 point 
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Thyroid image databases. Pedraza et al. [27, 28] presented recently an 

open access thyroid ultrasound-image database. It is a result of an 

examination of 299 patients—270 females and 29 males at average age of 57.35 

years with deviation of ±16.2 years. All obtained images are in uncompressed 

JPEG format, annotated after diagnosis according to the TI-RADS 

requirements. A specially designed annotation tool was used to classify the 

different cases, such as thyroiditis, cystic nodules, adenomas and thyroid 

cancers. Accurate lesion delineation is then included in XML format. In 

addition to the initial diagnosis, malignant lesions are confirmed by biopsy. 

Finally, 347 images compound the Thyroid Digital Images Database—TDID. 

A sample image from the database is shown in Fig. 3. 

   

a) original b) annotated 

Fig. 3. Thyroid ultrasound image from the DDTI 

One of the earliest databases of thyroid images has been collected at 

the Garavan Institute, Sydney, Australia [29] as a sequence of 10 sub-sets. The 

number of instances is 7200 with 21 attributes present. They are either 

Mixed cystic 
and solid—

1 point 

Hypoechoic—
2 points 

 Lobulated/irreg
ular—2 points 

Peripheral/rim 
calcifications—

2 points 

Solid or 
almost 

completely 
solid—
2 points 

Very 
hypoechoic—

3 points 

 Extra-thyroidal 
extension 
(ETE)—
3 points 

Punctate 
echogenic 

foci—3 points 
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Boolean or continuously values covering 2800 training instances and 972 test 

ones. The researchers who gathered the data consider it suitable for training 

Artificial Neural Networks (ANNs). 

TCIA Collections [30, 31] is extensive database of images and related 

clinical data of patients with various types of cancer. It is accessible for public 

download after de-indentification from personal details, typically in DICOM 

format. Thyroid cases are represented by CT and PET modalities for six 

patients after seven studies. There are 28 series comprising 2780 images with a 

total size of 1.16 GB. 

4. Experimental framework for medical imaging analytics 

and in silico knowledge data discovery for the purpose of early 

thyroid cancer detection. The intersection of Internet of medical 

imaging Things and analytics and precision medicine lies in in silico knowledge 

data discovery (in silico KDD) that makes possible the design and deployment 

of smart digital consultants helpings clinicians and researchers to make 

accurate disease diagnostics and prescribing the optimal therapy for an 

individual patient, especially for the case study of cancer. 

The computational workflow encompasses the stages of a standard 

computational pipeline for data analytics and knowledge data discovery: data 

acquisition and modeling, preprocessing stage (filtering, problem 

dimensionality reduction, multiple sequence alignment, signal processing), data 

analytics stage and postprocessing stage including result visualization and 

interpretation and experts’ estimation of interest (Fig. 4). For the purpose of 

in silico knowledge data discovery, quantitative as well as qualitative types of 

data analytics have to be conducted. 

Descriptive analysis is conducted by means of data mining tools and at 

this stage of the computational pipeline the training and validating data sets 

are being built up. Then the diagnostic analysis is performed, the outcome of 

which is, for example, finding out the specific genetic disorder. The predictive 

analysis follows, which prognosticates the progress of the disease. For the case 

study of early thyroid cancer diagnostics, cancer malignancy and life duration 

are being predicted. 
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Fig. 4. In silico knowledge data discovery pipeline for the case study 

of early thyroid cancer diagnostics 

Based on the current state of the Internet of Medical Imaging Things 

and contemporary classification techniques [32] we propose an experimental 

framework for in silico knowledge data discovery for early detection of thyroid 

cancer (Fig. 5). 

The proposed experimental framework includes Deep learning 

framework Caffe and Tensor Flow used for training the Machine Learning 

model and mobile application that uses this trained model and the built-in 

camera for analysis of medical images. The framework lays the foundation for 

personal medical consultant apps which will enable the patient to pre-diagnose 

symptoms or verify the doctor’s diagnosis [32]. 

All ultrasound images are subject to pre-processing where contrasting 

enhancement, intensity correction, noise filtering, and dimensions correction 

are implemented. 
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Fig. 5. Experimental framework for in silico knowledge data discovery 

for early thyroid cancer diagnostics 

The software library TensorFlow and Caffe framework is the other 

essential part of the proposed experimental framework. The computational 

library TensorFlow is developed by Google Inc.; it is intended for accelerated 

calculations using graphs and tensors [33]. In this instance, different 

configurations of the ANN could be accommodated for the various types of 

lesions observed in the thyroid. Massive parallelization using multiple CPUs 

and GPUs and the support of dedicated API for data exchange are part of the 

qualities which characterize this library. 

Caffe is a deep-learning framework made with expression, speed, and 

modularity in mind. It is an expressive framework which encourages 

application and innovation. Models and optimization are defined by 

configuration without hard-coding [34]. 
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The machine-learning approach applied in the proposed experimental 

framework is Artificial Neural Networks (ANNs) because of the best results 

obtained for the case study of pattern recognition. The objective of ANNs is to 

make computers “think” and solve issues as human beings do, especially for 

making decisions in cases where a rule based approach is not applicable.  

ANNs offer a promising approach to analyzing big medical imaging data in an 

effective manner. 

5. Conclusions. In this paper the role of Internet of medical imaging 

Things and analytics in support of precision medicine for early thyroid cancer 

diagnostics was presented. The Internet of medical imaging Things analytics 

ecosystem and its intersection with precision medicine was discussed with 

respect to the new paradigm for scientific research. Finally, the architecture of 

an experimental framework for in silico knowledge data discovery was 

proposed, based on medical imaging analytics for early thyroid cancer 

diagnostics. 
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