BOUNDS ON INVERSE SUM INDEG INDEX OF SUBDIVISION GRAPHS

Kannan Pattabiraman

Abstract

The inverse sum indeg index $\operatorname{ISI}(G)$ of a simple graph G is defined as the sum of the terms $\frac{d_{G}(u) d_{G}(v)}{d_{G}(u)+d_{G}(v)}$ over all edges $u v$ of G, where $d_{G}(u)$ denotes the degree of a vertex u of G. In this paper, we present several upper and lower bounds on the inverse sum indeg index of subdivision graphs and t-subdivision graphs. In addition, we obtain the upper bounds for inverse sum indeg index of S-sum, S_{t}-sum, S-product, S_{t}-product of graphs.

1. Introduction. All the graphs considered in this paper are simple and connected. For vertices $x, y \in V(G)$, the distance between x and y in G, denoted by $d_{G}(x, y)$, is the length of a shortest (x, y)-path in G. The degree of a vertex $v \in V(G)$ is denoted by $d_{G}(v)$. For a vertex x in G, the eccentricity $\epsilon(x)$ of x is $\max \left\{d_{G}(x, y) \mid y \in V(G)\right\}$. The minimum eccentricity among the vertices
of G is the radius of G, denoted by $r(G)$, and the maximum eccentricity is its diameter $d(G)$. A vertex x in G is a central vertex if $\epsilon(x)=r(G)$. A graph G is self-centered if $\epsilon(x)=r(G)$ for all vertices $x \in V(G)$. The subdivision graph of G, denoted by $S(G)$ is a graph obtained from G by replacing each edge of G by a path of length 2 . The t-subdivision graph defined by $S_{t}(G)$ of G is a graph obtained from G by replacing each edge of G by a path of length $t+1$.

Molecular descriptors, that are results of functions mapping molecule's chemical information into a number [16], have found applications in modeling many physicochemical properties in QSAR and QSPR studies [3, 9]. A particularly common type of molecular descriptors are those that are defined as functions of the structure of the underlying molecular graph, such as the Wiener index [19], the Zagreb indices [6], the Randić index [13] or the Balaban J-index [1]. Damir Vukicević and Marija Gasperov [17] observed that many of these descriptors are defined simply as the sum of individual bond contributions.

Among the 148 discrete Adriatic indices studied in [17], whose predictive properties were evaluated against the benchmark datasets of the Internation Academy of Mathematical Chemistry [10], 20 indices were selected as significant predictors of physicochemical properties. In this connection, Sedlar et al. [14] studied the properties of the inverse sum indeg index, the descriptor that was selected in [17] as a significant predictor of total surface area of octane isomers and for which the extremal graphs obtained with the help of Math. Chem. have a particularly simple and elegant structure. The inverse sum indeg index is defined as $I S I(G)=\sum_{u v \in E(G)} \frac{1}{\frac{1}{d_{G}(u)}+\frac{1}{d_{G}(v)}}=\sum_{u v \in E(G)} \frac{d_{G}(u) d_{G}(v)}{d_{G}(u)+d_{G}(v)}$.

Extremal values of inverse sum indeg index across several graph classes, including connected graphs, chemical graphs, trees and chemical trees were determined in [14]. The bounds of a descriptor are important information of a molecular graph in the sense that they establish the approximate range of the descriptor in terms of molecular structural parameters. In [4], some sharp bounds for the inverse sum indeg index of connected graphs are given. The inverse sum indeg index of some nanotubes is computed in [5]. Several upper and lower bounds on the inverse sum indeg index in terms of some molecular structural parameters and relate this index to various well-known molecular descriptors are presented in [12]. In this paper, we present several upper and lower bounds on the inverse sum indeg index of subdivision graphs and t-subdivision graphs. In addition, we obtain the upper bounds for inverse sum indeg index of S-sum, S_{t}-sum, S-product, S_{t}-product of graphs.
2. Bounds on $I S I$ Index of Subdivision Graphs. In this section, we obtain the upper and lower bounds for the inverse sum indeg index of subdivision graph and t-subdivision graph of a connected graphs. We denote by Δ and δ the maximum and minimum vertex degrees of G, respectively. The graph G is called a (Δ, δ)-bidegreed if whose vertices have degree either Δ or δ with $\Delta \neq \delta$.

The Zagreb indices are amoung the oldest topological indices, and were introduced by Gutman and Trinajstić [6] in 1972. These indices have since been used to study molecular complexity, chirality, ZE-ismerism and heterosystems. The first and second Zagreb indices of G are denoted by $M_{1}(G)$ and $M_{2}(G)$, respectively, and defined as $M_{1}(G)=\sum_{v \in V(G)}\left(d_{G}(v)\right)^{2}$ and $M_{2}(G)=$ $\sum_{u v \in E(G)} d_{G}(u) d_{G}(v)$. The inverse degree index of G, denoted by $I D(G)$ is defined as $I D(G)=\sum_{v \in V(G)} \frac{1}{d_{G}(v)}$. For any even n, the cocktail party graph $C P_{n}$ is the unique regular graph with n vertices of degree $n-2$, it is obtained from K_{n} by removing $\frac{n}{2}$ disjoint edges.

Let G be a graph with m edges. By definition of the inverse sum indeg index, we have

$$
\begin{equation*}
\operatorname{ISI}(S(G))=\sum_{(x, y) \in E(G)}\left(\frac{2 d_{G}(x)}{d_{G}(x)+2}+\frac{2 d_{G}(y)}{2+d_{G}(y)}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{align*}
\operatorname{ISI}\left(S_{t}(G)\right) & =\sum_{(x, y) \in E(G)}(\frac{2 d_{G}(x)}{d_{G}(x)+2}+\underbrace{1+1+\ldots+1}_{(t-1) \text { times }}+\frac{2 d_{G}(y)}{2+d_{G}(y)}) \\
& =\sum_{(x, y) \in E(G)}\left(\frac{2 d_{G}(x)}{d_{G}(x)+2}+\frac{2 d_{G}(y)}{2+d_{G}(y)}\right)+(t-1) m \\
& =\operatorname{ISI}(S(G))+(t-1) m . \tag{2}
\end{align*}
$$

One can observe that $\operatorname{ISI}(G)<\operatorname{ISI}(S(G))$ and $\operatorname{ISI}(G)<\operatorname{ISI}\left(S_{t}(G)\right)$.
Example 1. Let G be a r-regular graph with n vertices. Then $I S I(S(G))=\frac{n r^{2}}{r+2}$ and $\operatorname{ISI}\left(S_{t}(G)\right)=\frac{n r(t(r+2)+r-2)}{2}$.

Theorem 1. Let G be a graph with n vertices and m edges. Then
$I S I(S(G))=4(m-n)+\sum_{x \in V(G)} \frac{8}{d_{G}(x)+2}$.
Proof. For each neighbor of x in G, the term $\frac{2 d_{G}(x)}{d_{G}(x)+2}$ appears exactly once in the sum $\sum_{(x, y) \in E(G)}\left(\frac{2 d_{G}(x)}{d_{G}(x)+2}+\frac{2 d_{G}(y)}{2+d_{G}(y)}\right)$. Hence

$$
\begin{aligned}
\operatorname{ISI}(S(G)) & =\sum_{x \in V(G)}(\underbrace{\frac{2 d_{G}(x)}{d_{G}(x)+2}+\frac{2 d_{G}(x)}{d_{G}(x)+2}+\ldots+\frac{2 d_{G}(x)}{d_{G}(x)+2}}_{d_{G}(x) \text { times }}) \\
& =\sum_{x \in V(G)} \frac{2\left(d_{G}(x)\right)^{2}}{d_{G}(x)+2} \\
& =\sum_{x \in V(G)}\left(2 d_{G}(x)-\frac{4 d_{G}(x)}{d_{G}(x)+2}\right) \\
& =4 m-\sum_{x \in V(G)}\left(\frac{4 d_{G}(x)}{d_{G}(x)+2}\right) \\
& =4 m-\sum_{x \in V(G)}\left(4-\frac{8}{d_{G}(x)+2}\right) \\
& =4(m-n)+\sum_{x \in V(G)}\left(\frac{8}{d_{G}(x)+2}\right) .
\end{aligned}
$$

Corollary 1. Let G be a graph with n vertices and m edges. Then $\operatorname{ISI}\left(S_{t}(G)\right)=$ $(t+3) m-4 n+\sum_{x \in V(G)} \frac{8}{d_{G}(x)+2}$.
Lemma 1. Schweitzer's inequality[2, 8] Let $x_{1}, x_{2}, \ldots, x_{n}$ be positive real numbers such that for $1 \leq i \leq n$ holds $m \leq x_{i} \leq M$. Then

$$
\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} \frac{1}{x_{i}}\right) \leq \frac{n^{2}(m+M)^{2}}{4 m M} .
$$

Equality holds if and only if $x_{1}=x_{2}=\ldots=x_{n}=m=M$ or n is even, $x_{1}=x_{2}=\ldots=x_{\frac{n}{2}}=m$ and $x_{\frac{n}{2}+1}==x_{\frac{n}{2}+2}=\ldots=x_{n}=M$, where $m<M$ and $x_{1} \leq x_{2} \leq \ldots \leq x_{n}$.

Using above lemma to obtain the following sharp upper bound for the inverse sum indeg index of subdivision graphs.

Theorem 2. Let G be a graph with n vertices and m edges. Then $\operatorname{ISI}(S(G)) \leq$ $4(m-n)+\frac{n^{2}(\delta+\Delta+4)^{2}}{(n+m)(\delta+2)(\Delta+2)}$ with equality if and only if G is regular or a (Δ, δ)-bidegreed graph.

Proof. For any vertex x in $V(G)$, we get $\delta+2 \leq d_{G}(x)+2 \leq \Delta+2$. Also, $\sum_{x \in V(G)}\left(d_{G}(x)+2\right)=2(m+n)$. By Schweitzer's inequality, we obtain

$$
\sum_{x \in V(G)} \frac{8}{d_{G}(x)+2} \leq \frac{n^{2}(\delta+\Delta+4)^{2}}{(n+m)(\delta+2)(\Delta+2)}
$$

By Theorem 1, we obtain the required inequality.
By Lemma 1, equality holds if and only if $\delta=\Delta$ or $\frac{n}{2}$ vertices of G have degree δ and the remaining $\frac{n}{2}$ vertices of G have degree Δ, that is, G is regular or a (Δ, δ)-bidegreed.

Corollary 2. Let G be a graph with n vertices and m edges. Then $\operatorname{ISI}\left(S_{t}(G)\right) \leq$ $(t+3) m-4 n+\frac{n^{2}(\delta+\Delta+4)^{2}}{(n+m)(\delta+2)(\Delta+2)}$ with equality if and only if G is regular or a (Δ, δ)-bidegreed graph.

Lemma 2. Let a and b be real numbers. Then

$$
\frac{1}{a+b} \leq \frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)
$$

with equality if and only if $a=b$.
Theorem 3. Let G be a graph with n vertices and m edges. Then $\operatorname{ISI}(S(G)) \leq$ $4 m-3 n+2 I D(G)$ with equality if and only if G is the disjoint union of cycles.

Proof. For each vertex $x \in V(G)$, by Lemma 2, we have $\frac{1}{d_{G}(x)+2} \leq$ $\frac{1}{4}\left(\frac{1}{d_{G}(x)}+\frac{1}{2}\right)$ with equality if and only if $d_{G}(x)=2$. Hence

$$
\sum_{x \in V(G)} \frac{8}{d_{G}(x)+2} \leq 2 \sum_{x \in V(G)} \frac{1}{d_{G}(x)}+n=2 I D(G)+n
$$

where $I D(G)$ is the inverse degree index of G.
By Theorem 1, we obtain the required inequality.
Equality holds if and only if each vertex $x \in V(G), d_{G}(x)=2$, that is, G is the disjoint union of cycles.

Corollary 3. Let G be a graph with n vertices and m edges. Then $\operatorname{ISI}\left(S_{t}(G)\right) \leq$ $(t+3) m-3 n+2 I D(G)$ with equality if and only if G is the disjoint union of cycles.
Theorem 4. Let G be a graph with n vertices and m edges. If p is the number of pendant vertices of G, then $\operatorname{ISI}(S(G)) \geq 4(m-n)+8\left(\frac{p}{3}+\frac{n-p}{\Delta+2}\right)$ with equality if and only if G is regular or a $(\Delta, 1)$-bidegreed graph.

$$
\begin{aligned}
& \text { Proof. One can see that } \\
& \begin{aligned}
\sum_{x \in V(G)} \frac{8}{d_{G}(x)+2} & =8(\underbrace{\frac{1}{3}+\frac{1}{3}+\ldots+\frac{1}{3}}_{p \text { times }}+\sum_{x \in V(G), d_{G}(x)>1} \frac{1}{d_{G}(x)+2}) \\
& =8\left(\frac{p}{3}+\sum_{x \in V(G), d_{G}(x)>1} \frac{1}{d_{G}(x)+2}\right) \\
& \geq 8(\frac{p}{3}+\underbrace{\frac{1}{\Delta+2}+\frac{1}{\Delta+2}+\ldots+\frac{1}{\Delta+2}}_{n-p \text { times }}) \\
& =\frac{8 p}{3}+\frac{8(n-p)}{\Delta+2} .
\end{aligned} .
\end{aligned}
$$

By Theorem 1, we obtain the required inequality.
Equality holds if and only if for every non-pendant vertex $x \in V(G)$, $d_{G}(x)=\Delta$. If $p=0$, then for every vertex $x \in V(G), d_{G}(x)=\Delta$, that is, G is regular, where $2 \leq \Delta \leq n-1$. Assume $p>0$. If there is no non-pendant vertex in G, then $G \cong K_{2}$ and otherwise, G is ($\Delta, 1$)-bidegreed.
Corollary 4. Let G be a graph with n vertices and m edges. If p is the number of pendant vertices of G, then $\operatorname{ISI}\left(S_{t}(G)\right) \geq(t+3) m-4 n+8\left(\frac{p}{3}+\frac{n-p}{\Delta+2}\right)$ with equality if and only if G is regular or $a(\Delta, 1)$-bidegreed graph.
Corollary 5. Let G be a graph with n vertices and m edges. If G has no pendant vertices, then $\operatorname{ISI}(S(G)) \geq 4(m-n)+\frac{8 n}{\Delta+2}$ and $\operatorname{ISI}\left(S_{t}(G)\right) \geq(t+3) m-$ $4 n+\frac{8 n}{\Delta+2}$. The equality holds for both cases if and only if G is Δ-regular, where $2 \leq \Delta \leq n-1$.

Let $d_{i}(x)$ be the number of vertices at distance i from the vertex x in G, that is, $d_{i}(x)=\left|\left\{y \mid d_{G}(x, y)=i\right\}\right|$.
Theorem 5. Let G be a graph with n vertices and m edges. Then

$$
\begin{equation*}
\operatorname{ISI}(S(G)) \geq 4\left(m-\frac{n(n-r(G))}{n-r(G)+2}\right) \tag{3}
\end{equation*}
$$

with equality if and only if $G \cong K_{n}$ or $G \cong C P_{n}$.
Proof. Since $d_{i}(x)$ is the number of vertices at distance i from the vertex x in G. One can observe that $d_{G}(x) \leq n-\epsilon(x)$ with equality if and only if $\epsilon(x)=1$ and $d_{G}(x)=n-1$ or $\epsilon(x) \geq 2$ and $d_{2}(x)=d_{3}(x)=\ldots=d_{\epsilon(x)}(x)=1$. Thus for every vertex $x \in V(G)$, we obtain

$$
\frac{8}{d_{G}(x)+2} \geq \frac{8}{n-\epsilon(x)+2} \geq \frac{8}{n-r(G)+2} .
$$

By Theorem 1, we obtain the required result.
Suppose that equality holds in (3). Then G is self-centered and for every vertex $x \in V(G)$, equality holds in $d_{G}(x) \leq n-\epsilon(x)$. If $\epsilon(x)=1$ for some vertex $x \in V(G)$, then $d_{G}(x)=n-1$ and $\epsilon(y) \leq 2$ for all vertices $x \neq y$. Since G is self-centered, $\epsilon(x)=1$ for all vertices $x \in V(G)$. Thus $G \cong K_{n}$.

Now, suppose that $\epsilon(x) \geq 2$ for all vertices $x \in V(G)$. If $\epsilon(x) \geq 3$ for some vertex y, then $d(G)=3$ (otherwise, there exist at least two neighbors at distance 2 for the central vertex) and $G \cong P_{4}$, a path on 4 vertices. This contradicts that G is self-centered. So, $\epsilon(x)=2$ for all vertices $x \in V(G)$ and then $d_{G}(x)=n-2$ for all vertices $x \in V(G)$. It gives $G \cong C P_{n}$.
Theorem 6. Let G be a graph with m edges. Then $\operatorname{ISI}(S(G)) \leq \frac{M_{1}(G)}{4}+m$ with equality if and only if G is the disjoint union of cycles.

Proof. For any vertex $x \in V(G)$, we obtain

$$
\frac{2 d_{G}(x)}{d_{G}(x)+2} \leq \frac{2+d_{G}(x)}{4}
$$

with equality if and only if $d_{G}(x)=2$. Thus by equation (1), we have

$$
\operatorname{ISI}(S(G)) \leq \sum_{(x, y) \in E(G)}\left(\frac{2+d_{G}(x)}{4}+\frac{2+d_{G}(y)}{4}\right)=\frac{1}{4}\left(M_{1}(G)+4 m\right) .
$$

Equality holds if and only if for every vertex $x \in V(G), d_{G}(x)=2$. This implies G is a disjoint union of cycles.

Corollary 6. Let G be a graph with m edges. Then $\operatorname{ISI}\left(S_{t}(G)\right) \leq \frac{M_{1}(G)}{4}+t m$ with equality if and only if G is the disjoint union of cycles.

Lemma 3. (Cauchy-Schwarz inequality)
Let $X=\left(x_{1}, x_{2} \ldots x_{n}\right)$ and $Y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ be two sequences of real numbers. Then $\left(\sum_{i=1}^{n} x_{i} y_{i}\right)^{2} \leq \sum_{i=1}^{n} x_{i}^{2} \sum_{i=1}^{n} y_{i}^{2}$ with equality if and only if the sequences X and Y are proportional, i. e., there exists a constant c such that $x_{i}=c y_{i}$, for each $1 \leq i \leq n$.

As a special case of the Cauchy-Schwarz inequality, when $y_{1}=y_{2}=\ldots=$ y_{n}, we get the following result.

Corollary 7. Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers. Then $\left(\sum_{i=1}^{n} x_{i}\right)^{2} \leq n \sum_{i=1}^{n} x_{i}^{2}$ with equality if and only if $x_{1}=x_{2}=\ldots=x_{n}$.

Theorem 7. Let G be a graph with n vertices and m edges. Then $\operatorname{ISI}(S(G)) \geq$ $\frac{4\left(m^{2}-n^{2}\right)+4 n^{2}}{m+n}$ with equality if and only if G is regular.

Proof. By Cauchy-Schwarz inequality, we get

$$
\left(\sum_{x \in V(G)}\left(d_{G}(x)+2\right)\right)\left(\sum_{x \in V(G)} \frac{1}{d_{G}(x)+2}\right) \geq\left(\sum_{x \in V(G)} \sqrt{d_{G}(x)+2} \frac{1}{\sqrt{d_{G}(x)+2}}\right)^{2}
$$

with equality if and only if all the $d_{G}(x)$'s are equal.

$$
\begin{gathered}
\text { Moreover, } \sum_{x \in V(G)}\left(d_{G}(x)+2\right)=2(m+n) . \text { Thus } \\
\sum_{x \in V(G)} \frac{1}{d_{G}(x)+2} \geq \frac{n^{2}}{2(m+n)} .
\end{gathered}
$$

By Theorem 1, we obtain the required inequality.
Equality holds if and only if all the $d_{G}(x)$'s are equal. This implies G is regular.

Corollary 8. Let G be a graph with n vertices and m edges. Then $\operatorname{ISI}\left(S_{t}(G)\right) \geq$ $\frac{4\left(m^{2}-n^{2}\right)+4 n^{2}}{m+n}+(t+1) m$ with equality if and only if G is regular.

Let G be a graph with n vertices and m edges. If $m=n-1, n$ and $n+1$ then G is called a tree, unicyclic and bicyclic graphs, respectively.

Corollary 9. Let G be a tree on n vertices. Then $I S I(S(G)) \geq \frac{4(n-1)^{2}}{2 n-1}$ and $I S I\left(S_{t}(G)\right) \geq \frac{4(n-1)^{2}}{2 n-1}+(n-1)(t+1)$.

Corollary 10. Let G be a unicyclic graph on n vertices. Then $\operatorname{ISI}(S(G)) \geq 2 n$ and $\operatorname{ISI}\left(S_{t}(G)\right) \geq n(t+3)$.

Corollary 11. Let G be a bicyclic graph on n vertices. Then $\operatorname{ISI}(S(G)) \geq$ $\frac{4(n+1)^{2}}{2 n+1}$ and $\operatorname{ISI}\left(S_{t}(G)\right) \geq \frac{4(n+1)^{2}}{2 n+1}+(n+1)(t+1)$.

Lemma 4. [11] Let f be a convex function on the interval I and $x_{1}, x_{2}, \ldots, x_{n} \in I$. Then $\frac{x_{1}+x_{2}+\ldots+x_{n}}{n} \leq \frac{f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots, f\left(x_{n}\right)}{n}$ with equality if and only if $x_{1}=x_{2}=\ldots=x_{n}$.

Theorem 8. Let G be a graph on m edges. Then $I S I(S(G))>\frac{4 \delta m-\delta M_{1}(G)}{2}$.
Proof. For any vertex x in $G, d_{G}(x) \geq \delta$. By the definition of inverse sum indeg index of the subdivision graph of G, we have

$$
\begin{aligned}
I S I(S(G)) & =\sum_{x y \in E(G)}\left(\frac{2 d_{G}(x)}{d_{G}(x)+2}+\frac{2 d_{G}(y)}{2+d_{G}(y)}\right) \\
& \geq \sum_{x y \in E(G)}\left(\frac{2 \delta}{d_{G}(x)+2}+\frac{2 \delta}{2+d_{G}(y)}\right)
\end{aligned}
$$

Let $f(x)=\frac{1}{x}$. Since f is a convex function on $(0,+\infty)$, by Jensen's inequality, for any edge $x y \in V(G)$, we obtain

$$
\frac{2}{d_{G}(x)+2}+\frac{2}{2+d_{G}(y)} \geq \frac{8}{4+d_{G}(x)+d_{G}(y)}
$$

with equality if and only if $d_{G}(x)=d_{G}(y)$. Hence

$$
I S I(S(G)) \geq \sum_{x y \in E(G)}\left(\frac{8 \delta}{4+d_{G}(x)+d_{G}(y)}\right)
$$

$$
=2 \delta \sum_{x y \in E(G)}\left(1+\frac{d_{G}(x)+d_{G}(y)}{4}\right)^{-1}
$$

By Bernoulli's inequality, we have

$$
\begin{aligned}
I S I(S(G)) & >2 \delta \sum_{x y \in E(G)}\left(1-\frac{d_{G}(x)+d_{G}(y)}{4}\right) \\
& =2 \delta m-\frac{\delta}{2} \sum_{x y \in E(G)}\left(d_{G}(x)+d_{G}(y)\right)
\end{aligned}
$$

By the definition of the firat Zagreb index of G, we get

$$
I S I(S(G))>\frac{4 \delta m-\delta M_{1}(G)}{2}
$$

Corollary 12. Let G be a graph with m edges. Then

$$
I S I\left(S_{t}(G)\right)>(2 \delta+t-1) m-\frac{\delta M_{1}(G)}{2}
$$

3. $I S I$ Index of S and S_{t}-products of Graphs. The S-product of G_{1} and G_{2}, denoted by $G_{1}\left[G_{2}\right]_{S}$, is defined by $S\left(G_{1}\right)\left[G_{2}\right]-E^{*}$, where $E^{*}=$ $\left\{\left(x, y_{1}\right)\left(x, y_{2}\right) \in E\left(S\left(G_{1}\right)\left[G_{2}\right]\right) \mid x \in V\left(S\left(G_{1}\right)\right)-V\left(G_{1}\right), y_{1} y_{2} \in E\left(G_{2}\right)\right\}$, that is, $G_{1}\left[G_{2}\right]_{S}$ is a graph with the set of vertices either $\left[x_{1}=x_{2} \in V\left(G_{1}\right)\right.$ and $y_{1} y_{2} \in$ $E\left(G_{2}\right)$] or $\left[x_{1} x_{2} \in E\left(G_{1}\right)\right.$ and $\left.y_{1}, y_{2} \in V\left(G_{2}\right)\right]$. The S_{t}-product of G_{1} and G_{2}, denoted by $G_{1}\left[G_{2}\right]_{S_{t}}$, is defined by $S_{t}\left(G_{1}\right)\left[G_{2}\right]-E^{*}$, where $E^{*}=\left\{\left(x, y_{1}\right)\left(x, y_{2}\right) \in\right.$ $\left.E\left(S_{t}\left(G_{1}\right)\left[G_{2}\right]\right) \quad \mid \quad x \in V\left(S_{t}\left(G_{1}\right)\right)-V\left(G_{1}\right), y_{1} y_{2} \in E\left(G_{2}\right)\right\}$, that is, $G_{1}\left[G_{2}\right]_{S_{t}}$ is a graph with the set of vertices either $\left[x_{1}=x_{2} \in V\left(G_{1}\right)\right.$ and $\left.y_{1} y_{2} \in E\left(G_{2}\right)\right]$ or $\left[x_{1} x_{2} \in E\left(G_{1}\right)\right.$ and $\left.y_{1}, y_{2} \in V\left(G_{2}\right)\right]$. One can observe that $G_{1}\left[G_{2}\right]_{S_{t}}$ has $\left|V\left(G_{2}\right)\right|$ copies of the graph $S_{t}\left(G_{1}\right)$ and we can label these copies by vertices of G_{2}. The vertices in each copy we denote two types of vertices, such as the vertices in $V\left(G_{1}\right)$ (black vertices) and the vertices in $V\left(S_{t}\left(G_{1}\right)\right)-V\left(G_{1}\right)$ (white vertices). The S and S_{t}-products of P_{3} and P_{2} are shown in Figure 1.

Theorem 9. Let G_{i} be a graph with n_{i} vertices and m_{i} edges, $i=1,2$. Then $\operatorname{ISI}\left(G_{1}\left[G_{2}\right]_{S}\right) \leq \frac{n_{1} I S I\left(G_{2}\right)}{4}+\frac{M_{1}\left(G_{1}\right)}{2}\left(\frac{n_{2}^{2} H\left(G_{2}\right)}{4}+\frac{n_{2}^{3}}{8}+n_{2}^{3} I D\left(G_{2}\right)\right)+\frac{n_{1} M_{1}\left(G_{2}\right)}{8}+$ $\frac{M_{2}\left(G_{2}\right) I D\left(G_{2}\right)}{8 n_{2}}+\frac{n_{2}\left(4 m_{1} m_{2}+n_{1} m_{2}+m_{1} n_{2}^{2}\right)}{4}$.

Fig. 1. The S and S_{t}-products of P_{3} and P_{2}

Proof. Let $\left\{x_{1}, x_{2}, \ldots, x_{n_{1}}\right\}$ and $\left\{y_{1}, y_{2}, \ldots, y_{n_{2}}\right\}$ be the vertex sets of G_{1} and G_{2}, respectively. From the definition of inverse sum indeg index and the structure of the graph $G_{1}\left[G_{2}\right]_{S}$, we have

$$
\begin{align*}
& \operatorname{ISI}\left(G_{1}\left[G_{2}\right]_{S}\right)=\sum_{\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \in E\left(G_{1}\left[G_{2}\right] s\right)} \frac{d_{G_{1}\left[G_{2}\right]_{S}}\left(\left(x_{1}, y_{1}\right)\right) d_{G_{1}\left[G_{2}\right]_{S}}\left(\left(x_{2}, y_{2}\right)\right)}{\left.d_{G_{1}\left[G_{2}\right]_{S}}\left(x_{1}, y_{1}\right)\right)+d_{G_{1}\left[G_{2}\right]_{S}}\left(\left(x_{2}, y_{2}\right)\right)} \\
&=\sum_{x_{1}=x_{2} \in V\left(G_{1}\right)} \sum_{y_{1} y_{2} \in E\left(G_{2}\right)} \frac{d_{G_{1}\left[G_{2}\right]_{S}}\left(\left(x_{1}, y_{1}\right)\right) d_{G_{1}\left[G_{2}\right] S}\left(\left(x_{2}, y_{2}\right)\right)}{d_{G_{1}\left[G_{2}\right]_{S}}\left(\left(x_{1}, y_{1}\right)\right)+d_{G_{1}\left[G_{2}\right]_{S}}\left(\left(x_{2}, y_{2}\right)\right)} \\
&+\sum_{x_{1} x_{2} \in E\left(S\left(G_{1}\right)\right)} \sum_{y_{1} \in V\left(G_{2}\right)} \sum_{y_{2} \in V\left(G_{2}\right)} \frac{d_{G_{1}\left[G_{2}\right]_{S}}\left(\left(x_{1}, y_{1}\right)\right) d_{G_{1}\left[G_{2}\right] S}\left(\left(x_{2}, y_{2}\right)\right)}{\left.d_{G_{1}\left[G_{2}\right]_{S} S}\left(x_{1}, y_{1}\right)\right)+d_{G_{1}\left[G_{2}\right]_{S}\left(\left(x_{2}, y_{2}\right)\right)}} \\
&=A_{1}+A_{2}, \tag{4}
\end{align*}
$$

where A_{1} and A_{2} are the sums of the terms, in order.
We shall calculate A_{1} and A_{2} of (4) separately.
First we calculate the sum

$$
A_{1}=\sum_{x_{1}=x_{2} \in V\left(G_{1}\right)} \sum_{y_{1} y_{2} \in E\left(G_{2}\right)} \frac{d_{G_{1}\left[G_{2}\right]_{S}}\left(\left(x_{1}, y_{1}\right)\right) d_{G_{1}\left[G_{2}\right]_{S}}\left(\left(x_{2}, y_{2}\right)\right)}{d_{G_{1}\left[G_{2}\right]_{S}}\left(\left(x_{1}, y_{1}\right)\right)+d_{G_{1}\left[G_{2}\right]_{S}}\left(\left(x_{2}, y_{2}\right)\right)}
$$

For each vertex $\left(x_{i}, y_{j}\right)$ in $G_{1}\left[G_{2}\right]_{S}$, the degree of $\left(x_{i}, y_{j}\right)$ is $n_{2} d_{G_{1}}\left(x_{i}\right)+d_{G_{2}}\left(y_{j}\right)$. Thus

$$
A_{1}=\sum_{x_{1} \in V\left(G_{1}\right)} \sum_{y_{1} y_{2} \in E\left(G_{2}\right)} \frac{\left(n_{2} d_{G_{1}}\left(x_{1}\right)+d_{G_{2}}\left(y_{1}\right)\right)\left(n_{2} d_{G_{1}}\left(x_{1}\right)+d_{G_{2}}\left(y_{2}\right)\right)}{2 n_{2} d_{G_{1}}\left(x_{1}\right)+\left(d_{G_{2}}\left(y_{1}\right)+d_{G_{2}}\left(y_{2}\right)\right)}
$$

By Jensen's inequality, we have

$$
\frac{1}{2 n_{2} d_{G_{1}}\left(x_{1}\right)+\left(d_{G_{2}}\left(y_{1}\right)+d_{G_{2}}\left(y_{2}\right)\right)} \leq\left(\frac{1}{8 n_{2} d_{G_{1}}\left(x_{1}\right)}+\frac{1}{4 d_{G_{2}}\left(y_{1}\right)+d_{G_{2}}\left(y_{2}\right)}\right)
$$

with equality if and only if $2 n_{2} d_{G_{1}}\left(x_{1}\right)=d_{G_{2}}\left(y_{1}\right)+d_{G_{2}}\left(y_{2}\right)$. Thus

$$
\begin{aligned}
A_{1} \leq & \frac{1}{4} \sum_{x_{1} \in V\left(G_{1}\right)} \sum_{y_{1} y_{2} \in E\left(G_{2}\right)}\left(\frac{n_{2} d_{G_{1}}\left(x_{1}\right)}{2}+\frac{d_{G_{2}}\left(y_{1}\right)+d_{G_{2}}\left(y_{2}\right)}{2}+\frac{d_{G_{2}}\left(y_{1}\right)+d_{G_{2}}\left(y_{2}\right)}{2 n_{2} d_{G_{1}}\left(x_{1}\right)}\right) \\
& +\frac{1}{4} \sum_{x_{1} \in V\left(G_{1}\right)} \sum_{y_{1} \in E\left(G_{2}\right)}\left(\frac{n_{2}^{2} d_{G_{1}}\left(x_{1}\right)^{2}}{d_{G_{2}}\left(y_{1}\right)+d_{G_{2}}\left(y_{2}\right)}+n_{2} d_{G_{1}}\left(x_{1}\right)+\frac{d_{G_{2}}\left(y_{1}\right) d_{G_{2}}\left(y_{2}\right)}{d_{G_{2}}\left(y_{1}\right)+d_{G_{2}}\left(y_{2}\right)}\right) \\
= & \frac{1}{4}\left(3 n_{2} m_{1} m_{2}+\frac{n_{1} M_{1}\left(G_{2}\right)}{2}+\frac{M_{2}\left(G_{2}\right) I D\left(G_{1}\right)}{2 n_{2}}+\frac{n_{2}^{2} M_{1}\left(G_{1}\right) H\left(G_{2}\right)}{2}+n_{1} I S I\left(G_{2}\right)\right) .
\end{aligned}
$$

Next we find the value of the sum A_{2}.

$$
\begin{aligned}
A_{2} & =\sum_{x_{1} x_{2} \in E\left(S\left(G_{1}\right)\right)} \sum_{y_{1} \in V\left(G_{2}\right)} \sum_{y_{2} \in V\left(G_{2}\right)} \frac{d_{G_{1}\left[G_{2}\right]_{s}}\left(\left(x_{1}, y_{1}\right)\right) d_{G_{1}\left[G_{2}\right]_{s}}\left(\left(x_{2}, y_{2}\right)\right)}{d_{G_{1}\left[G_{2}\right]_{s}}\left(\left(x_{1}, y_{1}\right)\right)+d_{G_{1}\left[G_{2}\right]_{s}}\left(\left(x_{2}, y_{2}\right)\right)} \\
& =\sum_{y_{1} \in V\left(G_{2}\right)} \sum_{y_{2} \in V\left(G_{2}\right)} \frac{d\left(\left(x_{1}, y_{1}\right)\right) d\left(\left(e, y_{2}\right)\right)}{d\left(\left(x_{1}, y_{1}\right)\right)+d\left(\left(e, y_{2}\right)\right)} \\
& =\sum_{\substack{x_{1} \in V\left(G_{1}\right), e \in E\left(G_{1}\right) \\
x_{1} \text { and } e \text { are incident in } G_{1}}} \sum_{y_{1} \in V\left(G_{2}\right)} \frac{\left(n_{2} d_{G_{1}}\left(x_{1}\right)+d_{G_{2}}\left(y_{1}\right)\right) 2 n_{2}}{n_{2} \in V\left(G_{2}\right)} \begin{array}{l}
\sum_{\substack{x_{1} \in V\left(G_{1}\right), e \in E\left(G_{1}\right) \\
x_{1} \text { and } e \text { are incident in } G_{1}}} \sum_{y_{G_{1}}\left(x_{1}\right)+d_{G_{2}}\left(y_{1}\right)+2 n_{2}} \\
\end{array}=\sum_{y_{1} \in V\left(G_{2}\right)} \sum_{y_{2} \in V\left(G_{2}\right)} d_{G_{1}\left(x_{1}\right) \frac{\left(2 n_{2}^{2} d_{G_{1}}\left(x_{1}\right)+2 n_{2} d_{G_{2}}\left(y_{1}\right)\right)}{n_{2}\left(d_{G_{1}}\left(x_{1}\right)+2\right)+d_{G_{2}}\left(y_{1}\right)}}
\end{aligned}
$$

One can see that

$$
\frac{1}{n_{2}\left(d_{G_{1}}\left(x_{1}\right)+2\right)+d_{G_{2}}\left(y_{1}\right)} \leq \frac{1}{16 n_{2} d_{G_{1}}\left(x_{1}\right)}+\frac{1}{32 n_{2}}+\frac{1}{4 d_{G_{2}}\left(y_{1}\right)}
$$

Thus

$$
\begin{aligned}
A_{2} & \leq \sum_{y_{1} \in V\left(G_{2}\right)} \sum_{y_{2} \in V\left(G_{2}\right)} \sum_{x \in V\left(G_{1}\right)}\binom{\frac{n_{2} d_{G_{1}}\left(x_{1}\right)}{8}+\frac{n_{2} d_{G_{1}}\left(x_{1}\right)^{2}}{16}+\frac{d_{G_{1}}\left(x_{1}\right)^{2}}{2 d_{G_{2}}\left(y_{1}\right)}}{+\frac{d_{G_{2}}\left(y_{1}\right)}{8}+\frac{d_{G_{1}}\left(x_{1}\right) d_{G_{2}}\left(y_{1}\right)}{16}} \\
& =\frac{n_{2}^{3} m_{1}}{4}+\frac{n_{2}^{3} M_{1}\left(G_{1}\right)}{16}+\frac{n_{2}^{3} M_{1}\left(G_{1}\right) I D\left(G_{2}\right)}{2}+\frac{n_{1} n_{2} m_{2}}{4}+\frac{n_{2} m_{1} m_{2}}{4} .
\end{aligned}
$$

From A_{1} and A_{2}, we get the desired result.

Theorem 10. Let G_{i} be a graph with n_{i} vertices and m_{i} edges, $i=1,2$. Then $\operatorname{ISI}\left(G_{1}\left[G_{2}\right]_{S_{t}}\right) \leq \frac{n_{1} I S I\left(G_{2}\right)}{4}+\frac{M_{1}\left(G_{1}\right)}{2}\left(\frac{n_{2}^{2} H\left(G_{2}\right)}{4}+\frac{n_{2}^{3}}{8}+n_{2}^{3} I D\left(G_{2}\right)\right)+\frac{n_{1} M_{1}\left(G_{2}\right)}{8}$ $+\frac{M_{2}\left(G_{2}\right) I D\left(G_{2}\right)}{8 n_{2}}+\frac{n_{2}\left(4 m_{1} m_{2}+n_{1} m_{2}+m_{1} n_{2}^{2}\right)}{4}+n_{2}^{2}(t-1) m_{1}$.

Proof. Let $\left\{x_{1}, x_{2}, \ldots, x_{n_{1}}\right\}$ and $\left\{y_{1}, y_{2}, \ldots, y_{n_{2}}\right\}$ be the vertex sets of G_{1} and G_{2}, respectively. From the definition of ISI index and the structure of the graph $G_{1}\left[G_{2}\right]_{S_{t}}$, we have

$$
\begin{align*}
& I S I\left(G_{1}\left[G_{2}\right]_{S_{t}}\right)=\sum_{\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \in E\left(G_{1}\left[G_{2}\right]_{S_{t}}\right)} \frac{d_{G_{1}\left[G_{2}\right]_{S_{t}}}\left(\left(x_{1}, y_{1}\right)\right) d_{G_{1}\left[G_{2}\right]_{S_{t}}}\left(\left(x_{2}, y_{2}\right)\right)}{d_{G_{1}\left[G_{2}\right]_{S_{t}}}\left(\left(x_{1}, y_{1}\right)\right)+d_{G_{1}\left[G_{2}\right]_{S_{t}}}\left(\left(x_{2}, y_{2}\right)\right)} \\
&=\sum_{x_{1}=x_{2} \in V\left(G_{1}\right)} \sum_{y_{1} \in E\left(G_{2}\right)} \frac{d_{G_{1}\left[G_{2}\right]_{S_{t}}}\left(\left(x_{1}, y_{1}\right)\right) d_{G_{1}\left[G_{2}\right]_{S_{t}}}\left(\left(x_{2}, y_{2}\right)\right)}{d_{G_{1}\left[G_{2}\right]_{S_{t}}}\left(\left(x_{1}, y_{1}\right)\right)+d_{G_{1}\left[G_{2}\right]_{S_{t}}}\left(\left(x_{2}, y_{2}\right)\right)} \\
&+\sum_{\left.x_{1} x_{2} \in E\left(S\left(G_{1}\right)\right)\right)} \sum_{y_{1} \in V\left(G_{2}\right)} \sum_{y_{2} \in V\left(G_{2}\right)} \frac{d_{G_{1}\left[G_{2}\right]_{S_{t}}}\left(\left(x_{1}, y_{1}\right)\right) d_{G_{1}\left[G_{2}\right]_{S_{t}}}\left(\left(x_{2}, y_{2}\right)\right)}{d_{G_{1}\left[G_{2}\right]_{S_{t}}}\left(\left(x_{1}, y_{1}\right)\right)+d_{G_{1}\left[G_{2}\right]_{S_{t}}}\left(\left(x_{2}, y_{2}\right)\right)} \\
&(5) \quad=A_{1}+A_{2} \tag{5}
\end{align*}
$$

where A_{1} and A_{2} are the sums of the terms, in order.
Similarly to the proof of Theorem 9, we get

$$
\begin{aligned}
A_{1} \leq & \frac{1}{4}\binom{3 n_{2} m_{1} m_{2}+\frac{n_{1} M_{1}\left(G_{2}\right)}{2}+\frac{M_{2}\left(G_{2}\right) I D\left(G_{1}\right)}{2 n_{2}}}{+\frac{n_{2}^{2} M_{1}\left(G_{1}\right) H\left(G_{2}\right)}{2}+n_{1} I S I\left(G_{2}\right)} \\
A_{2}= & \sum_{\substack{x_{1} x_{2} \in E\left(S_{t}\left(G_{1}\right)\right), x_{1} \in V\left(G_{1}\right), x_{2} \in V\left(S_{t}\left(G_{1}\right)\right)-V\left(G_{1}\right)}} \sum_{y_{1} \in V\left(G_{2}\right)} \sum_{y_{2} \in V\left(G_{2}\right)} \frac{d_{G_{1}\left[G_{2}\right]_{s}}\left(\left(x_{1}, y_{1}\right)\right) d_{G_{1}\left[G_{2}\right]_{s}}\left(\left(x_{2}, y_{2}\right)\right)}{d_{G_{1}\left[G_{2}\right]_{s}}\left(\left(x_{1}, y_{1}\right)\right)+d_{G_{1}\left[G_{2}\right]_{s}}\left(\left(x_{2}, y_{2}\right)\right)} \\
+ & \sum_{\substack{x_{1} x_{2} \in E\left(S_{t}\left(G_{1}\right)\right), x_{1}, x_{2} \in V\left(S_{t}\left(G_{1}\right)\right)-V\left(G_{1}\right)}} \sum_{y_{1} \in V\left(G_{2}\right)} \frac{d_{y_{2} \in V\left(G_{2}\right)}}{d_{G_{1}\left[G_{2}\right]_{s}}\left(\left(x_{1}, y_{1}\right)\right) d_{G_{1}\left[G_{2}\right]_{s}}\left(\left(x_{1}, x_{2}, y_{2}\right)\right)+d_{G_{1}\left[G_{2}\right]_{s}}\left(\left(x_{2}, y_{2}\right)\right)} \\
= & A_{2}^{\prime}+A_{2}^{\prime \prime},
\end{aligned}
$$

where A_{2}^{\prime} and $A_{2}^{\prime \prime}$ are the sums of the terms, in order.
By a similar argument of Theorem 9, we get

$$
A_{2}^{\prime} \leq \frac{n_{2}^{3} m_{1}}{4}+\frac{n_{2}^{3} M_{1}\left(G_{1}\right)}{16}+\frac{n_{2}^{3} M_{1}\left(G_{1}\right) I D\left(G_{2}\right)}{2}+\frac{n_{1} n_{2} m_{2}}{4}+\frac{n_{2} m_{1} m_{2}}{4}
$$

In addition,

$$
\begin{aligned}
A_{2}^{\prime \prime} & =\sum_{\substack{x_{1} x_{2} \in E\left(S_{t}\left(G_{1}\right)\right), x_{1}, x_{2} \in V\left(S_{t}\left(G_{1}\right)\right)-V\left(G_{1}\right)}} \sum_{y_{1} \in V\left(G_{2}\right)} \sum_{y_{2} \in V\left(G_{2}\right)}(1) \\
& =\sum_{y_{1} \in V\left(G_{2}\right)} \sum_{y_{2} \in V\left(G_{2}\right)}\left(m_{1}(t-1)\right) \\
& =m_{1} n_{2}^{2}(t-1)
\end{aligned}
$$

From A_{1} and A_{2}, we obtain the desired result.
4. $I S I$ Index of S and S_{t}-sums of Graphs. Let G_{1} and G_{2} be two graphs. The S-sum $G_{1}+{ }_{S} G_{2}$ is a graph with vertex set $\left(V\left(G_{1}\right) \bigcup E\left(G_{1}\right)\right) \times V\left(G_{2}\right)$ in which two vertices $\left(u_{1}, v_{2}\right)$ and $\left(u_{2}, v_{2}\right)$ of $G_{1}+{ }_{S} G_{2}$ are adjacent if and only if $\left[u_{1}=u_{2} \in V\left(G_{1}\right) \wedge v_{1} v_{2} \in E\left(G_{2}\right)\right]$ or $\left[v_{1}=v_{2} \in V\left(G_{1}\right) \wedge u_{1} u_{2} \in E(S(G))\right]$. The S_{t}-sum $G_{1}+S_{t} G_{2}$ is a graph with vertex set $\left(V\left(G_{1}\right) \bigcup E\left(G_{1}\right)\right) \times V\left(G_{2}\right)$ in which two vertices $\left(u_{1}, v_{2}\right)$ and $\left(u_{2}, v_{2}\right)$ of $G_{1}+S_{t} G_{2}$ are adjacent if and only if $\left[u_{1}=u_{2} \in V\left(G_{1}\right) \wedge v_{1} v_{2} \in E\left(G_{2}\right)\right]$ or $\left[v_{1}=v_{2} \in V\left(G_{1}\right) \wedge u_{1} u_{2} \in E\left(S_{t}(G)\right)\right]$. The S and S_{t} sums of the graphs P_{3} and P_{2} are shown in Figure 2.

$P_{3}+{ }_{S} P_{2}$

$$
P_{3}+S_{t} P_{2}
$$

Fig. 2. The S and S_{t}-sums of P_{3} and P_{2}

Theorem 11. Let G_{i} be a graph with n_{i} vertices and m_{i} edges, $i=1,2$. Then $I S I\left(G_{1}+{ }_{S} G_{2}\right) \leq \frac{n_{1} I S I\left(G_{2}\right)}{4}+\frac{M_{1}\left(G_{1}\right)\left(H\left(G_{2}\right)+8 I D\left(G_{2}\right)+8 n_{2}\right)}{8}+\frac{n_{1} M_{1}\left(G_{2}\right)}{8}+$ $m_{1} M_{2}\left(G_{2}\right)+\frac{19 m_{1} m_{2}+4 n_{1} m_{2}+8 m_{1} n_{2}}{4}$.

Proof. Let $\left\{x_{1}, x_{2}, \ldots, x_{n_{1}}\right\}$ and $\left\{y_{1}, y_{2}, \ldots, y_{n_{2}}\right\}$ be the vertex sets of G_{1} and G_{2}, respectively. From the definition of ISI index and the structure of the
graph $G_{1}+{ }_{S} G_{2}$, we have

$$
\begin{aligned}
\operatorname{ISI}\left(G_{1}+{ }_{S} G_{2}\right)= & \sum_{\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \in E\left(G_{1}+s G_{2}\right)} \frac{d_{G_{1}+s G_{2}}\left(\left(x_{1}, y_{1}\right)\right) d_{G_{1}+s G_{2}}\left(\left(x_{2}, y_{2}\right)\right)}{d_{G_{1}+s G_{2}}\left(\left(x_{1}, y_{1}\right)\right)+d_{G_{1}+s G_{2}}\left(\left(x_{2}, y_{2}\right)\right)} \\
= & \sum_{x_{1}=x_{2} \in V\left(G_{1}\right)} \sum_{y_{1} y_{2} \in E\left(G_{2}\right)} \frac{d_{G_{1}+s G_{2}}\left(\left(x_{1}, y_{1}\right)\right) d_{G_{1}+s G_{2}}\left(\left(x_{2}, y_{2}\right)\right)}{d_{G_{1}+{ }_{S} G_{2}}\left(\left(x_{1}, y_{1}\right)\right)+d_{G_{1}+s G_{2}}\left(\left(x_{2}, y_{2}\right)\right)} \\
& +\sum_{x_{1} x_{2} \in E\left(S\left(G_{1}\right)\right)} \sum_{y_{1} \in V\left(G_{2}\right)} \frac{d_{G_{1}+s G_{2}}\left(\left(x_{1}, y_{1}\right)\right) d_{G_{1}+s G_{2}}\left(\left(x_{2}, y_{2}\right)\right)}{d_{G_{1}+{ }_{2} G_{2}}\left(\left(x_{1}, y_{1}\right)\right)+d_{G_{1}+{ }_{2} G_{2}\left(\left(x_{2}, y_{2}\right)\right)}} \\
(6) \quad & A_{1}+A_{2},
\end{aligned}
$$

where A_{1} and A_{2} are the sums of the terms, in order.
We shall calculate A_{1} and A_{2} of (6) separately.
First we calculate the sum A_{1}. For each vertex $\left(x_{i}, y_{j}\right)$ in $G_{1}+{ }_{S} G_{2}$, the degree of $\left(x_{i}, y_{j}\right)$ is $d_{G_{1}}\left(x_{i}\right)+d_{G_{2}}\left(y_{j}\right)$. Thus

$$
\begin{aligned}
A_{1} & =\sum_{x_{1} \in V\left(G_{1}\right)} \sum_{y_{1} y_{2} \in E\left(G_{2}\right)} \frac{\left(d_{G_{1}}\left(x_{1}\right)+d_{G_{2}}\left(y_{1}\right)\right)\left(d_{G_{1}}\left(x_{1}\right)+d_{G_{2}}\left(y_{2}\right)\right)}{2 d_{G_{1}}\left(x_{1}\right)+\left(d_{G_{2}}\left(y_{1}\right)+d_{G_{2}}\left(y_{2}\right)\right)} \\
& \leq \frac{1}{4} \sum_{x_{1} \in V\left(G_{1}\right)} \sum_{y_{1} y_{2} \in E\left(G_{2}\right)}\left(\left(d_{G_{1}}\left(x_{1}\right)+d_{G_{2}}\left(y_{1}\right)\right)\left(d_{G_{1}}\left(x_{1}\right)+d_{G_{2}}\left(y_{2}\right)\right)\right) \\
& \left(\frac{1}{2 d_{G_{1}}\left(x_{1}\right)}+\frac{1}{\left(d_{G_{2}}\left(y_{1}\right)+d_{G_{2}}\left(y_{2}\right)\right)}\right) \\
= & \frac{3 m_{1} m_{2}}{4}+\frac{n_{1} M_{1}\left(G_{2}\right)}{8}+m_{1} M_{2}\left(G_{2}\right)+\frac{M_{1}\left(G_{1}\right) H\left(G_{2}\right)}{8}+\frac{n_{1} I S I\left(G_{2}\right)}{4} .
\end{aligned}
$$

Next we find the value of the sum A_{2}.

$$
\begin{aligned}
A_{2} & =\sum_{x_{1} x_{2} \in E\left(S\left(G_{1}\right)\right)} \sum_{y_{1} \in V\left(G_{2}\right)} \frac{d_{G_{1}+s G_{2}}\left(\left(x_{1}, y_{1}\right)\right) d_{G_{1}+s G_{2}}\left(\left(x_{2}, y_{2}\right)\right)}{\left.d_{G_{1}+s G_{2}}\left(x_{1}, y_{1}\right)\right)+d_{G_{1}+s G_{2}}\left(\left(x_{2}, y_{2}\right)\right)} \\
& =\sum_{y_{1} \in V\left(G_{2}\right)} \sum_{\substack{x_{1} \in V\left(G_{1}\right), e \in E\left(G_{1}\right) \\
x_{1} \text { and } e \text { are incident in } G_{1}}} \frac{\left(d_{G_{1}}\left(x_{1}\right)+d_{G_{2}}\left(y_{1}\right)\right) d_{S\left(G_{1}\right)}\left(x_{2}\right)}{d_{S\left(G_{1}\right)}\left(x_{1}\right)+d_{S\left(G_{1}\right)}\left(x_{2}\right)+d_{G_{2}}\left(y_{1}\right)} \\
& =\sum_{y_{1} \in V\left(G_{2}\right)} \sum_{\substack{x_{1} \in V\left(G_{1}\right), e \in E\left(G_{1}\right) \\
x_{1} \text { and } e \text { are incident in } G_{1}}} \frac{2\left(d_{G_{1}}\left(x_{1}\right)+d_{G_{2}}\left(y_{1}\right)\right)}{2+d_{G_{1}}\left(x_{1}\right)+d_{G_{2}}\left(y_{1}\right)} \\
& =\sum_{y_{1} \in V\left(G_{2}\right)} \sum_{x_{1} \in V\left(G_{1}\right)} \frac{2 d_{G_{1}}\left(x_{1}\right)\left(d_{G_{1}}\left(x_{1}\right)+d_{G_{2}}\left(y_{1}\right)\right)}{2+d_{G_{1}}\left(x_{1}\right)+d_{G_{2}}\left(y_{1}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{y_{1} \in V\left(G_{2}\right)} \sum_{x_{1} \in V\left(G_{1}\right)} 2 d_{G_{1}}\left(x_{1}\right)\left(d_{G_{1}}\left(x_{1}\right)+d_{G_{2}}\left(y_{1}\right)\right)\left(\frac{1}{d_{G_{1}}\left(x_{1}\right)+1}+\frac{1}{d_{G_{2}}\left(y_{1}\right)+1}\right) \\
& \leq \frac{1}{4} \sum_{y_{1} \in V\left(G_{2}\right)} \sum_{x_{1} \in V\left(G_{1}\right)} 2 d_{G_{1}}\left(x_{1}\right)\left(d_{G_{1}}\left(x_{1}\right)+d_{G_{2}}\left(y_{1}\right)\right)\left(\frac{1}{d_{G_{1}}\left(x_{1}\right)}+1\right) \\
& \quad+\frac{1}{4} \sum_{y_{1} \in V\left(G_{2}\right)} \sum_{x_{1} \in V\left(G_{1}\right)} 2 d_{G_{1}}\left(x_{1}\right)\left(d_{G_{1}}\left(x_{1}\right)+d_{G_{2}}\left(y_{1}\right)\right)\left(\frac{1}{d_{G_{2}}\left(y_{1}\right)}+1\right) \\
& \quad=M_{1}\left(G_{1}\right)\left(n_{2}+I D\left(G_{2}\right)\right)+2 m_{1} n_{2}+m_{2} n_{1}+4 m_{1} m_{2} .
\end{aligned}
$$

From A_{1} and A_{2} we get the desired result.
A similar proof of Theorem 11, we obtain the following theorem.
Theorem 12. Let G_{i} be a graph with n_{i} vertices and m_{i} edges, $i=1,2$. Then $\operatorname{ISI}\left(G_{1}+S_{t} G_{2}\right) \leq \frac{n_{1} I S I\left(G_{2}\right)}{4}+\frac{M_{1}\left(G_{1}\right)\left(H\left(G_{2}\right)+8 I D\left(G_{2}\right)+8 n_{2}\right)}{8}+\frac{n_{1} M_{1}\left(G_{2}\right)}{8}+$ $m_{1} M_{2}\left(G_{2}\right)+\frac{19 m_{1} m_{2}+4 n_{1} m_{2}+8 m_{1} n_{2}}{4}+n_{2}(t-1) m_{1}$.
5. Conclusion. In this article, several number of upper and lower bounds for inverse sum indeg index of subdivision of some class of graphs are investigated.

REFERENCES

[1] Balaban A. T. Highly discriminating distance based numerical descriptor. Chem. Phys. Lett., 89 (1982), 399-404.
[2] Bullen P. S. A dictionary of inequalities. Addison-Wesley Longman, 1998.
[3] Devillers J., A. T. Balaban. Topological Indices and Related Descriptors in QSAR and QSPR. Gordon and Breach, Amsterdam, 1999.
[4] Dosli T., M. Azari, F. Falahati-Nezhad. Sharp bounds on the inverse sum indeg index. Discrete Appl. Math., 217 (2017), 185-195.
[5] Falahati-Nezhad F., M. Azari. The inverse sum indeg index of some nano-tubes. Studia Ubb Chemia, LXI (2016), No 1, 63-70.
[6] Gutman I., N. Trinajstic. Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons. Chem. Phys. Lett., 17 (1972), 535-538.
[7] Ilic A., G. Yu, L. Feng. On the eccentric distance sum of graphs. J. Math. Anal. Appl., 381 (2011), 590-600.
[8] Ilic A., M. Ilic, B. Liu. On the upper bounds for the first Zagreb index. Kragujevac J. Math., 35 (2011), 173-182.
[9] Karelson M. Molecular Descriptors in QSAR/QSPR. Wiley-Interscience, New York, 2000.
[10] Milano Chemometrics \& QSAR research group, molecular descriptors dataset. http://www.moleculardescriptors.eu/dataset/dataset.htm, 18 April 2014.
[11] Niculescu C., L. E. Persson. Convex functions and their applications: a contemporary approach, Springer, New York 2006.
[12] Pattabiraman K. Inverse sum indeg index of graphs. AKCE International Journal of Graphs and Combinatorics, 15 (2018), 155-167.
[13] Randic M. On characterization of molecular branching. J. Am. Chem. Soc., 97 (1975), 6609-6615.
[14] Sedlar J., D. Stevanovic, A. Vasilyev. On the inverse sum indeg index. Discrete Appl. Math., 184 (2015), 202-212.
[15] Sharma V., R. Goswami, A. K. Madan. Eccentric connectivity index: A novel highly discriminating topological descriptor for structure-property and structure-activity studies, J. Chem. Inf. Comput. Sci., 37 (1997), 273-282.
[16] Todeschini R., V. Consonni. Handbook of Molecular Descriptors. WileyVCH, Weinheim, 2000.
[17] Vukicevic D., M. Gasperov. Bond additive modelling 1. Ariatic indices. Croat. Chem. Acta, 83 (2010), 243-260.
[18] Vukicevic D., A. Graovac. Note on the comparison of the first and second normalized Zagreb eccentricity indices. Acta Chim. Slov., 57 (2010), 524-538.
[19] Wiener H. Structural determination of paraffin boiling points. J. Am. Chem. Soc., 69 (1947), 17-20.

Kannan Pattabiraman
Department of Mathematics
Annamalai University
608002 Annamalainagar, India
e-mail: pramank@gmail.com

Received December 12, 2017
Final Accepted January 16, 2019

