
Serdica J. Computing 12 (2018), No 4, 265�280 Serdica
Journal of Computing

Bulgarian Academy of Sciences
Institute of Mathematics and Informatics

A SIMPLE RANDOMIZED 3-EDGE CONNECTED
COMPONENT ALGORITHM

Vladislav Haralampiev

Abstract. Finding the 3-edge connected components of a graph is a well-
researched problem for which many algorithms are known. In this paper,
we present a new linear-time randomized algorithm for the problem. To the
best of our knowledge, this is the �rst randomized algorithm for partitioning
a graph into 3-edge connected components. The algorithm is a composition
of simple building blocks, it is easy to understand and implement, and it has
no corner cases.

1. Introduction. Connectivity is a fundamental concept in graph the-
ory. It has applications in a wide variety of areas such as network reliability,
VLSI design, and security. The 3-edge connectivity problem is a special case
of the general edge connectivity problem in which we want to �nd the pairs of
vertices remaining connected after the removal of any two edges from the input
graph. In addition to the already mentioned areas, �nding the 3-edge connected
components of a graph is useful in �elds such as bioinformatics [4] and quantum
chemistry [2].

ACM Computing Classi�cation System (1998): G.2.2, G.3.
Key words: graph connectivity, 3-edge connected components, randomized algorithm.



266 Vladislav Haralampiev

Finding the 3-edge connected components of a graph is an old and well-
researched problem. Consequently, many algorithms are known for it. The �rst
one is due to Galil and Italiano [5]. They reduce the problem to 3-vertex connec-
tivity and use Hopcroft and Tarjan's linear-time algorithm for 3-vertex connec-
tivity [6]. The resulting algorithm is rather complex and hard to implement. A
number of alternative linear-time algorithms for the 3-edge connectivity problem
have been published, for example [10], [8] and [7]. All these algorithms are based
on properties of depth-�rst search and are rather complex, too.

In [9] Pritchard proposes a simple randomized circulation-based method
for determining small cuts in graphs. This method can be used to �nd cut pairs,
pairs of edges which are useful for determining 3-edge connectivity. In the same
paper, Pritchard proposes an algorithm for �nding 3-edge connected components,
but his de�nition of a 3-edge connected component is di�erent from the commonly
accepted one.

In this paper we use Pritchard's method for �nding cut pairs to develop a
randomized algorithm for partitioning a graph into 3-edge connected components.
The proposed algorithm is e�cient and easy to understand and implement. For
practical inputs the algorithm is linear with very small probability of error, which
can be made arbitrarily small.

2. De�nitions. We consider connected, undirected graphs. The vertex
set of the graph G is denoted by V and the edge set, by E.

De�nition 1 (edge cut). The set of edges S ⊆ E is called an edge cut for

the vectices u, v ∈ G i� the removal of the edges in S disconnects u and v.

De�nition 2 (k-edge connected vertices). Two vertices u, v ∈ G are called

k-edge connected i� there is no edge cut for these vertices of cardinality less than k.

It is easy to show that k-edge connectivity is an equivalence relation.

De�nition 3 (k-edge connected component). The classes of the k-edge

connectivity relation are called the k-edge connected components. Graph G is

called k-edge connected i� G has precisely one k-edge connected component.

Edge cuts of cardinality 1 are often called bridges. There is a well-known sim-
ple algorithm for �nding all the bridges and 2-edge connected components in a
graph in linear time. Since 3-edge connected components cannot span multiple
2-edge connected components, further in the paper it is assumed that the input



A Simple Randomized 3-Edge Connected Component Algorithm 267

graph G is 2-edge connected. If it is not, we can �rst extract the 2-edge con-
nected components and then process them one by one. Alternatively, we can �nd
the 2-edge connected components in the same framework as the proposed algo-
rithm for �nding the 3-edge connected components (this is brie�y mentioned in
Appendix A).

De�nition 4 (cut pair). An edge cut of cardinality 2 for two vertices u
and v in a 2-edge connected graph is called a cut pair for u and v.

In [9] it is shown that we can assign short labels (bit strings) to the edges of
the graph in such a way that two edges e1 and e2 form a cut pair i� label(e1) =
label(e2). Here and further in the paper we use label(e) to refer to the label
assigned to edge e. The procedure which generates these labels is very simple and
elegant and is brie�y described in Appendix A.

The method for partitioning a graph into 3-edge connected components,
proposed in Section 3, is based on depth-�rst search (DFS), a well-known graph
traversal algorithm. Given a connected, undirected graph, depth-�rst search pro-
duces a spanning tree and classi�es the edges into two categories: tree edges and
back edges [3]. The following de�nitions will often be used in the paper:

De�nition 5 (DFS-tree, tree and back edges). Let G be a connected,

undirected graph.

• A DFS-tree of G is the spanning tree produced by some depth-�rst search

traversal of G. Note that the DFS-tree is a rooted tree.

• Given a DFS-tree T , every edge e = (u, v) ∈ E is called a tree edge if it

belongs to T . When we write tree edges as pairs of vertices, we assume that

the �rst vertex in the pair is closer to the root of the DFS-tree.

• Given a DFS-tree T , every edge e = (u, v) ∈ E is called a back edge if it is

not a tree edge and, in T , vertex v is on the path from the root to u (or vice

versa). When we write back edges as pairs of vertices, we assume that the

second vertex in the pair is closer to the root of the DFS-tree.

It is well-known that in undirected graphs there are only tree edges and back
edges. Note that the DFS-tree of a graph is not unique. Di�erent DFS traversals
may produce di�erent DFS-trees and classi�cations of the edges. From now on,
when we write about DFS-tree, tree edges and back edges, we assume that we
have �xed one arbitrary depth-�rst traversal of the input graph.

The algorithm presented in the next section uses properties of cut pairs
and depth-�rst search to �nd parts of the DFS-tree which do not belong to the



268 Vladislav Haralampiev

same 3-edge connected component. This information is stored using the notion of
color. More speci�cally, assume we have a source of unique colors (objects which
we can test for equality) and we assign a set of colors to each vertex of the tree.
The set of colors assigned to vertex u is denoted as ColorSet(u) and we will assign
the colors in such a way that ColorSet(u) = ColorSet(v) i� u and v are in the
same 3-edge connected component. The algorithm from Section 3 modi�es the
colors of the vertices by coloring operations:

De�nition 6 (coloring operations). Denote by T the DFS-tree of G.

• Operation AddColorToSubtree(vr, new_color): for each vertex in the sub-

tree of vr in T , including vr, add new_color to the set of colors of the

vertex.

• Operation RemoveColorFromSubtree(vr, new_color): for each vertex in

the subtree of vr in T , including vr, remove new_color from the set of

colors of the vertex, assuming that the color is present in the set.

• Operation GetColors(vr): return the set of colors of the vertex vr.

The data structure that we use to implement the operations from De�nition 6 can
be o�ine, meaning that we �rst receive a sequence of AddColorToSubtree and
RemoveColorFromSubtree operations, then we do some processing, and after
that we need to be able to answer GetColors queries. There are various data
structures which can support coloring operations. In Section 4 we describe a
randomized data structure that supports them in constant time.

3. 3-edge connected component algorithm. It may seem that for
�nding the 3-edge connected components of a 2-edge connected graph we can just
remove all cut pairs and return the connected components of the resulting graph.
However, this is not correct and Fig. 1 shows a counterexample. The vertices
A and B in the �gure are 3-edge connected but if we remove all cut pairs, the
graph will not have any edges at all. Intuitively, the problem is that vertices in
one 3-edge connected component may be connected through vertices from other
components.

Notice that, given two vertices are in di�erent connected components after
the removal of a cut pair, we surely know these vertices do not belong to the same
3-edge connected component. So, a simple algorithm for �nding these components
is to remove cut pairs one by one and remember which pairs of vertices do not
belong to the same 3-edge connected component. Unfortunately, the number



A Simple Randomized 3-Edge Connected Component Algorithm 269

Fig. 1. {e1, e2}, {e3, e4} and {e5, e6} are the cut pairs. Removing them disconnects A
from B. However, A and B are 3-edge connected

of cut pairs can be θ(n2), so such an algorithm is slow. The main idea of our
algorithm is to �nd a subset of O(n) cut pairs that give complete information
about the 3-edge connected components of the graph.

We �rst prove several lemmas that help us to e�ciently identify the con-
nected components of the input graph after the removal of a cut pair. After that
we give the pseudocode of the algorithm and prove its correctness. As we said
earlier, we assume that the input graph is 2-edge connected.

Lemma 1. In any DFS-tree of G it is impossible for both edges in a cut

pair to be back edges.

P r o o f. Assume both edges in a cut pair are back edges. After remov-
ing them the graph will still be connected by tree edges, a contradiction to the
de�nition of cut pair. �

The next lemma captures the intuition that, if both edges in a cut pair are tree
edges, then they are in the same �branch� of the DFS-tree.

Lemma 2. Let {e1, e2} be a cut pair in which both edges are tree edges.

Then there exists a vertex v for which both e1 and e2 lie on the path from the root

of the DFS-tree to v.

P r o o f. Assume the lemma is not true and let {e1 = (x, y), e2 = (z, t)}
be a counterexample. We will denote the lowest common ancestor of y and t by l
(see Fig. 2). If l is equal to y, than both e1 and e2 will be on the path from the root
to t, which is impossible. With similar reasoning we can show that l is not equal
to t and neither e1 nor e2 lie on the path from the root to l. The only possible
con�guration left for the vertices and edges is shown in Fig. 2. After removing
e1 and e2 the DFS-tree splits into three connected components: A that contains
the root, B that contains y, and C that contains t. Since e1 is not a bridge,



270 Vladislav Haralampiev

Fig. 2. Only tree edges are shown. Assuming that {e1, e2} is a cut pair and neither e1
nor e2 is a bridge, this con�guration is impossible

B is connected to A by back edges (B cannot be connected to C, because, by
de�nition, there are no back edges between them). Similarly, C is connected to A
by back edges. This means that after the removal of e1 and e2, the components
A, B and C are still connected in the graph by back edges, so the whole graph is
connected, which is a contradiction. �

For a given pair of edges, the next two lemmas characterize the vertices
for which these edges are a cut pair. Intuitively, we can characterize these vertices
through subtrees of the DFS-tree. This is very important because it allows us to
compactly represent the information about pairs of vertices which do not belong
to the same 3-edge connected component.

Lemma 3. Let {e1 = (x, y), e2 = (z, t)} be a cut pair in which e1 is a tree

edge and e2 is a back edge. {e1, e2} is a cut pair for the vertices u and v i� after

removing e1 from the DFS-tree u and v are in di�erent connected components.

P r o o f. Fig. 3 illustrates the lemma. After removing e1, the DFS-tree
splits into two connected components. Let A be the component containing y and
B the other component. If {e1, e2} is a cut pair for u and v, then the two vertices
clearly cannot both belong to A or B (because they are connected by tree edges).
We know that {e1, e2} is a cut pair, so there exist x ∈ A and y ∈ B which become
disconnected after removing {e1, e2}. If there are two vertices p ∈ A and q ∈ B
for which {e1, e2} is not a cut pair, we can construct a path from x to y. To achieve
that, we �rst go from x to p inside component A, then use the path from p to q
and �nally go from q to y inside component B. Since no path between x and y
should exist, we know that {e1, e2} is a cut pair for any two vertices p ∈ A and
q ∈ B. �



A Simple Randomized 3-Edge Connected Component Algorithm 271

Fig. 3. Schematic graph showing the setup of Lemma 3.
Triangles and dashed edges stand for omitted subtrees and edges.
Edge (z, t) is a back edge, the other edges shown are tree edges

Lemma 4. Let {e1 = (x, y), e2 = (z, t)} be a cut pair in which both edges

are tree edges. From Lemma 2 we know that there exists a vertex s for which both

e1 and e2 are on the path from the root to s. Let us denote by T ′ the DFS-tree

of G from which e1 and e2 are removed. Assume the vertex x is closer to the root

than z and call B the connected component of y in T ′. {e1, e2} is a cut pair for

the vertices u and v i� u ∈ B, v 6∈ B or vice versa.

P r o o f. The lemma is illustrated in Fig. 4. We know that both e1 and e2
are on the same path from the root to some vertex s. This means that, after the
removal of e1 and e2, the DFS-tree of G splits into three connected components:
one containing x, one containing y, and one containing t. In the statement of the
lemma we called B the component containing y. Let us denote the component
containing x by A and the component containing t by C. After removing e1
and e2 the components A, B and C are clearly disconnected from each other in
the DFS-tree, but they could still be connected by back edges in the graph G.

Fig. 4. Schematic graph showing the setup of Lemma 4. Only tree edges are shown.
Triangles and dashed edges stand for omitted subtrees and edges



272 Vladislav Haralampiev

Note that the whole graph G without e1 and e2 is not connected, because {e1, e2}
is a cut pair.

Let us create boolean variables CB, CA and BAmeaning that there exists
a back edge from component C to component B, from component C to A and
from component B to A. These are all possibilities for back edges. We know that
e1 is not a bridge, so BA ∨ CA is true. Similarly, CB ∨ CA is true because e2
is not a bridge. If CA is false then the two statements above imply CB and BA
are true, so there are back edges from C to B and from B to A. This in turn
implies that the graph G with removed e1 and e2 is connected, a contradiction
with {e1, e2} being a cut pair. The contradiction is because we assumed CA is
false, so CA needs to be true. With similar reasoning CB equals true or BA
equals true implies G without e1 and e2 is connected, so we know that both CB
and BA are false.

In the previous paragraph we have shown that inG with removed e1 and e2
A and C form one component (because CA is true, meaning there is a back edge
between C and A) and B forms another component (because both CB and BA
are false). This immediately implies the statement of the lemma, {e1, e2} is a cut
pair for the vertices u and v i� u ∈ B, v 6∈ B or v ∈ B, u 6∈ B. �

The previous two lemmas basically say that a cut pair gives us information
that a connected part of the DFS-tree is in a di�erent 3-edge connected compo-
nent from the rest of the DFS-tree. This type of information can be conveniently
represented using the coloring operations de�ned in Section 2. If we need to re-
member that part A of the DFS-tree is in a di�erent 3-edge connected component
from part B, we just need to add a unique color to the vertices in A. As we said
earlier, iterating through all cut pairs and storing the information they give is
too slow. So, what is left is to �nd a small subset of all the cut pairs which give
us enough information to extract the 3-edge connected components. To achieve
this, we will perform a depth-�rst traversal of the graph and, for each edge, we
will �nd the closest edge with the same label on the path from the current vertex
to the root (if it exists). We know that these two edges form a cut pair because
they have equal labels. There can be more edges which form a cut pair with
the current edge. Intuitively, we do not need to consider them because they all
have the same label, so, in the previous steps of the depth-�rst traversal, we have
already added unique colors to the parts of the DFS-tree de�ned by them. We do
not need to duplicate this work. The intuition is formalized in Theorem 1, which
proves the correctness of Algorithm 1, presented below.



A Simple Randomized 3-Edge Connected Component Algorithm 273

Algorithm 1 3-edge connected components algorithm

1: last_edge ← dict(default: None)
2: visited ← [NO for vr ∈ V]
3:

4: function CreateColorSets(vr, parent ← None)
5: visited[vr] ← ON_PATH
6: for all (vr, u) ∈ E, u 6= parent do
7: (x, y) ← last_edge[label(vr, u)]
8: if visited[u] = ON_PATH then . (vr, u) is a back edge
9: if (x, y) 6= None then

10: AddColorToSubtree(y, NewColor())

11: else
12: if visited[u] = NO then . (vr, u) is a tree edge
13: if (x, y) 6= None then
14: color ← NewColor()
15: AddColorToSubtree(y, color)
16: RemoveColorFromSubtree(u, color)

17: last_edge[label(vr, u)] ← (vr, u)
18: CreateColorSets(u, vr)
19: last_edge[label(vr, u)] ← (x, y)

20: visited[vr] ← YES

Theorem 1. If we denote by ColorSet(vr) the set of colors given to

vertex vr by Algorithm 1, then two vertices u and v are in one 3-edge connected

component ⇐⇒ ColorSet(u) = ColorSet(v).

P r o o f. ⇒ Assume that for two vertices p and q there exists a color c,
added by line 10 of the algorithm, such that c ∈ ColorSet(p) and c 6∈ ColorSet(q).
This color was added by a pair of edges e1 = (vr, u) and e2 = (x, y) such that e1
is a tree edge and e2 is a back edge. We know that these edges form a cut pair,
because they have equal labels (line 7). Also, we know that p is in the subtree of u
in the DFS-tree and q is not (because we add the color c only to the subtree of u).
Now, from Lemma 3 it follows that (e1, e2) is a cut pair for the vertices p and q.
With similar reasoning for the case when the color c was added by lines 15�16
(and using Lemma 4) we can show that whenever we have two vertices p and q
and a color c for which c ∈ ColorSet(p) and c 6∈ ColorSet(q), we can �nd a cut
pair (e1, e2) for these vertices. Let u and v be two 3-edge connected vertices. If



274 Vladislav Haralampiev

ColorSet(u) 6= ColorSet(v), then there exists a color c, which is in one of the
sets, but not in the other. This means we can �nd a cut pair for u and v, so they
are not 3-edge connected, a contradiction.
⇐ Let p and q be two vertices which are not 3-edge connected, but for which
ColorSet(p) = ColorSet(q). We know there exists a cut pair for these vertices
because they are not 3-edge connected. Take one such cut pair {e1 = (x, y), e2 =
(vr, u)}. There are two cases: either both e1 and e2 are tree edges or e1 is a
tree edge and e2 is a back edge. The two cases are illustrated in Fig. 5. We will
show that both lead to a contradiction, which proves that it is impossible for two
vertices p and q to have ColorSet(p) = ColorSet(q), but not be 3-edge connected.

Fig. 5. Schematic graph showing the two possible cases for the cut pair {e1 = (x, y), e2 =
(vr, u)}. Either both e1 and e2 are tree edges (left), or e1 is a tree edge and e2 is a back

edge. Dashed lines in the graphs stand for omitted parts of edges and subtrees

Case 1: Both e1 = (x, y) and e2 = (vr, u) are tree edges.
From Lemma 4 we know that one of the vertexes p or q is in the part of the DFS-
tree between e1 = (x, y) and e2 = (vr, u) and the other is not. Without loss of
generality, let p be the vertex in the part between e1 and e2. Since e1 and e2 form
a cut pair we, know that they have the same label L. Let (x1, y1) be the closest
edge to p with label L on the path from p to x. Similarly, let (vr1, u1) be the
closest edge to p with label L on the path from u to p (see Fig. 5). It is possible
that (x, y) = (x1, y1) and (vr, u) = (vr1, u1). When we are processing the edge
(vr1, u1) in Algorithm 1 (in the cycle from line 6), the condition on line 13 needs
to be true, so we will add a unique color C to the vertexes in the part of the DFS-
tree between y1 and vr1. Note that we have chosen (x1, y1) and (vr1, u1) in such
a way that p is between them, so we will add C to ColorSet(p). We know q is not
in the part of the DFS-tree between y and vr. This means q is also not between
y1 and vr1, so C 6∈ ColorSet(q). Contradiction with ColorSet(p) = ColorSet(q).



A Simple Randomized 3-Edge Connected Component Algorithm 275

Case 2: e1 = (x, y) is a tree edge and e2 = (vr, u) is a back edge.
From Lemma 3 we know that one of the vertices p and q is in the subtree of y in
the DFS-tree, and the other is in the rest of the tree. Without loss of generality,
let p be in the subtree of y. We know e1 and e2 have the same label L, because
they form a cut pair. Let (a, b) be the closest edge to vr on the path from
vr to x with label L (it is possible that (a, b) = (x, y)). When we process the
edge (vr, u) in the cycle from line 6, the condition on line 9 is true (with edge
(a, b)), so a unique color C is added to the subtree of b in the DFS-tree. The
vertex q is not in this subtree, because we know q is not in the subtree of y, so
C 6∈ ColorSet(q). If p is in the subtree of b, then C ∈ ColorSet(p), a contradiction
with ColorSet(p) = ColorSet(q). The other possibility is for p to be in the part
of the DFS-tree between y and a. This means the edges (x, y) and (a, b), which
have the same label, form a cut pair for the vertices p and q. Both (x, y) and
(a, b) are tree edges, so we are in Case 1 and, again, have a contradiction with
ColorSet(p) = ColorSet(q). �

After the completion of Algorithm 1 we are able to determine if two ver-
tices belong to the same 3-edge connected component by comparing their color
sets. Partitioning the vertices into 3-edge connected components is equivalent to
grouping them by color sets, which can easily be done with a hash table in ex-
pected linear time. Since Algorithm 1 is a simple extension of depth-�rst search,
it also runs in linear time in the size of the graph, so we can �nd the 3-edge
connected components with this complexity. However, we assume that operations
with labels of edges and with color sets run in constant time. These are de�ned
(in the next section) as bit strings and their length L controls the probability of
error for the whole algorithm. The probability decreases exponentially with L.
For practical instances of the problem, L = 64 makes the probability of error very
close to 0. Since 64 is the size of a machine word, it is reasonable to assume that
bitwise operations with bit strings of length 64 take constant time.

4. A data structure for the coloring operations. The coloring
operations are introduced by De�nition 6. There are various ways to implement
them, here we will present a randomized data structure achieving θ(1) time for
all the operations with linear additional processing.

Colors will be represented as bit strings (nonnegative integers) and pro-
ducing a new color will be implemented as generating a random integer. Also,
instead of maintaining directly the set S of colors of a vertex, we will maintain a

hash of the set de�ned as hash(S) =
⊕
si∈S

si. Here ⊕ is the exclusive-or (XOR) op-



276 Vladislav Haralampiev

eration. Later it will be shown that, if for two sets A and B hash(A) = hash(B),
then with high probability A = B.

It can be easily veri�ed that, for a color c, hash(S ∪ {c}) = hash(S) ⊕ c
and hash(S \ {c}) = hash(S) ⊕ c. This means we only need to support one
operation � XOR the subtree of a given vertex (in the DFS-tree) by a given value.
Additionally, all GetColors operations will be after the operations which modify
the color sets, so we can process the modi�cation operations o�ine (process them
all at once during one traversal of the tree). Algorithm 2 presents the operations
in pseudocode.

Algorithm 2 Implementation of coloring operations

1: function XorSubtree(vr, color)
2: operations_for_vertex[vr] ← operations_for_vertex[vr] ⊕ color

3:

4: function ExecuteOperations(vr, accumulated_hash ← 0)
5: accumulated_hash ← accumulated_hash ⊕ operations_for_vertex[vr]
6: color_set[vr] ← accumulated_hash
7: for all followers nxt of vr do
8: ExecuteOperations(nxt, accumulated_hash)

9:

10: function AddColorToSubtree(vr, color)
11: XorSubtree(vr, color)

12: function RemoveColorFromSubtree(vr, color)
13: XorSubtree(vr, color)

14: function GetColors(vr)
15: return color_set[vr]

Theorem 2. Let A and B be two unequal sets of colors, in which each

color is chosen independently at random from a universe of size T . Then, the

probability that hash(A) 6= hash(B) is at least 1− 1

T
.

P r o o f. Assume A consists of the colors {a1, a1, ..., an} and B consists of
the colors {b1, b2, ..., bm}. We know that A 6= B, which means there exists a color
present in A but not in B, or vice versa. Without loss of generality, let a1 ∈ A,
a1 6∈ B. hash(A) = hash(B) ⇐⇒

⊕
i∈{1...n}

ai =
⊕

i∈{1...m}

bi. If we XOR both sides



A Simple Randomized 3-Edge Connected Component Algorithm 277

with
⊕

i∈{2...n}

ai, we get a1 =
⊕

i∈{1...m}

bi ⊕
⊕

i∈{2...n}

ai. This means there is only one

possible value of a1 (assuming the other elements of A and B are �xed) such that
hash(A) = hash(B). We choose a1 independently at random, so the probability

to choose this speci�c value for a1 is
1

T
. Now it follows that hash(A) 6= hash(B)

with probability 1− 1

T
. �

The previous theorem shows that the probability for a single hash equality
check to give wrong result is at most 1/T . Clearly, if, for every pair of vertices
in the graph, this check gives correct result, we will be able to correctly partition
the graph into 3-edge connected components. Let us denote by n the number of
vertices. Assuming the size T of the universe of colors is large enough, we can

approximate the probability of all checks to be correct by

(
1− 1

T

)n2

≈ e
−n2

T .

For example, if we use 64-bit type for storing the hash and the number of vertices

is 1000000, then the probability of error is approximately 1−e−
10000002

264 ≈ 5 ·10−8.

5. Conclusion. In this paper, a simple randomized algorithm for �nd-
ing the 3-edge connected components of a graph is presented. The algorithm
builds upon existing work for compactly describing cut pairs using random cir-
culations. It �nds a small subset of all cut pairs which gives enough information
for partitioning the graph into 3-edge connected components. The partitioning is
done with the help of the introduced coloring operations, for which one possible
randomized implementation is given.

REFERENCES

[1] Ahuja R. K., T. L. Magnanti, J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. New York, Prentice-Hall, Inc., Upper Saddle
River, 1993.

[2] Corcoran J. N., U. Schneider, H.-B. Sch�uttler. Perfect Stochastic
Summation in High Order Feynman Graph Expansions. International Jour-
nal of Modern Physics C, 17 (2006), No 11, 1527�1549.

[3] Cormen T. H., C. E. Leiserson, R. L. Rivest, C. Stein. Introduction
to Algorithms. Third Edition. The MIT Press, 2009.



278 Vladislav Haralampiev

[4] Dehne F., M. Langston, X. Luo, S. Pitre, P. Shaw, Y. Zhang. The
Cluster Editing Problem: Implementations and Experiments. In: H. L. Bod-
laender, M. A. Langston (eds). Parameterized and Exact Computation.
IWPEC 2006. Lecture Notes in Computer Science, 4169 (2006), 13�24.

[5] Galil Z., G. F. Italiano. Reducing Edge Connectivity to Vertex Connec-
tivity. ACM SIGACT News, 22 (1991), No 1, 57�61.

[6] Hopcroft J. E., R. E. Tarjan. Dividing a Graph into Triconnected Com-
ponents. SIAM J. Comput., 2 (1973), No 3, 135�158.

[7] Nagamochi H., T. Ibaraki. A linear time algorithm for computing 3-
edge-connected components in a multigraph. Japan J. Indust. Appl. Math.,
9 (1992), 163�180.

[8] La Poutr�e J. A., J. van Leeuwen, M. H. Overmars. Maintenance
of 2- and 3-edge-connected components of graphs I. Discrete Mathematics,
114 (1993), No 1�3, 329�359.

[9] Pritchard D. Fast Distributed Computation of Cuts Via Random Cir-
culations. In: L. Aceto, I. Damg�ard, L. A. Goldberg, M. M. Halld�orsson,
A. Ing�olfsd�ottir, I. Walukiewicz (eds). Automata, Languages and Program-
ming. ICALP 2008. Lecture Notes in Computer Science, 5125 (2008),
145�160.

[10] Taoka S., T. Watanabe, K. Onaga. A Linear-Time Algorithm for Com-
puting All 3-Edge-Connected Components of a Multigraph. IEICE TRANS-

ACTIONS on Fundamentals of Electronics, Communications and Computer

Sciences, E75-A (1992), No 3, 410�424.

Appendix A. Here we brie�y describe the method from [9] for generat-
ing labels for the edges of a 2-edge connected graph such that, for any two edges
e1 and e2, label(e1) = label(e2) ⇐⇒ e1 and e2 form a cut pair.

A circulation is a network �ow of zero value [1]. It can be de�ned over any
�eld. For us it is convenient to work with the remainders modulo 2. They naturally
correspond to bits and addition corresponds to XOR. Pick two edges e1 and e2
which form a cut pair, as in Fig. 6. Let us call A and B the two parts in which
the graph splits if we remove e1 and e2. In any circulation flow(e1) = −flow(e2),
because these edges are the only ones connecting A with B and in a circulation
any �ow going from A to B should eventually return again to A. We work with



A Simple Randomized 3-Edge Connected Component Algorithm 279

Fig. 6. {e1, e2} is a cut pair separating the subgraphs A and B

remainders modulo 2, for which it holds that x = −x, so flow(e2) = −flow(e2).
This means flow(e1) = flow(e2). We have proven that if two edges form a cut
pair, the �ow through them in any circulation is equal. Assuming the edges do
not form a cut pair, in [9] it is shown that the probability for the �ow through

them to be equal is 1
2 . If we concatenate the �ows through an edge in L random

circulations, we get a L-bit label for the edge, such that, with high probability,
two edges form a cut pair i� their labels are equal (the probability of error is 1

2L
).

Setting L = 64 should be enough for most situations.

Algorithm 3 Initialization of edge labels (for clarity, we denote them as �ow)

1: visited ← [NO for vr ∈ V]
2:

3: function InitEdgeLabels(vr, parent ← None, label_length)
4: visited[vr] ← ON_PATH
5: �ow_at_vertex ← 0
6: for all (vr, u) ∈ E, u 6= parent do
7: if visited[u] = ON_PATH then
8: �ow[(vr, u)] ← RandomBitStringOfLength(label_length)
9: else

10: if visited[u] = NO then
11: InitEdgeLabels(u, vr, label_length)

12: �ow_at_edge ← �ow_at_edge ⊕ �ow[(vr, u)]

13: if parent 6= None then
14: �ow[(parent, vr)] ← �ow_at_edge

15: visited[vr] ← YES

What is left is to show an easy way to build random circulations. This
can be accomplished by modi�ed depth-�rst search. Intuitively, if we �x the DFS-
tree of a graph, the back edges act as �basis� for the space of circulations. We can



280 Vladislav Haralampiev

randomly set the �ow through the back edges and this will uniquely determine the
�ow through the tree edges. Algorithm 3 illustrates this procedure in pseudocode.
The random circulations it creates are used to initialize the edge labels.

As a side note, if the input graph is not 2-edge connected, then, with high
probability, edges with zero label are bridges (and do not form cut pairs with each
other). If we know the bridges in the graph, partitioning it into 2-edge connected
components can be done using coloring operations. In this way, we don't need an
additional algorithm for splitting the graph into 2-edge connected components,
before �nding the 3-edge connected components.

Vladislav Haralampiev

Faculty of Mathematics and Informatics

St Kliment Ohridski University of So�a

5, James Bourchier Blvd

1164 So�a, Bulgaria

e-mail: vladislav.haralampiev@gmail.com

Received 23 April 2018

Final Accepted 25 July 2018


