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ABSTRACT. The inverse sum indeg index IST(G) of a simple graph G is
da(u)da(v)
dg(u) + de(v)
where dg (1) denotes the degree of a vertex u of G. In this paper, we present
several upper and lower bounds on the inverse sum indeg index of subdivision
graphs and ¢-subdivision graphs. In addition, we obtain the upper bounds
for inverse sum indeg index of S-sum, S;-sum, S-product, S;-product of

graphs.

defined as the sum of the terms over all edges uv of G,

1. Introduction. All the graphs considered in this paper are simple
and connected. For vertices z,y € V(G), the distance between x and y in G,
denoted by dg(z,y), is the length of a shortest (z,y)-path in G. The degree of a
vertex v € V(G) is denoted by dg(v). For a vertex x in G, the eccentricity e(z)
of z is max{dg(z,y)|ly € V(G)}. The minimum eccentricity among the vertices
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of G is the radius of G, denoted by r(G), and the maximum eccentricity is its
diameter d(G). A vertex z in G is a central vertex if e(z) = r(G). A graph G
is self-centered if e(x) = r(G) for all vertices © € V(G). The subdivision graph
of G, denoted by S(G) is a graph obtained from G by replacing each edge of G
by a path of length 2. The ¢-subdivision graph defined by S¢(G) of G is a graph
obtained from G by replacing each edge of G by a path of length ¢ + 1.

Molecular descriptors, that are results of functions mapping molecule’s
chemical information into a number [16], have found applications in modeling
many physicochemical properties in QSAR and QSPR studies [3, 9]. A particu-
larly common type of molecular descriptors are those that are defined as functions
of the structure of the underlying molecular graph, such as the Wiener index [19],
the Zagreb indices [6], the Randi¢ index [13] or the Balaban J-index [1]. Damir
Vukicevi¢ and Marija Gasperov [17]| observed that many of these descriptors are
defined simply as the sum of individual bond contributions.

Among the 148 discrete Adriatic indices studied in [17], whose predic-
tive properties were evaluated against the benchmark datasets of the Internation
Academy of Mathematical Chemistry [10], 20 indices were selected as significant
predictors of physicochemical properties. In this connection, Sedlar et al. [14]
studied the properties of the inverse sum indeg index, the descriptor that was
selected in [17] as a significant predictor of total surface area of octane isomers
and for which the extremal graphs obtained with the help of Math. Chem. have a
particularly simple and elegant structure. The inverse sum indeg index is defined

_de(uw)da(v)
as ISI(G) = Z Z d +dG( 7

weE(G) dG( ) + dG( ) weE(G)

Extremal values of inverse sum indeg index across several graph classes,
including connected graphs, chemical graphs, trees and chemical trees were de-
termined in [14]. The bounds of a descriptor are important information of a
molecular graph in the sense that they establish the approximate range of the
descriptor in terms of molecular structural parameters. In [4], some sharp bounds
for the inverse sum indeg index of connected graphs are given. The inverse sum
indeg index of some nanotubes is computed in [5]. Several upper and lower bounds
on the inverse sum indeg index in terms of some molecular structural parameters
and relate this index to various well-known molecular descriptors are presented
in [12]. In this paper, we present several upper and lower bounds on the inverse
sum indeg index of subdivision graphs and ¢-subdivision graphs. In addition, we
obtain the upper bounds for inverse sum indeg index of S-sum, Sz-sum, S-product,
Si-product of graphs.



Bounds on Inverse Sum Indeg Index of Subdivision Graphs 283

2. Bounds on /S Index of Subdivision Graphs. In this section,
we obtain the upper and lower bounds for the inverse sum indeg index of subdivi-
sion graph and t-subdivision graph of a connected graphs. We denote by A and §
the maximum and minimum vertex degrees of G, respectively. The graph G is
called a (A, d)-bidegreed if whose vertices have degree either A or § with A # 4.

The Zagreb indices are amoung the oldest topological indices, and were
introduced by Gutman and Trinajsti¢ [6] in 1972. These indices have since
been used to study molecular complexity, chirality, ZE-ismerism and hetero-
systems. The first and second Zagreb indices of G are denoted by M;(G) and
M5 (@), respectively, and defined as M;(G) = Z (dg(v))?* and My(G) =

veV(G)
Z dg(u)dg(v). The inverse degree index of G, denoted by ID(G) is de-
weE(G)
1
fined as ID(G) =
7 2, T
the unique regular graph with n vertices of degree n — 2, it is obtained from K,

. For any even n, the cocktail party graph CP, is

by removing 3 disjoint edges.
Let G be a graph with m edges. By definition of the inverse sum indeg
index, we have

B 2dc () 2dc (y)
(1) ISI(S(@) = ) (dG(x)+2+2+dc(y)>'

(z.9)EE(G)
and
2d 2d
ISI5.G) = Y #ﬁ)?+1+1+.”+1+72+§<y(>)
_,_/
(z,y)€E(G) “ (t—1) times a\4
2d 2d
oy <da<§>(x+)2 3 +fz(cy<?y>> Tl Lm
(z.9)EE(G)
(2) = ISI(S(G)) + (t — 1)m.

One can observe that ISI(G) < ISI(S(G)) and ISI(G) < ISI(Si(G)).

’I’LT‘2

r+ 2

Example 1. Let G be a r-regular graph with n vertices. Then ISI(S(G)) =

and ISI(Sy(G)) = U+ 22) +r=2
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Theorem 1. Let G be a graph with n vertices and m edges. Then

8

ISI(S(G)) =4(m—n)+ Y ———.

2oV (C) da(z) + 2

. : 2d¢(x)
Proof. For each neighbor of x in G, the term ————— appears exactly
dg(x) + 2
once in the sum Z dQC(iG)(:j_) 5 2?3(‘1/() )> Hence
x
(ww)eB@) ¢ o
2dg(x) 2dg(x) 2dg(x)
1SI(S(G)) = et
(5(@) mg%@ ( o) 12 Tdg@ 2 T T da@) + 21)

dg(z) times

:ZM

2eV(G) da () +2
4d
= > <2dG(m) T d Gmg)
2eV(Q) () +
4dg(z)
- ()
eV (C) dg(x) 42
8
O S (L
eV (C) deg(z) +2
8
St Y ()
eV (C) dg(z) +2
O
Corollary 1. Let G be a graph with n vertices and m edges. Then IST(Si(G)) =
8
(t+3)m —4n + Z —. O
eV (C) dg(x) 42
Lemma 1. Schweitzer’s inequality/2, 8/ Let x1,z2,...,z, be positive real
numbers such that for 1 <i <mn holds m < x; < M. Then
- "1 n?(m + M)?
' )< T
(;x) <; :c> = amM
Equality holds if and only if ©1 = 20 = ... = x, = m = M or n is even,
Ty =Ty =...=Tn =m andxgﬂ ==Inj=...=Ip = M, where m < M

and x1 < x9 < ... < x,.
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Using above lemma, to obtain the following sharp upper bound for the
inverse sum indeg index of subdivision graphs.

Theorem 2. Let G be a graph with n vertices and m edges. Then ISI(S(G)) <
n2(5 + A + 4)?
4(m —n) +

m =) TG T A 1)
(A, 0)-bidegreed graph.

with equality if and only if G is reqular or a

Proof. For any vertex z in V(G), we get § +2 < dg(z) +2 < A+ 2.
Also, Z (dg(x) + 2) = 2(m + n). By Schweitzer’s inequality, we obtain
zeV(GQ)

8 n2(0 + A + 4)?
Y TS TG YATY

zeV(G)

By Theorem 1, we obtain the required inequality.
By Lemma 1, equality holds if and only if § = A or g vertices of G have

degree 6 and the remaining g vertices of G have degree A, that is, G is regular
or a (A, d)-bidegreed. O

Corollary 2. Let G be a graph with n vertices and m edges. Then ISI(S¢(G)) <
n%(6 + A+ 4)?
t+3)m —4n +

o m = G T (A 1 2)
or a (A,0)-bidegreed graph.

with equality if and only if G is reqular

Lemma 2. Let a and b be real numbers. Then

1 <1(1+1>
a+b " 4\a b

with equality if and only if a = 0.

Theorem 3. Let G be a graph with n vertices and m edges. Then ISI(S(G)) <
4dm — 3n + 2ID(G) with equality if and only if G is the disjoint union of cycles.

Proof. For each vertex x € V(G), by Lemma 2, we have ————— <
(@), by da(z) +2

1 1 1
1 (dg(x) + 5) with equality if and only if dg(z) = 2. Hence

8
Z dg(x)—i-QSz Z

zeV(G) zeV(G)

4 =2ID(G) +n,



286 Kannan Pattabiraman

where ID(G) is the inverse degree index of G.

By Theorem 1, we obtain the required inequality.

Equality holds if and only if each vertex = € V(G), dg(z) = 2, that is, G
is the disjoint union of cycles. O

Corollary 3. Let G be a graph with n vertices and m edges. Then ISI(S;(G)) <
(t + 3)m — 3n + 2ID(G) with equality if and only if G is the disjoint union of
cycles.

Theorem 4. Let G be a graph with n vertices and m edges. If p is the number of

pendant vertices of G, then ISI(S(G)) > 4(m —n)+ 8<§ + %) with equality
if and only if G is reqular or a (A, 1)-bidegreed graph.

Proof. One can see that

8 1 1 1 1
2 GmTs - S(3r3+ g > d(;(x)+2>

zeV(G) ~ z€V(Q),dg(z)>1
p times

P 1
— g(2 4 L
( 2€V(G), dg (z)>1 da(x) + 2)

8(p+1+1+ +1>
3 A2 At2 T A42

n—p times
8p  8(n—p)
3 A+2 7

By Theorem 1, we obtain the required inequality.

Equality holds if and only if for every non-pendant vertex z € V(QG),
da(z) = A. If p = 0, then for every vertex x € V(G), dg(z) = A, that is, G is
regular, where 2 < A <n — 1. Assume p > 0. If there is no non-pendant vertex
in G, then G = K5 and otherwise, G is (A, 1)-bidegreed. O

v

Corollary 4. Let G be a graph with n vertices and m edges. If p is the number
of pendant vertices of G, then ISI(S¢(G)) > (t+3)m —4n + 8(%9 + %) with
equality if and only if G is reqular or a (A,1)-bidegreed graph.

Corollary 5. Let G be a graph with n vertices and m edges. If G has no pendant

vertices, then ISI(S(G)) > 4(m —n) + and ISI(S¢(G)) > (t + 3)m —

8n
A+42
4dn + AS—ZQ The equality holds for both cases if and only if G is A-reqular, where
2<A<n-—1.
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Let d;(x) be the number of vertices at distance i from the vertex z in G,
that is, di(x) = |{y| da(, ) = i}|.
Theorem 5. Let G be a graph with n vertices and m edges. Then

(3) IS1(S(G)) > 4(m — :(_”;(755?)2)

with equality if and only if G =2 K,, or G = CPF,.

Proof. Since d;(x) is the number of vertices at distance i from the
vertex x in G. One can observe that dg(x) < n — e(z) with equality if and only if

e(r) =1 and dg(z) =n —1or €(x) > 2 and da(v) = d3(z) = ... = dc(z)(2) = 1.
Thus for every vertex = € V(G), we obtain
8 8 8

da(x) + 2 2n—e(x)—i—Q Zn—r(G)—}—Q'

By Theorem 1, we obtain the required result.

Suppose that equality holds in (3). Then G is self-centered and for every
vertex z € V(G), equality holds in dg(z) < n — e(x). If e(x) = 1 for some vertex
x € V(G), then dg(z) = n — 1 and e(y) < 2 for all vertices x # y. Since G is
self-centered, €(x) = 1 for all vertices x € V(G). Thus G = K.

Now, suppose that e¢(z) > 2 for all vertices z € V(G). If e(x) > 3 for some
vertex y, then d(G) = 3 (otherwise, there exist at least two neighbors at distance 2
for the central vertex) and G = Py, a path on 4 vertices. This contradicts that G
is self-centered. So, €(x) = 2 for all vertices z € V(G) and then dg(x) = n — 2
for all vertices z € V(G). It gives G = CP,. O

M
Theorem 6. Let G be a graph with m edges. Then ISI(S(G)) < # +m

with equality if and only if G is the disjoint union of cycles.
Proof. For any vertex z € V(G), we obtain
2dg(z) _ 2+da()
da(z)+2 — 4
with equality if and only if dg(z) = 2. Thus by equation (1), we have

srs@) <Y <2+ic(w)+2+cic(y)> i(

(z,y)eE(G)

Equality holds if and only if for every vertex x € V(G), dg(xz) = 2. This
implies G is a disjoint union of cycles. O
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—le) +tm

Corollary 6. Let G be a graph with m edges. Then ISI(S;(G)) <
with equality if and only if G is the disjoint union of cycles.

Lemma 3. (Cauchy-Schwarz inequality)
Let X = (wl,wg . Tp) and Y = (yl,yg, ..y Yn) be two sequences of real

numbers. Then <Zx1yz) Z Zyz with equality if and only if the se-

quences X and Y are proportzonal z'. e., there exists a constant ¢ such that
x; = cy;, for each 1 < i <n.

As a special case of the Cauchy-Schwarz inequality, when y1 =ys = ... =
Yn, we get the following result.

n

9 n
Corollary 7. Let x1,xo,...,x, be real numbers. Then (sz) < an? with
=1 i
equality if and only if x1 = x0 = ... = x,.

Theorem 7. Let G be a graph with n vertices and m edges. Then ISI(S(G)) >
4(m? —n?) + 4n?
m+n

with equality if and only if G is regular.

Proof. By Cauchy-Schwarz inequality, we get

1
da(z 2 _ | > vda
ze%(:c)( a(z) +2) xe%(:c) da(z)+2 | = Ie%:) ,/ )+2

with equality if and only if all the dg(x)’s are equal.
Moreover, Z (dg(z) +2) = 2(m +n). Thus
zeV(G)

S o I
2or G) dg(x)+2 ~ 2(m+n)
By Theorem 1, we obtain the required inequality.
Equality holds if and only if all the dg(z)’s are equal. This implies G is
regular. U

Corollary 8. Let G be a graph with n vertices and m edges. Then I1SI(S:(G)) >
4(m? —n?) + 4n?
m+n

+ (t + 1)m with equality if and only if G is reqular.
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Let G be a graph with n vertices and m edges. f m=n—1, nand n+1
then G is called a tree, unicyclic and bicyclic graphs, respectively.

4(n —1)?

o — 1 and

Corollary 9. Let G be a tree on n vertices. Then ISI(S(G))
4(n —1)?
2n—1

Corollary 10. Let G be a unicyclic graph on n vertices. Then ISI(S(G)) > 2n
and ISI(S¢(G)) > n(t+ 3).

Y

ISI(S:(G)) > +(n—=1)(t+1).

Corollary 11. Let G be a bicyclic graph on n vertices. Then ISI(S(G)) >

% and ISI(Si(G)) > % (1) +1).

Lemma 4. [11] Let f be a convez function on the interval I and x1, 9, ... ,x, € I.

Then 22 toat... I < Fay+ flee) +..., flzn) with equality if and only
n n

ifr1 =20 = ... = xy,.

40 m — 5M1(G)

Theorem 8. Let G be a graph on m edges. Then ISI(S(G)) > 5

Proof. For any vertex x in G, dg(z) > §. By the definition of inverse
sum indeg index of the subdivision graph of G, we have

ISI(S(Q)) = Z <2dG(x) + 2dg(y) )

webc \de(@) +2 0 2+ da(y)

20 20
> <dG($)+2+2+dG(y)).

ryeE(G)

1
Let f(x) = —. Since f is a convex function on (0,400), by Jensen’s inequality,
for any edge zy € V(G), we obtain

2 2
do@ 12 21 da(y) © 4+ de(@) + do(w)

with equality if and only if dg(z) = dg(y). Hence

89
ISI(S(G)) > Z <4+dG(x)+dG(y)>

zy€eE(G)
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~ % Y <1+dc($)jlrdc(y)>l

zyeE(G)

By Bernoulli’s inequality, we have

ISI(S(G)) > 25 > (1_

da(r) + dG(?/))
zyeE(G)

4

By the definition of the firat Zagreb index of G, we get

40m — (5M1(G)

ISI(S(G)) 5

Corollary 12. Let G be a graph with m edges. Then

5 Mi(G)

ISI(S/(G)) > (20 + = 1)m — ==

3. ISI Index of S and S;-products of Graphs. The S-product
of G1 and Gy, denoted by G1[Ga]s, is defined by S(G1)[G2] — E*, where E* =
{(z,91)(2,92) € E(S(G1)[Ga])|z € V(5(G1)) = V(G1), y1y2 € E(Ga)}, that is,
G1[G2]s is a graph with the set of vertices either [x1 = x5 € V(G1) and y1y2 €
E(G9)] or [x129 € E(Gy) and y1,y2 € V(G3z)]. The Si-product of G; and Ga,
denoted by G1[Ga]s,, is defined by S;(G1)[G2] — E*, where E* = {(x,y1)(x,y2) €
E(St(Gl)[GQ]) ’ S V(St(Gl)) — V(Gl), Y1Y2 € E(Gz)}, that iS, Gl[GQ]St 18
a graph with the set of vertices either [x; = z2 € V(G1) and y1y2 € E(G2)] or
[x122 € E(Gy) and y1,y2 € V(G2)]. One can observe that G1[Ga]s, has |V (G2)]
copies of the graph S;(G1) and we can label these copies by vertices of Go. The
vertices in each copy we denote two types of vertices, such as the vertices in V(G1)
(black vertices) and the vertices in V(S;(G1)) — V(G1) (white vertices). The S
and Si-products of P and P» are shown in Figure 1.

Theorem 9. Let G; be a graph with n; vertices and m; edges, i = 1,2. Then

IST M sH 3 M
ISI(G1[Gals) < ™ 54(G2)+ 1(2G1) (= 4(G2)+%+n§m(G2))+7"1 ;(Gz)
M2(G2)ID(G2) n2(4m1m2 +nime + mln%)

8712 * 4 ’

_l’_




Bounds on Inverse Sum Indeg Index of Subdivision Graphs 291

P3[Py]s P3[Py]s,

Fig. 1. The S and Si-products of Ps and Ps

Proof. Let {x1,29,...,2n,} and {y1,92,...,yn,} be the vertex sets of
G1 and G, respectively. From the definition of inverse sum indeg index and the
structure of the graph G1[Galg, we have

da(@a)s ((1,91))da, (o) s (T2, 92))
dey(Ga)s (T1,91)) + day @y (22, 92))

ISI(G1]Ga]s) = Z

(1‘17y1)(1‘27y2)6E(G1[G2]s)
_ Z Z dGl[Gg]s((xlayl))dG’l[G’ﬂs((:ﬂ%y?))
dG1 [GQ]S((xh yl)) + dGl[GQ}s((x% yQ))

z1=22€V (G1) y1y2€E(G2)

> DOEED D A6y [Ga)s (21, 91))dGy 6ol (2, 92))

+
G1 GQ]s((xl’ yl)) + dGl[GQ}s((xQ, y2))

z122€E(S(G1)) y1€V(G2) y2€V (G2)
(4) = A+ Ay,

where A; and A are the sums of the terms, in order.
We shall calculate A; and A of (4) separately.
First we calculate the sum

PSS > dey (s (P15 91))day (@) (T2, 92))
dGl[GQ}s((xlv yl)) + dG1 [GQ]S((x27 yQ))

:B1=:B2€V(G1) ylyQEE(Gz)

For each vertex (z;,y;) in G1[Ga|s, the degree of (x;,y;) is nadg, (x;) + da, (y;).
Thus

4 = Y Z (n2dg, (21) + da, (y1)) (n2dc, (21) + day (y2))
2nodg, (ml) + (dGQ (yl) + da, (yQ))

1€V (G1) y1y2€E(G2)
By Jensen’s inequality, we have
1 1 1
<( + )
2nadg, (21) + (da, (Y1) + da, (y2)) — \8nadg, (z1)  4da, (1) + da, (y2)
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with equality if and only if 2nedg, (x1) = da, (y1) + dg, (y2). Thus

Z Z <n2dG1 (1‘1) + dG2 (yl) + dG’2 (yQ) + dG2 (yl) + dG’2 (y2)>

2 2 2nad
1€V (G1) y1y2€E(G2) naag, (DU1)

1

4

1 ( n%dGl (x1)2 dG’2 (yl)dG'2 (yQ)
4 Z Z + nadg, (1) +

4 1€V (G1) y1y2€E(G2) dGQ (yl) + dG’2 (yQ) dG2 (yl) + dG’2 (yQ)

1 ni M- M. ID 2M H
_ 1 <3n2m1m2 LM 1(G2) n 2(G2)ID(Gy) L 1(G1)H(G2) +n1[SI(G2)> .
4 2 2n9 2
Next we find the value of the sum As.
day(Ga). ((T1,91))day (o), (T2, Y2))
o= Y X D>

o122 BUS(G) 1 e V(Ga) e () 9011G21s (@1591)) F day ), (72, 32))

- Y ¥ T d((z1,y1))d((e, y2))
YIEV(Ga) 126V (Ga) 1€V (Gr), ecE(G1) d((21,41)) + d((e, y2))
x1 and e are incident in G1

Y 3 (nadey (21) + da, (y1))2n2
2
Y1€V(G2) 12€V(G2)  21€V(G1),e€E(G1) n2de, (21) + day (1) + 2n2
x1 and e are incident in Gy

<2n%d(;1 (z1) + 2n2dg, (yl))
= Z Z Z da, (1) na(da, (1) + 2) + da, (y1)

y1€V(G2) y2€V (G2) €V (G1)

One can see that

1 1 1 1
< +—+ .
na(da, (z1) +2) +dg,(y1) ~ 16nadg, (v1)  32n2  4dg,(y1)

Thus
nade, (1) | made, (1) | dey(21)?
Ay < 8 16 2dg, (y1)
LD DD day (1) | dey(21)dc, (y1)
y1€V(G2) y2€V (G2) z€V(G1) + + 16
_ n%ml + n%Ml(Gl) n%Ml(Gl)ID(GQ) + nina2ms9 + na2mMm1Mm9
4 16 2 4 4 '

From A; and As, we get the desired result. O
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Theorem 10. Let G; be a graph with n; vertices and m; edges, 1 = 1,2. Then

ISI(Gy) Mi(Gy) (n3H (G M (G
IS1(G1]Ga)s,) < o 4( 2)+ 1(2 2 (n2 4( 2)+ 8 +n3D(G ))+nl+(2)
2
N Mz(Gz)ID(GZ) . n2(4m1m2+n1m2 + min3) +n%(t— 1)my

8n2 4
Proof. Let {x1,29,...,2n,} and {y1,92,...,yn,} be the vertex sets of

G1 and G, respectively. From the definition of ISI index and the structure of the
graph G1[G2]s,, we have

de,(Ga)s, (#1,51))dG, (Go]s, (T2, Y2))
dGl[GQ}sZt ((.%'1, yl)) + dGl[GQ}sZt ((.%'2, yQ))

ISI(G1[Gals,) = >

(z1,y1)(z2,y2)€E(G1[G2]s, )

B 3 3 de,(Ga)s, (1,91))dG, (Go]s, (2, Y2))

da,(Ga)s, (21, 91)) + day (o), (T2, Y2))

z1=22€V(G1) y1y2€E(G2)

+ Z Z Z dGl[GQ St((xl’yl))dGl[GQ]st((x%y2))

z122€E(S(G1)) y1€V(G2) y2€V(G2) Gl[Gﬂ ((xl’yl))+dG1[G2}St((x2’y2))

(5) = A + Ao,

where A; and A are the sums of the terms, in order.
Similarly to the proof of Theorem 9, we get

7”L1M1(G2) 4 MQ(GQ)ID(Gl)

1 3n2m1m2 +

A <~ 2 2ny
M, (G H
+ 12 1(G21) (G2) | 1S1(Gy)
Ay = 3 3 Z day (), (1, 91))day [Gy), (72, Y2))
e PE(G), V(o eviGy 161G (E1 YD) + daijaa). (22,92))

1€V (G1),
22€V (St(G1))—V(G1)

+ Z Z Z dGl[GQ xlayl))dGl[GQ}s((x27y2))
z122€E(S¢(G1)), y1€V(G2) y2€V(G2) Gl[GQ] ((@1,91)) + dGl[Gﬂs((x%y?))
ml,IQGV(St(Gl))*V(Gﬂ

= ’2+

where A} and A} are the sums of the terms, in order.
By a similar argument of Theorem 9, we get
’ n%’ml ’I’L%Ml(Gl) n%Ml(Gl)ID(GQ) ninams9 na2mMm 1Mo
2= 7 6 2 S S A R
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In addition,

4 = D > 2 W

z122€E(S¢(G1)), y1€V(G2) y2€V(G2)
x1, IQGV(St(Gﬂ)*V(Gﬂ

- Y Y o)
y1€V(G2) y2€V (G2)
= mn3(t—1).

From A; and A, we obtain the desired result. O

4. ISI Index of S and S;-sums of Graphs. Let G; and G5 be two
graphs. The S-sum G1+5G2 is a graph with vertex set (V(G1) U E(G1))xV(G2)
in which two vertices (u1,v2) and (ug,vs) of G1 +g G2 are adjacent if and only
if [u1 = Uy € V(Gl) N vvg € E(Gz)] or [1)1 = V9 € V(Gl) N uirug € E(S(G))]
The Si-sum Gi +s, G2 is a graph with vertex set (V(Gl)UE(Gl)) x V(G2)
in which two vertices (u1,v2) and (ug,ve) of G1 +g, G2 are adjacent if and only if
[u1 =us € V(Gl) N ViV € E(Gg)] or [1)1 =1 € V(Gl) ANuiug € E(St(G))] The
S and S; sums of the graphs P; and P, are shown in Figure 2.

P3+s P P45, Py

Fig. 2. The S and Si-sums of P and P

Theorem 11. Let G; be a graph with n; vertices and m; edges, 1 = 1,2. Then
I1SI(G M(Gh)(H(G 8ID(G 8 M+ (G
ISI(G1+5G2) < m 4( 2)+ 1(G1) (H( 2)1; (Ga) + n2)+n1 51;( 2)+

19m1meo + 4nyme + 8ming
1 .

Proof. Let {z1,22,...,2,,} and {y1,y2,...,yn,} be the vertex sets of
(1 and G, respectively. From the definition of ISI index and the structure of the

m1Ma(Ge) +
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graph G +g G2, we have

dG,+5G, ((ml ) yl))dG1+sG2 ((x27 y2))

ISI(Gl +s9 GQ) = Z
(@1,91)(w2,y2) € E(G1+5Ga) dG1+sG2((x17y1)) + dG1+sG2((x27y2))

- Z Z dG1+sG2((x1=yl))dG1+sG2((x27y2))

dG1+sG2((x17 yl)) + dG'1+sG2((x27 y2))

z1=22€V (G1) y1y2€ E(G2)
Z Z dayvs6,((21,11))da, + 56, (T2, 92))

21226 E(S(G1)) y1€V(Go) G1+SG2((‘T1’ yl)) + dG1+SG2((x2’ y2))

(6) = A+ Ay,

+

where A7 and Ay are the sums of the terms, in order.
We shall calculate A; and A of (6) separately.
First we calculate the sum A;. For each vertex (z;,y;) in G1 +g Ga, the

degree of (z;,y;) is da, (x;) + da, (y;). Thus

o (dG1 (1‘1) + dG2 (yl))(dG1 (ml) + dG’2 (yQ))
A= Z Z 2dg, (1‘1) + (dG'2 (yl) + da, (yQ))

1€V (G1) y1y2€E(G2)

> Y (e @)+ doy () (do (21) + dey(2) )

1€V (G1) y1y2€E(G2)

IN

I

2dc, (z1)  (da,(y1) + das (y2))

3mima N n1M1(G3)
4 8

Next we find the value of the sum As.

M, (G)H(G 1SI(G
+ my My (Go) + i 1; (Ga) |, m 4( 2).

dG1+SG2 .%'1, yl))dG1+SG2 ((1’2, yZ))

A = > 2 der+s6s ((T1,91)) + dey 4562 (T2, 92))

z122€E(S(G1)) y1€V(G2)

(dg, (71) + de, (y1))ds(ay) (w2)

VG meVIC T aCE(GY) ds(c,)(71) + ds(ay)(22) + da, (y1)
z1 and e are incident in Gy

2(da, (1) + da, (y1))
Z 24 dg, (%1) + da, (y1)

y1€V(G2) 1€V (G1),e€E(G1)
z1 and e are incident in Gy

_ 2dg, (71)(dg, (z1) + da, (11))
> 2 +dg, (21) + da, (y1)

y1€V(G2) z1€V(G1)
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<Y ¥ ada(m)(dal(wl)+dGQ<yl>>(d&(;)H*dGQ(;ﬁH)

y1€V(G2) z1€V(G1)

< i > X 2dG1(9€1)(d01(9”1)+dG2(y1))(dcll(l“l)+1>

1€V (G2) 21€V(G1)

+ i YooY 2de, (1) (de, (41) + dey (1)) (@ " 1>

N €V (G2) z1€V(G1)
= Ml(Gl)(ng + ID(GQ)) + 2ming + mong + dmimeo.

From A; and As we get the desired result. O
A similar proof of Theorem 11, we obtain the following theorem.

Theorem 12. Let G; be a graph with n; vertices and m; edges, © = 1,2. Then

ISI(Ga) M (Gy)(H(Gy) +8ID(Gs) + 8 M (G
ISI(G1+StG2)§n1 4( 2)+ 1(G1) (H( 2)1; (Ga) + n2)+n1 51;( 2)+

+ ng(t — 1)m1.

19mime + 4nyme + 8ming
4

mi1Ms(Ge) +

5. Conclusion. In this article, several number of upper and lower
bounds for inverse sum indeg index of subdivision of some class of graphs are
investigated.
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