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Abstrat. The inverse sum indeg index ISI(G) of a simple graph G is

de�ned as the sum of the terms

dG(u)dG(v)

dG(u) + dG(v)
over all edges uv of G,

where dG(u) denotes the degree of a vertex u of G. In this paper, we present

several upper and lower bounds on the inverse sum indeg index of subdivision

graphs and t-subdivision graphs. In addition, we obtain the upper bounds

for inverse sum indeg index of S-sum, St-sum, S-produt, St-produt of

graphs.

1. Introdution. All the graphs onsidered in this paper are simple

and onneted. For verties x, y ∈ V (G), the distane between x and y in G,

denoted by dG(x, y), is the length of a shortest (x, y)-path in G. The degree of a

vertex v ∈ V (G) is denoted by dG(v). For a vertex x in G, the eentriity ǫ(x)
of x is max{dG(x, y)|y ∈ V (G)}. The minimum eentriity among the verties
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of G is the radius of G, denoted by r(G), and the maximum eentriity is its

diameter d(G). A vertex x in G is a entral vertex if ǫ(x) = r(G). A graph G

is self-entered if ǫ(x) = r(G) for all verties x ∈ V (G). The subdivision graph

of G, denoted by S(G) is a graph obtained from G by replaing eah edge of G

by a path of length 2. The t-subdivision graph de�ned by St(G) of G is a graph

obtained from G by replaing eah edge of G by a path of length t+ 1.

Moleular desriptors, that are results of funtions mapping moleule's

hemial information into a number [16℄, have found appliations in modeling

many physiohemial properties in QSAR and QSPR studies [3, 9℄. A partiu-

larly ommon type of moleular desriptors are those that are de�ned as funtions

of the struture of the underlying moleular graph, suh as the Wiener index [19℄,

the Zagreb indies [6℄, the Randi� index [13℄ or the Balaban J-index [1℄. Damir

Vukievi� and Marija Gasperov [17℄ observed that many of these desriptors are

de�ned simply as the sum of individual bond ontributions.

Among the 148 disrete Adriati indies studied in [17℄, whose predi-

tive properties were evaluated against the benhmark datasets of the Internation

Aademy of Mathematial Chemistry [10℄, 20 indies were seleted as signi�ant

preditors of physiohemial properties. In this onnetion, Sedlar et al. [14℄

studied the properties of the inverse sum indeg index, the desriptor that was

seleted in [17℄ as a signi�ant preditor of total surfae area of otane isomers

and for whih the extremal graphs obtained with the help of Math. Chem. have a

partiularly simple and elegant struture. The inverse sum indeg index is de�ned

as ISI(G) =
∑

uv∈E(G)

1
1

dG(u) +
1

dG(v)

=
∑

uv∈E(G)

dG(u)dG(v)

dG(u) + dG(v)
.

Extremal values of inverse sum indeg index aross several graph lasses,

inluding onneted graphs, hemial graphs, trees and hemial trees were de-

termined in [14℄. The bounds of a desriptor are important information of a

moleular graph in the sense that they establish the approximate range of the

desriptor in terms of moleular strutural parameters. In [4℄, some sharp bounds

for the inverse sum indeg index of onneted graphs are given. The inverse sum

indeg index of some nanotubes is omputed in [5℄. Several upper and lower bounds

on the inverse sum indeg index in terms of some moleular strutural parameters

and relate this index to various well-known moleular desriptors are presented

in [12℄. In this paper, we present several upper and lower bounds on the inverse

sum indeg index of subdivision graphs and t-subdivision graphs. In addition, we

obtain the upper bounds for inverse sum indeg index of S-sum, St-sum, S-produt,

St-produt of graphs.
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2. Bounds on ISI Index of Subdivision Graphs. In this setion,

we obtain the upper and lower bounds for the inverse sum indeg index of subdivi-

sion graph and t-subdivision graph of a onneted graphs. We denote by ∆ and δ

the maximum and minimum vertex degrees of G, respetively. The graph G is

alled a (∆, δ)-bidegreed if whose verties have degree either ∆ or δ with ∆ 6= δ.

The Zagreb indies are amoung the oldest topologial indies, and were

introdued by Gutman and Trinajsti� [6℄ in 1972. These indies have sine

been used to study moleular omplexity, hirality, ZE-ismerism and hetero-

systems. The �rst and seond Zagreb indies of G are denoted by M1(G) and

M2(G), respetively, and de�ned as M1(G) =
∑

v∈V (G)

(dG(v))
2
and M2(G) =

∑

uv∈E(G)

dG(u)dG(v). The inverse degree index of G, denoted by ID(G) is de-

�ned as ID(G) =
∑

v∈V (G)

1

dG(v)
. For any even n, the oktail party graph CPn is

the unique regular graph with n verties of degree n − 2, it is obtained from Kn

by removing

n

2
disjoint edges.

Let G be a graph with m edges. By de�nition of the inverse sum indeg

index, we have

ISI(S(G)) =
∑

(x,y)∈E(G)

(
2dG(x)

dG(x) + 2
+

2dG(y)

2 + dG(y)

)

.(1)

and

ISI(St(G)) =
∑

(x,y)∈E(G)






2dG(x)

dG(x) + 2
+ 1 + 1 + . . . + 1

︸ ︷︷ ︸

(t−1) times

+
2dG(y)

2 + dG(y)






=
∑

(x,y)∈E(G)

(
2dG(x)

dG(x) + 2
+

2dG(y)

2 + dG(y)

)

+ (t− 1)m

= ISI(S(G)) + (t− 1)m.(2)

One an observe that ISI(G) < ISI(S(G)) and ISI(G) < ISI(St(G)).

Example 1. Let G be a r-regular graph with n verties. Then ISI(S(G)) =
nr2

r + 2

and ISI(St(G)) =
nr(t(r + 2) + r − 2)

2
.
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Theorem 1. Let G be a graph with n verties and m edges. Then

ISI(S(G)) = 4(m− n) +
∑

x∈V (G)

8

dG(x) + 2
.

P r o o f. For eah neighbor of x in G, the term
2dG(x)

dG(x) + 2
appears exatly

one in the sum

∑

(x,y)∈E(G)

( 2dG(x)

dG(x) + 2
+

2dG(y)

2 + dG(y)

)

. Hene

ISI(S(G)) =
∑

x∈V (G)

( 2dG(x)

dG(x) + 2
+

2dG(x)

dG(x) + 2
+ . . .+

2dG(x)

dG(x) + 2
︸ ︷︷ ︸

dG(x) times

)

=
∑

x∈V (G)

2(dG(x))
2

dG(x) + 2

=
∑

x∈V (G)

(

2dG(x)−
4dG(x)

dG(x) + 2

)

= 4m−
∑

x∈V (G)

( 4dG(x)

dG(x) + 2

)

= 4m−
∑

x∈V (G)

(

4−
8

dG(x) + 2

)

= 4(m− n) +
∑

x∈V (G)

( 8

dG(x) + 2

)

.

�

Corollary 1. Let G be a graph with n verties and m edges. Then ISI(St(G)) =

(t+ 3)m− 4n+
∑

x∈V (G)

8

dG(x) + 2
. �

Lemma 1. Shweitzer's inequality[2, 8℄ Let x1, x2, . . . , xn be positive real

numbers suh that for 1 ≤ i ≤ n holds m ≤ xi ≤ M . Then

( n∑

i=1

xi

)( n∑

i=1

1

xi

)

≤
n2(m+M)2

4mM
.

Equality holds if and only if x1 = x2 = . . . = xn = m = M or n is even,

x1 = x2 = . . . = xn

2

= m and xn

2
+1 == xn

2
+2 = . . . = xn = M , where m < M

and x1 ≤ x2 ≤ . . . ≤ xn.
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Using above lemma to obtain the following sharp upper bound for the

inverse sum indeg index of subdivision graphs.

Theorem 2. Let G be a graph with n verties and m edges. Then ISI(S(G)) ≤

4(m − n) +
n2(δ +∆+ 4)2

(n+m)(δ + 2)(∆ + 2)
with equality if and only if G is regular or a

(∆, δ)-bidegreed graph.

P r o o f. For any vertex x in V (G), we get δ + 2 ≤ dG(x) + 2 ≤ ∆+ 2.

Also,

∑

x∈V (G)

(dG(x) + 2) = 2(m+ n). By Shweitzer's inequality, we obtain

∑

x∈V (G)

8

dG(x) + 2
≤

n2(δ +∆+ 4)2

(n+m)(δ + 2)(∆ + 2)
.

By Theorem 1, we obtain the required inequality.

By Lemma 1, equality holds if and only if δ = ∆ or

n

2
verties of G have

degree δ and the remaining

n

2
verties of G have degree ∆, that is, G is regular

or a (∆, δ)-bidegreed. �

Corollary 2. Let G be a graph with n verties and m edges. Then ISI(St(G)) ≤

(t + 3)m − 4n +
n2(δ +∆+ 4)2

(n+m)(δ + 2)(∆ + 2)
with equality if and only if G is regular

or a (∆, δ)-bidegreed graph.

Lemma 2. Let a and b be real numbers. Then

1

a+ b
≤

1

4

(1

a
+

1

b

)

with equality if and only if a = b.

Theorem 3. Let G be a graph with n verties and m edges. Then ISI(S(G)) ≤
4m− 3n + 2ID(G) with equality if and only if G is the disjoint union of yles.

P r o o f. For eah vertex x ∈ V (G), by Lemma 2, we have

1

dG(x) + 2
≤

1

4

( 1

dG(x)
+

1

2

)

with equality if and only if dG(x) = 2. Hene

∑

x∈V (G)

8

dG(x) + 2
≤ 2

∑

x∈V (G)

1

dG(x)
+ n = 2ID(G) + n,
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where ID(G) is the inverse degree index of G.

By Theorem 1, we obtain the required inequality.

Equality holds if and only if eah vertex x ∈ V (G), dG(x) = 2, that is, G
is the disjoint union of yles. �

Corollary 3. Let G be a graph with n verties and m edges. Then ISI(St(G)) ≤
(t + 3)m − 3n + 2ID(G) with equality if and only if G is the disjoint union of

yles.

Theorem 4. Let G be a graph with n verties and m edges. If p is the number of

pendant verties of G, then ISI(S(G)) ≥ 4(m−n)+ 8
(p

3
+

n− p

∆+ 2

)

with equality

if and only if G is regular or a (∆, 1)-bidegreed graph.

P r o o f. One an see that

∑

x∈V (G)

8

dG(x) + 2
= 8

( 1

3
+

1

3
+ . . .+

1

3
︸ ︷︷ ︸

p times

+
∑

x∈V (G), dG(x)>1

1

dG(x) + 2

)

= 8
(p

3
+

∑

x∈V (G), dG(x)>1

1

dG(x) + 2

)

≥ 8
(p

3
+

1

∆ + 2
+

1

∆+ 2
+ . . .+

1

∆+ 2
︸ ︷︷ ︸

n−p times

)

=
8p

3
+

8(n − p)

∆ + 2
.

By Theorem 1, we obtain the required inequality.

Equality holds if and only if for every non-pendant vertex x ∈ V (G),
dG(x) = ∆. If p = 0, then for every vertex x ∈ V (G), dG(x) = ∆, that is, G is

regular, where 2 ≤ ∆ ≤ n − 1. Assume p > 0. If there is no non-pendant vertex

in G, then G ∼= K2 and otherwise, G is (∆, 1)-bidegreed. �

Corollary 4. Let G be a graph with n verties and m edges. If p is the number

of pendant verties of G, then ISI(St(G)) ≥ (t+3)m− 4n+8
(p

3
+

n− p

∆+ 2

)

with

equality if and only if G is regular or a (∆, 1)-bidegreed graph.

Corollary 5. Let G be a graph with n verties and m edges. If G has no pendant

verties, then ISI(S(G)) ≥ 4(m − n) +
8n

∆+ 2
and ISI(St(G)) ≥ (t + 3)m −

4n+
8n

∆+ 2
. The equality holds for both ases if and only if G is ∆-regular, where

2 ≤ ∆ ≤ n− 1.
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Let di(x) be the number of verties at distane i from the vertex x in G,

that is, di(x) = |{y | dG(x, y) = i}| .

Theorem 5. Let G be a graph with n verties and m edges. Then

ISI(S(G)) ≥ 4
(

m−
n(n− r(G))

n− r(G) + 2

)

(3)

with equality if and only if G ∼= Kn or G ∼= CPn.

P r o o f. Sine di(x) is the number of verties at distane i from the

vertex x in G. One an observe that dG(x) ≤ n− ǫ(x) with equality if and only if

ǫ(x) = 1 and dG(x) = n − 1 or ǫ(x) ≥ 2 and d2(x) = d3(x) = . . . = dǫ(x)(x) = 1.
Thus for every vertex x ∈ V (G), we obtain

8

dG(x) + 2
≥

8

n− ǫ(x) + 2
≥

8

n− r(G) + 2
.

By Theorem 1, we obtain the required result.

Suppose that equality holds in (3). Then G is self-entered and for every

vertex x ∈ V (G), equality holds in dG(x) ≤ n− ǫ(x). If ǫ(x) = 1 for some vertex

x ∈ V (G), then dG(x) = n − 1 and ǫ(y) ≤ 2 for all verties x 6= y. Sine G is

self-entered, ǫ(x) = 1 for all verties x ∈ V (G). Thus G ∼= Kn.

Now, suppose that ǫ(x) ≥ 2 for all verties x ∈ V (G). If ǫ(x) ≥ 3 for some

vertex y, then d(G) = 3 (otherwise, there exist at least two neighbors at distane 2
for the entral vertex) and G ∼= P4, a path on 4 verties. This ontradits that G

is self-entered. So, ǫ(x) = 2 for all verties x ∈ V (G) and then dG(x) = n − 2
for all verties x ∈ V (G). It gives G ∼= CPn. �

Theorem 6. Let G be a graph with m edges. Then ISI(S(G)) ≤
M1(G)

4
+ m

with equality if and only if G is the disjoint union of yles.

P r o o f. For any vertex x ∈ V (G), we obtain

2dG(x)

dG(x) + 2
≤

2 + dG(x)

4

with equality if and only if dG(x) = 2. Thus by equation (1), we have

ISI(S(G)) ≤
∑

(x,y)∈E(G)

(
2 + dG(x)

4
+

2 + dG(y)

4

)

=
1

4
(M1(G) + 4m).

Equality holds if and only if for every vertex x ∈ V (G), dG(x) = 2. This
implies G is a disjoint union of yles. �
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Corollary 6. Let G be a graph with m edges. Then ISI(St(G)) ≤
M1(G)

4
+ tm

with equality if and only if G is the disjoint union of yles.

Lemma 3. (Cauhy-Shwarz inequality)

Let X = (x1, x2 . . . xn) and Y = (y1, y2, . . . , yn) be two sequenes of real

numbers. Then

( n∑

i=1

xiyi

)2
≤

n∑

i=1

x2i

n∑

i=1

y2i with equality if and only if the se-

quenes X and Y are proportional, i. e., there exists a onstant c suh that

xi = cyi, for eah 1 ≤ i ≤ n.

As a speial ase of the Cauhy-Shwarz inequality, when y1 = y2 = . . . =
yn, we get the following result.

Corollary 7. Let x1, x2, . . . , xn be real numbers. Then

( n∑

i=1

xi

)2
≤ n

n∑

i=1

x2i with

equality if and only if x1 = x2 = . . . = xn.

Theorem 7. Let G be a graph with n verties and m edges. Then ISI(S(G)) ≥
4(m2 − n2) + 4n2

m+ n
with equality if and only if G is regular.

P r o o f. By Cauhy-Shwarz inequality, we get




∑

x∈V (G)

(
dG(x) + 2

)








∑

x∈V (G)

1

dG(x) + 2



 ≥




∑

x∈V (G)

√

dG(x) + 2
1

√

dG(x) + 2





2

with equality if and only if all the dG(x)'s are equal.

Moreover,

∑

x∈V (G)

(
dG(x) + 2

)
= 2(m+ n). Thus

∑

x∈V (G)

1

dG(x) + 2
≥

n2

2(m+ n)
.

By Theorem 1, we obtain the required inequality.

Equality holds if and only if all the dG(x)'s are equal. This implies G is

regular. �

Corollary 8. Let G be a graph with n verties and m edges. Then ISI(St(G)) ≥
4(m2 − n2) + 4n2

m+ n
+ (t+ 1)m with equality if and only if G is regular.
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Let G be a graph with n verties and m edges. If m = n− 1, n and n+1
then G is alled a tree, uniyli and biyli graphs, respetively.

Corollary 9. Let G be a tree on n verties. Then ISI(S(G)) ≥
4(n − 1)2

2n− 1
and

ISI(St(G)) ≥
4(n− 1)2

2n− 1
+ (n − 1)(t + 1).

Corollary 10. Let G be a uniyli graph on n verties. Then ISI(S(G)) ≥ 2n
and ISI(St(G)) ≥ n(t+ 3).

Corollary 11. Let G be a biyli graph on n verties. Then ISI(S(G)) ≥
4(n + 1)2

2n+ 1
and ISI(St(G)) ≥

4(n+ 1)2

2n+ 1
+ (n+ 1)(t+ 1).

Lemma 4. [11℄ Let f be a onvex funtion on the interval I and x1, x2, . . . , xn ∈ I.

Then

x1 + x2 + . . .+ xn

n
≤

f(x1) + f(x2) + . . . , f(xn)

n
with equality if and only

if x1 = x2 = . . . = xn.

Theorem 8. Let G be a graph on m edges. Then ISI(S(G)) >
4δ m− δM1(G)

2
.

P r o o f. For any vertex x in G, dG(x) ≥ δ. By the de�nition of inverse

sum indeg index of the subdivision graph of G, we have

ISI(S(G)) =
∑

xy∈E(G)

(
2dG(x)

dG(x) + 2
+

2dG(y)

2 + dG(y)

)

≥
∑

xy∈E(G)

(
2δ

dG(x) + 2
+

2δ

2 + dG(y)

)

.

Let f(x) =
1

x
. Sine f is a onvex funtion on (0,+∞), by Jensen's inequality,

for any edge xy ∈ V (G), we obtain

2

dG(x) + 2
+

2

2 + dG(y)
≥

8

4 + dG(x) + dG(y)

with equality if and only if dG(x) = dG(y). Hene

ISI(S(G)) ≥
∑

xy∈E(G)

(
8δ

4 + dG(x) + dG(y)

)
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= 2δ
∑

xy∈E(G)

(

1 +
dG(x) + dG(y)

4

)
−1

By Bernoulli's inequality, we have

ISI(S(G)) > 2δ
∑

xy∈E(G)

(

1−
dG(x) + dG(y)

4

)

= 2δ m−
δ

2

∑

xy∈E(G)

(dG(x) + dG(y))

By the de�nition of the �rat Zagreb index of G, we get

ISI(S(G)) >
4δ m− δM1(G)

2
.

�

Corollary 12. Let G be a graph with m edges. Then

ISI(St(G)) > (2δ + t− 1)m−
δM1(G)

2
.

3. ISI Index of S and St-produts of Graphs. The S-produt

of G1 and G2, denoted by G1[G2]S , is de�ned by S(G1)[G2] − E∗
, where E∗ =

{(x, y1)(x, y2) ∈ E(S(G1)[G2])|x ∈ V (S(G1)) − V (G1), y1y2 ∈ E(G2)}, that is,
G1[G2]S is a graph with the set of verties either [x1 = x2 ∈ V (G1) and y1y2 ∈
E(G2)] or [x1x2 ∈ E(G1) and y1, y2 ∈ V (G2)]. The St-produt of G1 and G2,

denoted by G1[G2]St
, is de�ned by St(G1)[G2]−E∗

, where E∗ = {(x, y1)(x, y2) ∈
E(St(G1)[G2]) | x ∈ V (St(G1)) − V (G1), y1y2 ∈ E(G2)}, that is, G1[G2]St

is

a graph with the set of verties either [x1 = x2 ∈ V (G1) and y1y2 ∈ E(G2)] or
[x1x2 ∈ E(G1) and y1, y2 ∈ V (G2)]. One an observe that G1[G2]St

has |V (G2)|
opies of the graph St(G1) and we an label these opies by verties of G2. The

verties in eah opy we denote two types of verties, suh as the verties in V (G1)
(blak verties) and the verties in V (St(G1)) − V (G1) (white verties). The S

and St-produts of P3 and P2 are shown in Figure 1.

Theorem 9. Let Gi be a graph with ni verties and mi edges, i = 1, 2. Then

ISI(G1[G2]S) ≤
n1ISI(G2)

4
+
M1(G1)

2

(n2
2H(G2)

4
+
n3
2

8
+n3

2ID(G2)
)

+
n1M1(G2)

8
+

M2(G2)ID(G2)

8n2
+

n2(4m1m2 + n1m2 +m1n
2
2)

4
.
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b

b

b

b

b

b

b

b

b

b

b

b

bc bc bc bc bc bc

bcbcbcbcbcbc

bc bc

bc bc

P3[P2]St

P3[P2]S

Fig. 1. The S and St-produts of P3 and P2

P r o o f. Let {x1, x2, . . . , xn1
} and {y1, y2, . . . , yn2

} be the vertex sets of

G1 and G2, respetively. From the de�nition of inverse sum indeg index and the

struture of the graph G1[G2]S , we have

ISI(G1[G2]S) =
∑

(x1,y1)(x2,y2)∈E(G1[G2]s)

dG1[G2]S((x1, y1))dG1[G2]S((x2, y2))

dG1[G2]S((x1, y1)) + dG1[G2]S((x2, y2))

=
∑

x1=x2∈V (G1)

∑

y1y2∈E(G2)

dG1[G2]S((x1, y1))dG1[G2]S ((x2, y2))

dG1[G2]S ((x1, y1)) + dG1[G2]S((x2, y2))

+
∑

x1x2∈E(S(G1))

∑

y1∈V (G2)

∑

y2∈V (G2)

dG1[G2]S((x1, y1))dG1[G2]S ((x2, y2))

dG1[G2]S ((x1, y1)) + dG1[G2]S((x2, y2))

= A1 +A2,(4)

where A1 and A2 are the sums of the terms, in order.

We shall alulate A1 and A2 of (4) separately.
First we alulate the sum

A1 =
∑

x1=x2∈V (G1)

∑

y1y2∈E(G2)

dG1[G2]S((x1, y1))dG1[G2]S ((x2, y2))

dG1[G2]S ((x1, y1)) + dG1[G2]S((x2, y2))
.

For eah vertex (xi, yj) in G1[G2]S , the degree of (xi, yj) is n2dG1
(xi) + dG2

(yj).
Thus

A1 =
∑

x1∈V (G1)

∑

y1y2∈E(G2)

(n2dG1
(x1) + dG2

(y1))(n2dG1
(x1) + dG2

(y2))

2n2dG1
(x1) + (dG2

(y1) + dG2
(y2))

.

By Jensen's inequality, we have

1

2n2dG1
(x1) + (dG2

(y1) + dG2
(y2))

≤
( 1

8n2dG1
(x1)

+
1

4dG2
(y1) + dG2

(y2)

)
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with equality if and only if 2n2dG1
(x1) = dG2

(y1) + dG2
(y2). Thus

A1 ≤
1

4

∑

x1∈V (G1)

∑

y1y2∈E(G2)

(
n2dG1

(x1)

2
+

dG2
(y1) + dG2

(y2)

2
+

dG2
(y1) + dG2

(y2)

2n2dG1
(x1)

)

+
1

4

∑

x1∈V (G1)

∑

y1y2∈E(G2)

(
n2
2dG1

(x1)
2

dG2
(y1) + dG2

(y2)
+ n2dG1

(x1) +
dG2

(y1)dG2
(y2)

dG2
(y1) + dG2

(y2)

)

=
1

4

(

3n2m1m2 +
n1M1(G2)

2
+

M2(G2)ID(G1)

2n2
+

n2
2M1(G1)H(G2)

2
+ n1ISI(G2)

)

.

Next we �nd the value of the sum A2.

A2 =
∑

x1x2∈E(S(G1))

∑

y1∈V (G2)

∑

y2∈V (G2)

dG1[G2]s((x1, y1))dG1[G2]s((x2, y2))

dG1[G2]s((x1, y1)) + dG1[G2]s((x2, y2))

=
∑

y1∈V (G2)

∑

y2∈V (G2)

∑

x1∈V (G1), e∈E(G1)
x1 and e are inident in G1

d((x1, y1))d((e, y2))

d((x1, y1)) + d((e, y2))

=
∑

y1∈V (G2)

∑

y2∈V (G2)

∑

x1∈V (G1), e∈E(G1)
x1 and e are inident in G1

(n2dG1
(x1) + dG2

(y1))2n2

n2dG1
(x1) + dG2

(y1) + 2n2

=
∑

y1∈V (G2)

∑

y2∈V (G2)

∑

x∈V (G1)

dG1
(x1)

(

2n2
2dG1

(x1) + 2n2dG2
(y1)

)

n2(dG1
(x1) + 2) + dG2

(y1)

One an see that

1

n2(dG1
(x1) + 2) + dG2

(y1)
≤

1

16n2dG1
(x1)

+
1

32n2
+

1

4dG2
(y1)

.

Thus

A2 ≤
∑

y1∈V (G2)

∑

y2∈V (G2)

∑

x∈V (G1)






n2dG1
(x1)

8
+

n2dG1
(x1)

2

16
+

dG1
(x1)

2

2dG2
(y1)

+
dG2

(y1)

8
+

dG1
(x1)dG2

(y1)

16






=
n3
2m1

4
+

n3
2M1(G1)

16
+

n3
2M1(G1)ID(G2)

2
+

n1n2m2

4
+

n2m1m2

4
.

From A1 and A2, we get the desired result. �



Bounds on Inverse Sum Indeg Index of Subdivision Graphs 293

Theorem 10. Let Gi be a graph with ni verties and mi edges, i = 1, 2. Then

ISI(G1[G2]St
) ≤

n1ISI(G2)

4
+
M1(G1)

2

(n2
2H(G2)

4
+
n3
2

8
+n3

2ID(G2)
)

+
n1M1(G2)

8

+
M2(G2)ID(G2)

8n2
+

n2(4m1m2 + n1m2 +m1n
2
2)

4
+ n2

2(t− 1)m1.

P r o o f. Let {x1, x2, . . . , xn1
} and {y1, y2, . . . , yn2

} be the vertex sets of

G1 and G2, respetively. From the de�nition of ISI index and the struture of the

graph G1[G2]St
, we have

ISI(G1[G2]St
) =

∑

(x1,y1)(x2,y2)∈E(G1[G2]St
)

dG1[G2]St
((x1, y1))dG1[G2]St

((x2, y2))

dG1[G2]St
((x1, y1)) + dG1[G2]St

((x2, y2))

=
∑

x1=x2∈V (G1)

∑

y1y2∈E(G2)

dG1[G2]St
((x1, y1))dG1[G2]St

((x2, y2))

dG1[G2]St
((x1, y1)) + dG1[G2]St

((x2, y2))

+
∑

x1x2∈E(S(G1))

∑

y1∈V (G2)

∑

y2∈V (G2)

dG1[G2]St
((x1, y1))dG1[G2]St

((x2, y2))

dG1[G2]St
((x1, y1)) + dG1[G2]St

((x2, y2))

= A1 +A2,(5)

where A1 and A2 are the sums of the terms, in order.

Similarly to the proof of Theorem 9, we get

A1 ≤
1

4






3n2m1m2 +
n1M1(G2)

2
+

M2(G2)ID(G1)

2n2

+
n2
2M1(G1)H(G2)

2
+ n1ISI(G2)






A2 =
∑

x1x2∈E(St(G1)),
x1∈V (G1),

x2∈V (St(G1))−V (G1)

∑

y1∈V (G2)

∑

y2∈V (G2)

dG1[G2]s((x1, y1))dG1[G2]s((x2, y2))

dG1[G2]s((x1, y1)) + dG1[G2]s((x2, y2))

+
∑

x1x2∈E(St(G1)),
x1, x2∈V (St(G1))−V (G1)

∑

y1∈V (G2)

∑

y2∈V (G2)

dG1[G2]s((x1, y1))dG1[G2]s((x2, y2))

dG1[G2]s((x1, y1)) + dG1[G2]s((x2, y2))

= A′

2 +A′′

2,

where A′

2 and A′′

2 are the sums of the terms, in order.

By a similar argument of Theorem 9, we get

A′

2 ≤
n3
2m1

4
+

n3
2M1(G1)

16
+

n3
2M1(G1)ID(G2)

2
+

n1n2m2

4
+

n2m1m2

4
.
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In addition,

A′′

2 =
∑

x1x2∈E(St(G1)),
x1, x2∈V (St(G1))−V (G1)

∑

y1∈V (G2)

∑

y2∈V (G2)

(1)

=
∑

y1∈V (G2)

∑

y2∈V (G2)

(m1(t− 1))

= m1n
2
2(t− 1).

From A1 and A2, we obtain the desired result. �

4. ISI Index of S and St-sums of Graphs. Let G1 and G2 be two

graphs. The S-sum G1+SG2 is a graph with vertex set (V (G1)
⋃

E(G1))×V (G2)

in whih two verties (u1, v2) and (u2, v2) of G1 +S G2 are adjaent if and only

if [u1 = u2 ∈ V (G1) ∧ v1v2 ∈ E(G2)] or [v1 = v2 ∈ V (G1) ∧ u1u2 ∈ E(S(G))].

The St-sum G1 +St
G2 is a graph with vertex set (V (G1)

⋃

E(G1)) × V (G2)

in whih two verties (u1, v2) and (u2, v2) of G1 +St
G2 are adjaent if and only if

[u1 = u2 ∈ V (G1) ∧ v1v2 ∈ E(G2)] or [v1 = v2 ∈ V (G1) ∧ u1u2 ∈ E(St(G))]. The
S and St sums of the graphs P3 and P2 are shown in Figure 2.

b

b

b

b

b

b

b

b

b

b

b

b

bc bc bc bc bc bc
bcbcbcbcbcbc

bc bc

bc bc

P3 +St
P2P3 +S P2

Fig. 2. The S and St-sums of P3 and P2

Theorem 11. Let Gi be a graph with ni verties and mi edges, i = 1, 2. Then

ISI(G1+SG2) ≤
n1ISI(G2)

4
+
M1(G1)(H(G2) + 8ID(G2) + 8n2)

8
+
n1M1(G2)

8
+

m1M2(G2) +
19m1m2 + 4n1m2 + 8m1n2

4
.

P r o o f. Let {x1, x2, . . . , xn1
} and {y1, y2, . . . , yn2

} be the vertex sets of

G1 and G2, respetively. From the de�nition of ISI index and the struture of the
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graph G1 +S G2, we have

ISI(G1 +S G2) =
∑

(x1,y1)(x2,y2)∈E(G1+SG2)

dG1+SG2
((x1, y1))dG1+SG2

((x2, y2))

dG1+SG2
((x1, y1)) + dG1+SG2

((x2, y2))

=
∑

x1=x2∈V (G1)

∑

y1y2∈E(G2)

dG1+SG2
((x1, y1))dG1+SG2

((x2, y2))

dG1+SG2
((x1, y1)) + dG1+SG2

((x2, y2))

+
∑

x1x2∈E(S(G1))

∑

y1∈V (G2)

dG1+SG2
((x1, y1))dG1+SG2

((x2, y2))

dG1+SG2
((x1, y1)) + dG1+SG2

((x2, y2))

= A1 +A2,(6)

where A1 and A2 are the sums of the terms, in order.

We shall alulate A1 and A2 of (6) separately.
First we alulate the sum A1. For eah vertex (xi, yj) in G1 +S G2, the

degree of (xi, yj) is dG1
(xi) + dG2

(yj). Thus

A1 =
∑

x1∈V (G1)

∑

y1y2∈E(G2)

(dG1
(x1) + dG2

(y1))(dG1
(x1) + dG2

(y2))

2dG1
(x1) + (dG2

(y1) + dG2
(y2))

≤
1

4

∑

x1∈V (G1)

∑

y1y2∈E(G2)

(

(dG1
(x1) + dG2

(y1))(dG1
(x1) + dG2

(y2))
)

(
1

2dG1
(x1)

+
1

(dG2
(y1) + dG2

(y2))

)

=
3m1m2

4
+

n1M1(G2)

8
+m1M2(G2) +

M1(G1)H(G2)

8
+

n1ISI(G2)

4
.

Next we �nd the value of the sum A2.

A2 =
∑

x1x2∈E(S(G1))

∑

y1∈V (G2)

dG1+SG2
((x1, y1))dG1+SG2

((x2, y2))

dG1+SG2
((x1, y1)) + dG1+SG2

((x2, y2))

=
∑

y1∈V (G2)

∑

x1∈V (G1), e∈E(G1)
x1 and e are inident in G1

(dG1
(x1) + dG2

(y1))dS(G1)(x2)

dS(G1)(x1) + dS(G1)(x2) + dG2
(y1)

=
∑

y1∈V (G2)

∑

x1∈V (G1), e∈E(G1)
x1 and e are inident in G1

2(dG1
(x1) + dG2

(y1))

2 + dG1
(x1) + dG2

(y1)

=
∑

y1∈V (G2)

∑

x1∈V (G1)

2dG1
(x1)(dG1

(x1) + dG2
(y1))

2 + dG1
(x1) + dG2

(y1)
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≤
∑

y1∈V (G2)

∑

x1∈V (G1)

2dG1
(x1)(dG1

(x1) + dG2
(y1))

(
1

dG1
(x1) + 1

+
1

dG2
(y1) + 1

)

≤
1

4

∑

y1∈V (G2)

∑

x1∈V (G1)

2dG1
(x1)(dG1

(x1) + dG2
(y1))

(
1

dG1
(x1)

+ 1

)

+
1

4

∑

y1∈V (G2)

∑

x1∈V (G1)

2dG1
(x1)(dG1

(x1) + dG2
(y1))

(
1

dG2
(y1)

+ 1

)

= M1(G1)(n2 + ID(G2)) + 2m1n2 +m2n1 + 4m1m2.

From A1 and A2 we get the desired result. �

A similar proof of Theorem 11, we obtain the following theorem.

Theorem 12. Let Gi be a graph with ni verties and mi edges, i = 1, 2. Then

ISI(G1+St
G2) ≤

n1ISI(G2)

4
+
M1(G1)(H(G2) + 8ID(G2) + 8n2)

8
+
n1M1(G2)

8
+

m1M2(G2) +
19m1m2 + 4n1m2 + 8m1n2

4
+ n2(t− 1)m1.

5. Conlusion. In this artile, several number of upper and lower

bounds for inverse sum indeg index of subdivision of some lass of graphs are

investigated.
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