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Abstract. In this paper we present Lagrange's1 theorem of 1767 for com-
puting a bound on the values of the positive roots of polynomials, along with
its interesting history and a short proof of it dating back to 1842. Since the
bound obtained by Lagrange's theorem is of linear complexity, in the sequel
it is called �Lagrange Linear�, or LL for short.

Despite its average good performance, LL is endowed with the weaknesses
inherent in all bounds with linear complexity and, therefore, the values
obtained by it can be much bigger than those obtained by our own bound
�Local Max Quadratic�, or LMQ for short.

To level the playing �eld, we incorporate Lagrange's theorem into our
LMQ and we present the new bound �Lagrange Quadratic�, or LQ for short,
the quadratic complexity version of LL. It turns out that LQ is one of the
most e�cient bounds available since, at best, the values obtained by it are
half of those obtained by LMQ.

Empirical results indicate that when LQ replaces LMQ in the Vincent�
Akritas�Strzebo�nski Continued Fractions (VAS-CF) real root isolation method,
the latter becomes measurably slower for some classes of polynomials.

ACM Computing Classi�cation System (1998): F.2.0, G.1.5, I.1.2.
Key words: Langrange's theorem of 1767, positive roots of polynomials, bounds on the values

of the positive roots, real root isolation.
1Joseph-Louis Lagrange, born Giuseppe Lodovico Lagrangia (25 January 1736 � 10 April

1813): Italian mathematician.
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1. Introduction. In our earlier attempts to develop the most e�cient
bound on the values of the positive roots of polynomials f ∈ Z [x] � for use
in the VAS-CF real root isolation method [2], [3] � we totally missed Lagrange's
theorem of 1767 on the topic ([12], p. 553), [13], [14], ([16], pp. 2�3), ([19], VIII,
p. 32). This omission was due to the fact that Lagrange's theorem was almost
totally forgotten, having being overshadowed by what is often encountered in the
literature as the Lagrange-Maclaurin theorem ([17], Theorem 11.1, p. 48), [22],
([23], p. 150, Exercise 6.2.3(i)).

The Lagrange-Maclaurin theorem also appears without any name associ-
ated with it; see for example the books by Burnside and Panton ([4], pp. 180�181)
and Dickson ([7], p. 57), or the paper by Grinstein ([8], formula III.A). We present
the �culprit� following Obreschko� ([17], p. 48).

Theorem 1. (Lagrange-Maclaurin) Consider the polynomial

(1) f(x) = xn + an−1x
n−1 + · · ·+ a0,

and let α be the largest absolute value of the negative coe�cients. If an−m is the

�rst negative coe�cient in (1), then an upper bound, b, on the real roots of f(x)
is given by

(2) b = 1 + m
√
α.

P r o o f. See Obreschko� ([17], p. 48). �
Historical Note: When α > 1, the bound computed above (2) is certainly an
improvement over the bound

(3) b = 1 + α.

which Lagrange ([19], VIII, p. 32) � and later Grinstein ([8], formula III:B:1) �
believed to be due to Maclaurin. However, according to the excellent work by J.
Stedall, ([20], pp. 69, 160) Michel Rolle was the �rst to introduce the latter (3)
in his Trait�e d'algebre, published in 1690 in Paris. Namely, Rolle stated without
proof that an upper bound on the real roots of a polynomial can be found if:2

�One selects from the negative terms of the equation that with the
greatest coe�cient; one ignores the sign and the unknown in this term,
one divides the result by the coe�cient of the �rst term, and to the
quotient one adds unity, or a positive number greater than unity.�

2The translation from French is by Stedall.
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For a proof that the last equation (3) gives an upper bound on the values of the
real roots of the polynomial (1), in the case of cubics, Stedall ([20], pp. 69, 160)
refers to Reyneau (1708) and Maclaurin (1748).

Therefore, one can say with certainty that Maclaurin was involved in the
development of (3). Moreover, in case the polynomial (1) has only one negative
coe�cient then, as we will see in Lemma 1 below, Lagrange's bound (4) reduces
to simply m

√
α. Hence, the bound (2) in Theorem 1 can be considered a combina-

tion of the theorems by Lagrange and by (Rolle, which was partially proved by)
Maclaurin, and voil�a the name Lagrange-Maclaurin.

We believe Theorem 1 forced Lagrange's own theorem of 1767 into obliv-
ion, because in the 19th century it was much more convenient to compute just one
radical instead of the many more analogous computations required by the latter
(see Theorem 2 below). The only time Lagrange's theorem appeared in the 20th
century3 � in the form of a formula � was in Grinstein's excellent review paper
([8], p. 613, formula IV:B).

The appearance of a recent paper on the subject [6] veri�es our point.
Indeed, looking at Theorem 3 of that paper, we see that the author � by requiring
that the polynomial has �at least two negative coe�cients� � has unnecessarily
altered Lagrange's theorem and restricted its range of applications. What is even
worse is the fact that, despite the otherwise very interesting �Literature review�
section of the paper, the author missed � among other sources � the very short,
clever and elegant proof by Pury dating back to 1842 [18]. In this respect see also
Batra's proof who reduced �the technicalities in the Collins-Krandick proof to a
single line, bringing out the essence of the proof� [5].

Outline of the paper. In Section 2 we present Lagrange's original the-
orem as found in Mignotte and �Stef�anescu's paper ([16], pp. 2�3), along with
Pury's proof of 1842 [18]. Based on this theorem we derive the algorithm �La-
grange Linear�, or LL, which is of linear complexity and, hence, unsuitable for use
in the VAS-CF real root isolation method.

In Section 3 we present our quadratic complexity method �Local Max
Quadratic�, or LMQ [1], [22]. This algorithm is currently used � in various Com-
puter Algebra Systems4 � in the implementation, among other things, of the
VAS-CF real root isolation method.

In Section 4 we incorporate Langrange's theorem into LMQ and come up
with the algorithm �Lagrange Quadratic�, or LQ. It turns out that � at its best �

3Besides the references to it by Ostrowski as explicitly cited in [6].
4
Mathematica, Sympy and Xcas to name a few. Sage on the other hand uses min(FL, LM), the

minimum of our linear complexity methods �First Lambda� and �Local Max.�
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the values obtained by LQ are half of those obtained by LMQ, making it thus one
of the best bounds available. Tests run on a large number of random (monic)
polynomials indicate that it is hard to tell whether LMQ or LQ will compute the
better bound.

In Section 5 we present two tables comparing the bounds obtained by LMQ,
LL and LQ. Additionally, in three tables, we time the performance of the VAS-CF

real root isolation method using LMQ, LQ and LMQ+LQ, where the latter uses the
minimum value obtained by the two bounds.

Finally, in Section 6 we present our conclusions.

2. Lagrange's Theorem and the Linear Algorithm LL. On
p. 553 of his original paper [12]5 � or on p. 32 of his famous book [14], which
constitutes the 8th volume of Œuvres de Lagrange, edited by Joseph Alfred Serret
[19] � Lagrange only states that given the polynomial F , where

−µyr−m − νyr−n − ω̄yr−p − · · ·

are its �negative terms�, an upper bound for the real roots of F is given by the
sum of the �rst two largest of the quantities

m
√
µ, n
√
ν, p
√
ω̄, . . .

or �a number larger than this sum�.
Due to the importance of Lagrange's statement we also present a modern

version of it as (partially) found in Mignotte and �Stef�anescu's paper ([16], p. 3).
Note that Lagrange gave no proof of his statement; he simply mentioned

that it is similar to the proof of (3) and moved on.
In 1842, Lagrange's statement appeared as an exercise to be proved in the

section �Th�eor�emes �a d�emontrer. Probl�emes� of Nouvelles annales de math�ema-

tiques, 1e s�erie, tome 1 (1842), p. 57�59, Exercise 6.
The proof � given by A. Pury [18] � appeared the very same year in

Nouvelles annales de math�ematiques, 1e s�erie, tome 1 (1842), p. 243�244 under
the title �Solution du probl�eme 6. Limite de Lagrange.�

Theorem 2. (Lagrange, 1767) Let f, as in (1), be a non constant monic polyno-

mial of degree n over R and let an−j : j ∈ J be the set of its negative coe�cients.

Then an upper bound for the positive real roots of f is given by the sum of the

largest and the second largest members in the set

{
j

√
|an−j | : j ∈ J

}
. That is,

(4) b = max
{an−i,an−k∈J}

( i
√
|−an−i|+ k

√
|−an−k|).

5Presented to the Berlin Academy on April 20, 1769.
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P r o o f. (Pury, 1842) The worst possible case to consider is obviously
when, starting from the second term, all the coe�cients of the polynomial are
negative, of the form

(5) xn−A1x
n−1−A2x

n−2−A3x
n−3−· · ·−Apx

n−p−· · ·−Arx
n−r−· · ·−An = 0,

from which we conclude that
(6)

1 =
A1

x
+

(√
A2

x

)2

+

(
3
√
A3

x

)3

+· · ·+

(
p
√
Ap

x

)p

+· · ·+
(

r
√
Ar

x

)r

+· · ·+
(

n
√
An

x

)n

.

Let p
√
Ap and

r
√
Ar be the two largest quantities of the sequence A1,

√
A2,

3
√
A3,

. . . , n
√
An and let p

√
Ap = λ r

√
Ar, where λ is initially considered greater than 1.

Setting x = p
√
Ap + r

√
Ar = (λ+1) r

√
Ar the fraction

p
√
Ap

x
becomes equal

to
λ

λ+ 1
, whereas all the other fractions in (6) become smaller than

1

λ+ 1
�since

r
√
Ar is greater than any of the other quantities A1,

√
A2,

3
√
A3, etc. Hence, if we

replace x by this value, the right-hand side of (6) becomes smaller than the sum
(7)

1

1 + λ
+

1

(1 + λ)2
+

1

(1 + λ)3
+· · ·+ 1

(1 + λ)p
+· · ·+ 1

(1 + λ)n
+

(
λ

1 + λ

)p

− 1

(1 + λ)p
,

and, since λ+ 1 > 1, the sum in (7) is smaller than
1

λ
+

(
λ

1 + λ

)p

− 1

(1 + λ)p
.

However, for the trinomial, we have

1

λ
+

(
λ

1 + λ

)p

− 1

(1 + λ)p
< 1,

which is easily seen from
λp − 1

(1 + λ)p
<
λ− 1

λ
if we divide both sides by λ− 1.

Therefore, replacing x by the sum p
√
Ap + r

√
Aq the �rst part of equation

(6) becomes �a fortiori greater than the second part, and the same is true for
equation (5).

In case λ = 1, the sum in equation (7) is replaced by the geometric series

1

2
+

1

22
+ · · ·+ 1

2n
= 1− 1

2n
< 1. �

Note in Theorem 2 that if the set J is empty then the polynomial f has
no positive root and 0 is a bound. If, on the other hand, the set J is a singleton,
then a bound is computed by the following lemma.
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Lemma 1. Let f , as in (1), be a non constant monic polynomial of degree n and

let α be the absolute value of the single negative coe�cient in the term of degree

n−m. Then an upper bound on the positive root of f is given by6

(8) b = m
√
α.

P r o o f. For x > m
√
α we have

f ≥ xn − an−mxn−m = xn−m(xm − an−m) > 0. �

Therefore, for the class of polynomials with one negative coe�cient, La-
grange's bound (4), in Theorem 2, reduces to (8), which is better than the
Lagrange-Maclaurin bound (2).

The requirement in Theorem 2 � and in Lemma 1 � that the polynomial
be monic makes the proof easier but is not actually needed for its algorithmic
implementation. As a matter of fact it helps the presentation in Section 2 � and
in subsequent sections � if the polynomial is not monic. However, the leading
coe�cient has to be positive.

Algorithmic Implementation of Lagrange's Theorem. Consider
the polynomial

(9) f(x) = anx
n + an−1x

n−1 + · · ·+ a0,

with an ≥ 1. To compute a bound on the positive roots of f using Lagrange's
theorem we proceed as follows:

� each negative coe�cient an−j of f is �paired� with the leading coe�cient an

and the radical j

√
−an−j

an
is computed,

� the bound is the sum of the largest two radicals.

An algorithmic description of the above is presented in Algorithm 1 below.

Obviously, LL is of linear complexity and, as discussed elsewhere [1], [22],
it cannot be used in the VAS-CF real root isolation method [2], [3]. The following
example explains the reason why.

6See also �Stef�anescu's work [21].
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Input: A univariate polynomial f(x) = anx
n + an−1x

n−1 + · · ·+ a0 ∈ Z[x], with an > 0.
Output: An upper bound on the values of the positive roots of f(x).

// form cl, the coefficients list

1 cl ← [an, an−1, an−2, . . . , a0]; /* list enumeration begins with 0 */

// form ncl, the negative coefficients list of pairs [
an−j

an
, j].

2 ncl← [for 1 ≤ j ≤ n if cl[j] < 0 form the pair [
cl[j]

an
, j]]; /* OK to contain just one pair */

3 if ncl = [] then return 0;
; /* no positive roots */

// form rl, the list of radicals

4 rl← [for each pair [
cl[j]

an
, j] ∈ ncl evaluate

j

√
−
cl[j]

an
]; /* OK to contain just one radical */

5 rl← sort(rl); /* sort rl in increasing order */

6 return sum(rl[−2 : ]); /* the sum of the largest two values. */

Algorithm 1. LL(f, x), Lagrange's Linear algorithm.

Example 1. Consider the third degree polynomials

f1 = x3 + 1000000x2 − 1000000x− 1,

f2 = x3 − x2 + 10000000x− 10000000,

where, for both polynomials, the only positive root is 1. The bounds obtained by
Lagrange's theorem are

LL(f1, x) = 1001.00,

LL(f2, x) = 216.44.

To see why these bounds are unacceptable, we run ahead of ourselves and present
the bounds obtained with: (a) LMQ, the �Local Max Quadratic� method, described
in Section 3, and (b) LQ, the �Lagrange Quadratic� method, described in Section 4.

The bounds obtained by our LMQ are

LMQ(f1, x) = 2.00,

LMQ(f2, x) = 2.00,

whereas, the bounds obtained by the newly developed method LQ are

LQ(f1, x) = 1.001,

LQ(f2, x) = 1.00.
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From Example 1, it becomes clear that we need to develop LQ, the quadratic
complexity version of LL. However, to do so we need a thorough understanding
of the LMQ algorithm, in which we will embed Lagrange's theorem.

3. Our Local Max Quadratic Algorithm LMQ. LMQ is one of the
best algorithms with quadratic complexity for computing bounds on the values
of positives roots of polynomials.7 It is an implementation of Theorem 2 in [3]
� which is the same as Theorem 5 in [1] � and has been used to improve the
performance of the VAS-CF real root isolation method.

LMQ is a max-min algorithm, which � given f as in (9) � computes the
bound as follows:8

� each negative coe�cient an−i of the polynomial is �paired� with each one of
the preceding positive coe�cients an−j , (i > j) and the minimum is taken
of all the radicals of the form

(10) i−j

√
−an−i
an−j

2tn−j

,

where the exponent tn−j is explained below, and next

� the maximum of all those minimums is taken as the estimate of the bound.

In other words we have:

(11) b = max
{an−i<0}

min
{an−j>0:i>j}

i−j

√
−an−i
an−j

2tn−j

.

What is unusual about our method is the exponent tn−j in the expres-
sion 2tn−j in (11); tn−j counts the number of times the corresponding positive

coe�cient an−j has been �paired� with various negative coe�cients to produce a
minimum. That is, t is a list of length n + 1, and it is through this list that we
will embed Lagrange's theorem in LMQ (in Section 4), to develop LQ.

By comparison, Hong's method [9] � which is equivalent to KQ, Kiouste-
lidis' quadratic complexity method [1], [10] � uses a formula almost identical
to (11). The di�erence is that KQ uses the expression 2i−j instead of 2tn−j and,

7It should be noted that time is not of importance in our case since, in the VAS-CF real root
isolation method, these bounds are estimated before a translation of complexity at least O(n2)
is executed.

8To make the transition to LQ easier, we present here a slight variation of the original version
of LMQ [22].
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hence, the bounds obtained by it are greater than or equal to those obtained by
LMQ.9 Details can be found elsewhere [1].

An algorithmic description of our method LMQ is presented in Algorithm 2.

Input: A univariate polynomial f(x) = anx
n + an−1x

n−1 + · · ·+ a0 ∈ Z[x], with an > 0.
Output: An upper bound on the values of the positive roots of f(x).

// at least one sign variation (v ≥ 1)?
1 cl ← [a0, a1, a2, . . . , an−1, an]; /* list of length n+ 1 */

2 v ← number of sign variations in cl;
3 if v = 0 then return 0;
4 ;

// initialize variables

5 b← 0;
6 m← length(cl);
7 t← [1, 1, 1, . . . , 1, 1]; /* list of length n+ 1 */

// loop within loop

99 for i = m− 1 to 1 step −1 do

1111 if cl(i− 1) < 0 then

12 index← m;
13 tmp← +∞;
14 for j = m to i+ 1 step −1 do

1616 if cl(j − 1) > 0 then

17 q ← (2t[j−1](−
cl[i− 1]

cl[j − 1]
))1/(j−i);

1919 if q < tmp then

20 tmp← q;
21 index← j − 1;

22 end

23 end

24 end

25 t[index]← t[index] + 1;
2727 if b < tmp then

28 b← tmp;
29 end

30 end

31 end

32 return b

Algorithm 2. LMQ(f, x), the �Local Max Quadratic� algorithm.

4. Lagrange's Quadratic Algorithm LQ. As we saw in the previous
section, the Local Max Quadratic algorithm, LMQ, uses the list t of length n+ 1,
in which initially all entries are 1. The entry tn−j = t[n − j] corresponds to the
coe�cient an−j of the polynomial and if an−j > 0, then t[n−j] counts the number
of times an−j has been �paired� with various negative coe�cients an−i, with i > j,

9However, Hong's bound is better suited for the study of the complexity analysis of the
VAS-CF real root isolation method. Indeed, using Hong's bound an improvement was achieved
on the time bounds of VAS-CF [15].
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to produce a minimum value.

In LQ we use the list (of lists) t of length n+1, in which initially each entry
is [ ], the empty list. Again, the list tn−j = t[n− j] corresponds to the coe�cient
an−j of the polynomial but now, if an−j > 0, then the list t[n − j] contains all
the minimum values produced by an−j > 0 when �paired� with various negative
coe�cients an−i, with i > j.

Clearly, for any given an−j > 0, the list t[n− j] may be the empty list, or
a singleton, or it may contain more than one value.

Therefore, the Lagrange Quadratic algorithm LQ is a variation of LMQ and
� given f as in (9) � the bound is computed as follows:

� each negative coe�cient an−i of the polynomial is �paired� with each one

the preceding positive coe�cients an−j , (i > j) and the minimum is taken
of all the radicals of the form

(12) i−j

√
−an−i
an−j

as indicated in Lagrange's theorem (Theorem 2); each minimum is then
appended to the corresponding list t[n− j],

� we initialize a temporary bound to 0, and then for each non-empty list t[n−j]
we proceed as follows: (a) if the list t[n − j] has a single element, and its
value is greater than the temporary bound, then it (the single element)
becomes the temporary bound and, (b) if the list t[n− j] has more than one
element, we sort them in increasing order and take the sum of the largest
two; if the sum is greater than the temporary bound, then it (the sum)
becomes the temporary bound; at the end the temporary bound is taken as
the estimate of the bound.

An algorithmic description of Lagrange's quadratic method LQ is presented in
Algorithm ?? below.

The following theorem establishes a relation between the bounds com-
puted by the quadratic algorithms LMQ and LQ.

Theorem 3. Let bLMQ and bLQ denote bounds computed using, respectively, al-

gorithm LMQ and LQ. Then we have

(13)
bLMQ

2
≤ bLQ < 2 · bLMQ.
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Input: A univariate polynomial f(x) = anx
n + an−1x

n−1 + · · ·+ a0 ∈ Z[x], with an > 0.
Output: An upper bound on the values of the positive roots of f(x).

// at least one sign variation (v ≥ 1)?
1 cl ← [a0, a1, a2, . . . , an−1, an]; /* list of length n+ 1 */

2 v ← number of sign variations in cl;
3 if v = 0 then return 0;
4 ;
5 if v = 1 then return value computed by Lemma 1 ;
6 ;

// initialize variables

7 m← length(cl);
8 t← [ [ ], [ ], [ ], . . . , [ ], [ ] ]; /* list of length n+ 1 */

// main loop, which is almost identical to the one in LMQ

1010 for j = 0 to m− 1 step 1 do

1212 if cl(j) < 0 then

13 b← +∞;
14 index← m;
15 for k = j + 1 to m− 1 step 1 do

1717 if cl(k) > 0 then

18 q ← (−
cl[j]

cl[k]
)1/(k−j);

2020 if q < b then
21 b← q;
22 index← k;

23 end

24 end

25 end

26 t[index]← append(t[index], b);

27 end

28 end

// secondary loop to process the list of lists t
29 b← 0;
3131 for j = 0 to m− 1 step 1 do

32 tp← t[j];
3434 if tp 6= [] then
3636 if length(tp) = 1 then

37 tp← tp[0]; /* enumeration starts from 0 */

38 else

39 tp← sort(tp); /* sort tp in increasing order */

40 tp← sum(tp[−2 :]); /* sum of the largest two values */

41 end

4343 if tp > b then
44 b← tp;
45 end

46 end

47 end

48 return b

Algorithm 3. LQ(f, x), Lagrange's Quadratic Algorithm.
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P r o o f. The value of tn−j in (11) counts the number of times an=j has
been �paired� with various negative coe�cients an=k , with j < k ≤ i, to produce
a minimum value. Hence tn−j ≤ i− j. Therefore,

bLMQ = max
{an−i<0}

min
{an−j>0 : i>j}

i−j

√
−an−i
an−j

2tn−j

= max
{an−i<0}

min
{an−j>0 : i>j}

i−j
√

2tn−j i−j

√
−an−i
an−j

≤ max
{an−i<0}

min
{an−j>0 : i>j}

2 i−j

√
−an−i
an−j

.

Since for all an−i < 0 we have

bLQ ≥ min
{an−j>0 : i>j}

i−j

√
−an−i
an−j

,

it follows that bLMQ ≤ 2 · bLQ.
On the other hand, let an−j0 > 0 be such that bLQ is obtained as the sum

of the largest two radicals in the list tn−j0 = t[n− j0]. Then,

(14) bLQ ≤ i1−j0

√
−an−ii
an−j0

+ i2−j0

√
−an−i2
an−j0

where, for k = 1, 2, we hav

ik−j0

√
−an−ik
an−j0

= min
{an−j>0 : ik>j}

ik−j

√
−an−ik
an−j

.

If t[n− j0] is a singleton the inequality (14) is obtained by taking i1 = i2.
10 Since

in (11) tn−j ≥ 1, it follows that
i−j
√

2tn−j > 1. Hence, for k = 1, 2, we have

ik−j0

√
−an−ik
an−j0

≤ max
{an−i<0}

min
{an−j>0 : i>j}

i−j

√
−an−i
an−j

< max
{an−i<0}

min
{an−j>0 : i>j}

i−j
√

2tn−j i−j

√
−an−i
an−j

= bLMQ.

Therefore bLQ < 2 · bLMQ. �

10In which case (14) is a strict inequality.



Lagrange's Bound on the Values of the Positive Roots of Polynomials. . . 239

In other words, the advantage of LQ over LMQ is only in the strict inequality
on the right vs. the weak inequality on the left. The second inequality in (13) is
approached for xn − x− 1, when n→∞.

To demonstrate Theorem 3 we run several experiments with a large num-
ber of random polynomials and random monic polynomials and the results were
quite interesting. Namely, we found out that:

� for random polynomials LMQ gives � on average � better bounds than LQ,
whereas,

� for random monic polynomials LQ gives � on average � better bounds than
LMQ.

In Tables 1 and 2 that follow, each result is based on a sample of 1000 polynomials.
As in Theorem 3, bLMQ (bLQ) denote bounds computed using the algorithm LMQ

(LQ). The column marked Mean gives the geometric mean of the ratio bLMQ/bLQ.
The columns marked Min and Max give the minimal and the maximal value of
the ratio bLMQ/bLQ. The column marked LMQ better (resp. LQ better) gives the
number of polynomials (out of 1000) for which bLMQ < bLQ (resp. bLMQ < bLQ).

In Table 1 we used dense polynomials of degree n with uniformly dis-
tributed randomly generated coe�cients with s decimal digits.

Table 1. For random polynomials LMQ gives better bounds. Notice that the mean value
of the ratio bLMQ/bLQ is (almost) always smaller than 1.

Bounds computed by LMQ and LQ

n s Mean Min Max LMQ better LQ better

10 3 1.04568 0.611428 2. 492 507
10 100 1.0495 0.577506 2. 486 514

100 3 0.941566 0.650993 2. 644 356
100 100 0.938535 0.637656 2. 666 334

1000 3 0.933784 0.67628 2. 663 337
1000 100 0.920236 0.644298 2. 697 303

In Table 2 we used dense monic polynomials of degree n with uniformly
distributed randomly generated coe�cients with s decimal digits.

5. Empirical results. In this section we compare the bounds obtained
by the three methods LMQ, LL and LQ described above. Along with the bounds we
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Table 2. For random monic polynomials LQ gives better bounds. Notice that the mean
value of the ratio bLMQ/bLQ is always greater than 1.

Bounds computed by LMQ and LQ

n s Mean Min Max LMQ better LQ better

10 3 1.4382 0.59386 2. 215 784
10 100 1.48369 0.577506 2. 211 788

100 3 1.34263 0.652529 2. 323 677
100 100 1.39559 0.646699 2. 316 684

1000 3 1.35768 0.670705 2. 329 671
1000 100 1.35888 0.664029 2. 343 657

also compute numerically the maximum positive root, MaxRoot, of each poly-
nomial. Moreover, in Subsection 5 we time the performance of the VAS-CF real
root isolation method, implemented with LMQ, LQ and LMQ+LQ = min(LMQ, LQ) to
compute the bounds.

In Table 3 we follow the standard practice and use as benchmark the
Laguerre11, Chebyshev (�rst12 kind), Wilkinson13 and Mignotte14 polynomials,
of degrees {10, 100, 1000}. Notice how well both LL and LQ are doing.

In Table 4 we test two extreme-case polynomials. The weakness of LL

is revealed by the �rst polynomial. This table shows clearly the inequalities of
Theorem 3.

VAS-CF implemented with LMQ, LQ and LMQ+LQ. In this subsection we
time the performance of the VAS-CF real root isolation method, implemented
with three di�erent quadratic algorithms for computing bounds: LMQ, LQ and
LMQ+LQ = min(LMQ, LQ).

The tests were run on a Linux virtual machine with 8 GB of RAM on a
laptop with Intel(R) Core(TM) i7-4800MQ CPU @ 2.70GHz processor (it has 4
physical/8 virtual cores, but the implementation of VAS-CF is sequential). The

11recursively de�ned as: L0(x) = 1, L1(x) = 1−x, and Ln+1(x) =
1

n+ 1
((2n+1−x)Ln(x)−

nLn−1(x))
12recursively de�ned as: T0(x) = 1, T1(x) = x, and Tn+1(x) = 2xTn(x)− Tn−1(x)

13de�ned as: W (x) =
n∏

i=1

(x− i)

14de�ned as: Mn(x) = xn − 2(5x− 1)2
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Table 3. Special Polynomials: 1. Laguerre (L10), 2. Laguerre (L100), 3. Laguerre (L1000),
4. Tchebyshev (T10), 5. Tchebyshev (T100), 6. Tchebyshev (T1000), 7. Wilkinson (W10),
8. Wilkinson (W100), 9. Wilkinson (W1000), 10. Mignotte (M10), 11. Mignotte (M100),

12. Mignotte (M1000)

Bounds

Polynomials LMQ LL LQ MaxRoot

1 200. 144.208 100. 29.9207
2 20000. 15393.3 10000. 374.984

3 2.0× 106 1.549 22× 106 1.0× 106 3943.25

4 2.23607 2.54083 1.58114 0.987688
5 7.07107 8.65267 5. 0.999877
6 22.3607 27.5232 15.8114 0.999999

7 110. 81.28 55. 10.
8 10100. 7792.13 5050. 100.

9 1.001× 106 775569. 500500. 1000.

10 1.77828 2.70246 1.63069 1.5763
11 1.04811 2.04768 1.04073 1.03618
12 1.00463 2.00462 1.00393 1.00348

Table 4. Extreme-case polynomials: 1.x3 + 10100x2 − 10100x− 1, 2.x100 − x− 1

Bounds

Polynomials LMQ LL LQ MaxRoot

1 2. 1.0× 1050 1. 1.
2 1.01396 2. 2. 1.00699.
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times are all in milliseconds.
In Table 5 we use the benchmark polynomials Laguerre, Chebyshev (�rst

kind), Wilkinson and Mignotte, of degrees {100, 500, 1000}. As we see, in most
cases, VAS-CF(LMQ) is measurably faster than VAS-CF(LQ).

Table 5. Special Polynomials: 1. Laguerre (L100), 2. Laguerre (L500), 3. Laguerre
(L1000), 4. Tchebyshev (T100), 5. Tchebyshev (T500), 6. Tchebyshev (T1000), 7. Wilkinson
(W100), 8. Wilkinson (W500), 9. Wilkinson (W1000), 10. Mignotte (M100), 11. Mignotte

(M500), 12. Mignotte (M1000)

Timing VAS-CF in ms

Degree VAS-CF(LMQ) VAS-CF(LQ) VAS-CF(LMQ+LQ)

100 56.991 52.992 44.993
500 200.00 153.933 100.00
1000 7675.83 9682.53 8061.78

100 26.997 18.997 12.998
500 700.894 948.856 727.888
1000 5828.11 8324.73 5922.1

100 6.998 7.999 6.999
500 855.87 876.866 886.866
1000 9976.48 10162.5 10214.4

100 5 3.999 3
500 54.991 47.993 43.993
1000 207.969 219.966 205.969

In Table 6 we test random polynomials of degrees {10, 100, 1000} and
coe�cient sizes {3, 100}. The entries are averages of 1000 runs.

In Table 7 we test random monic polynomials of degrees {10, 100, 1000}
and coe�cient sizes {3, 100}. The entries are averages of 1000 runs.

6. Conclusions. In this paper we have presented Lagrange's original
theorem of 1767 for computing upper bounds on the positive roots of polynomials
and have provided a simple, short proof to it by Pury, dating back to 1842.

The bounds computed by Lagrange's Linear complexity algorithm LL are,
on average, very good but the algorithm itself cannot be recommended for use in
the VAS-CF real root isolation method.

Based on our previous experience, we have developed LQ, the quadratic
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Table 6. Here again, as the degree of the polynomials gets bigger and bigger, VAS-CF(LMQ)
becomes measurably faster than VAS-CF(LQ).

Timing VAS-CF in ms

Degree Size VAS-CF(LMQ) VAS-CF(LQ) VAS-CF(LMQ+LQ)

10 3 0.036994 0.037994 0.036995
10 100 0.027996 0.026996 0.029995

100 3 2.42563 2.80457 2.6056
100 100 1.08084 1.3468 1.08184

1000 3 373.016 507.339 376.122
1000 100 146.753 271.506 147.312

Table 7. Contrary to expectations � founded on Table 2 � for random monic polyno-
mials, VAS-CF(LMQ) becomes measurably faster than VAS-CF(LQ), as the degree of the

polynomials get bigger and bigger.

Timing VAS-CF in ms

Degree Size VAS-CF(LMQ) VAS-CF(LQ) VAS-CF(LMQ+LQ)

10 3 0.040993 0.040994 0.040994
10 100 0.031995 0.032995 0.033995

100 3 2.49662 2.80557 2.53062
100 100 1.07584 1.39479 1.10283

1000 3 371.947 503.066 374.647
1000 100 152.933 297.876 154.951
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version of LL, by embedding Lagrange's theorem into our �Local Max Quadratic�
(LMQ) method.

The bounds computed by Lagrange's Quadratic complexity algorithm LQ,
are comparable to � and at best half of � those computed by LMQ.

Despite the overall very good performance of LQ, empirical results have
demonstrated that we have nothing to gain by implementing it in the VAS-CF

real root isolation method. However, as we have shown � both theoretically and
empirically � the combined method LQ+LMQ is today the best method to obtain a
bound on the values of the positive roots of polynomials. We plan to implement
this method in the future in a computer algebra package.
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