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Abstract. In this paper we consider additive circulant graph (ACG) codes
over F4 of length n ≥ 34 and we present some new results for the number of
these codes. The most important result is that there exists a unique ACG
code over F4 of length 36 and minimum weight 11.

1. Introduction. Additive self-orthogonal codes over Fq2 are objects
of interest because of their representation as a class of quantum error-correcting
codes [3]. Several papers (see [3, 5, 6]) were devoted to classifying or constructing
additive self-dual codes over F4. Additive self-dual codes over F9, F16 and F25

were classi�ed in [4]. Moreover, it was shown in [10] that certain vectors in some
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additive self-dual codes over F4 hold generalized t-designs as well as classical t-
designs with possibly repeated blocks. These facts motivate the construction of
additive self-dual codes over F4.

A naturally arising problem is to classify all nonequivalent codes of given
length and minimum weight. All additive self-dual codes over F4 of length n have
previously been classi�ed (up to equivalence) by Calderbank et al. [3] for n ≤ 5,
and by H�ohn [9] for n ≤ 7. Gaborit et al. [6] classi�ed all extremal codes of length
8, 9, 11, and 12. Gulliver and Kim [8] classi�ed many circulant and 4-circulant
codes of length n ≤ 27. Using graph representation, Danielsen and Parker [5]
gave a full classi�cation of the codes of length n ≤ 12. Varbanov [14] classi�ed
all extremal (optimal) codes of length 13 and 14, and constructed many extremal
codes of length 15 ≤ n ≤ 21. Further some constructive and classi�cation results
about additive codes from circulant graphs were obtained. Danielsen [4] gave
some results about these codes over F4, F9, F16 and F25. Varbanov [15] gave a
full classi�cation of codes over F4 for lengths 13 ≤ n ≤ 33 and some results for
34 ≤ n ≤ 36. This class of codes was also considered in [11]. The last known
results were published by Grassl and Harada [7]. They presented many obtained
results for codes over F4 for lengths 36 ≤ n ≤ 100.

The purpose of this paper is to present some new classi�cation results
about additive self-dual codes from circulant graphs, called additive circulant

graph (ACG) codes below. The paper is structured in the following way. Sec-
tion 2 contains basic de�nitions and preliminary results. In Section 3 we give
some notations about circulant codes and a short description of the algorithm
for constructing ACG codes. The last section contains the obtained classi�cation
results.

2. Preliminaries. Let F4 = GF (4) = {0, 1, ω, ω̄} where ω̄ = ω2 = 1+ω.
We recall some de�nitions on additive codes over F4 from [3, 6].

An additive code C over F4 of length n is an additive subgroup of Fn
4 . Such

a code C has 2k codewords for some 0 ≤ k ≤ 2n and we call C an (n, 2k) code.
It has a basis, consisting of k basis vectors; a generator matrix of C is a k × n
matrix with entries in F4 whose rows are a basis of C.

About additive codes, a natural inner product arising from the trace map
is used. The trace map Tr : F4 → F2 is given by Tr(x) = x + x2 (therefore
Tr(0) = Tr(1) = 0 and Tr(ω) = Tr(ω̄) = 1). The conjugate of x ∈ F4, denoted
x̄, is the following image: 0̄ = 0, 1̄ = 1, and ¯̄ω = ω.

Then the trace inner product of two vectors x = (x1, x2, . . . , xn), y =
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(y1, y2, . . . , yn) in Fn
4 is de�ned as

(1) x ? y =
n∑

i=1

Tr(xiȳi)

If C is an additive code, its dual code with respect to (1) is the code
C⊥ = {x ∈ Fn

4 |x ? c = 0 for all c ∈ C}. If C is an (n, 2k) code, then C⊥ is
an (n, 22n−k) code. A code C is called self-orthogonal (with respect to (1)) if
C ⊆ C⊥, and self-dual if C = C⊥. If C is self-dual, then C is an (n, 2n) code.

The weight of a codeword c ∈ C) is the number of nonzero entries of c.
The minimum weight d of a code C is the smallest weight among all nonzero
codewords of C. If C is an additive (n, 2k) code with minimum weight d then C
is an (n, 2k, d) code. A self-dual code C is called Type II if all codewords have
even weight; otherwise it is Type I. It is known that Type II codes of length n
exist only if n is even [6]. There is a bound on the minimum weight of an additive
self-dual code ([12], Theorem 33). If dI and dII are the minimum weights of
additive self-dual Type I and Type II codes, respectively, of length n > 1, then

dI ≤


2bn/6c+ 1, n ≡ 0 (mod 6);
2bn/6c+ 3, n ≡ 5 (mod 6);
2bn/6c+ 2, otherwise

(2)

dII ≤ 2bn/6c+ 2

Two additive codes C1 and C2 are equivalent if there is a map sending the
codewords of C1 onto the codewords of C2 where the map consists of a permutation
of coordinates, a scaling of coordinates by elements of F4, and a conjugation of
some of the coordinates.

A graph code is an additive self-dual code over F4 with generator matrix
G = Γ + ωI where I is the identity matrix and Γ is the adjacency matrix of a
simple undirected graph, which must be symmetric with 0's along the diagonal.

Example:

Γ =

 0 0 1
0 0 1
1 1 0

 , G =

 ω 0 1
0 ω 1
1 1 ω


Schlingemann [13] �rst proved (in terms of quantum stabilizer states) that

for any self-dual quantum code, there is an equivalent graph code. This means
that there is a one-to-one correspondence between the set of simple undirected
graphs and the set of additive self-dual codes over F4.



222 Zlatko Varbanov, Maya Hristova

3. Additive circulant graph (ACG) codes. A matrix B of the
form:

B =


b0 b1 . . . bn−2 bn−1

bn−1 b0 b1 . . . bn−2
. . . . . . . . . . . . . . .
b2 . . . bn−1 b0 b1
b1 b2 . . . bn−1 b0


is called a circulant matrix. The vector (b0, b1, . . . , bn−1) is called a generator

vector for the matrix B. An additive code with circulant generator matrix is
called circulant code (see [8]).

An additive circulant graph code is a code corresponding to a graph with
circulant adjacency matrix. Circulant graphs must be regular, i.e., all vertices
must have the same number of neighbours. The generator vector of such ma-
trix has the following property: bi = bn−i,∀ i = 1, . . . , n − 1, and b0 = ω.
Then, the entries in the generator matrix of ACG code depend on the coordi-
nates (b1, b2, . . . , bbn/2c) only. The search space can be restricted to the 2bn/2c

codes over F4 of length n corresponding to graphs with adjacency matrices that
are circulant.

In the current work we use the constructive algorithm described in detail in
[15]. Shortly, by this algorithm we construct ACG codes of length n and minimum
weight ≥ d using the property that a given generator vector (without its �rst
coordinate) is binary and it is symmetric with respect to its central coordinate.
We use a bit-wise representation of this binary vector and from an arbitrary step
it is easy to get the next possible vector (in lexicographical order) just increasing
by 1. After the construction part we use the special form of the generator matrix
of a graph code. This form makes it easier to determine the minimum weight,
since any codeword obtained as a linear combination of i rows of the generator
matrix has weight at least i (there is just one entry in any row and column that
is not 0 neither 1). Also, to calculate the weight of a given quaternary vector we
do not need to check every coordinate position of the vector (we use the bit-wise
representation of the codewords and faster algorithm [2]).

The description of the used algorithm is given below.

INPUT: positive integers n and d (1 < d < n).

OUTPUT: all possible ACG codes of length n with minimum weight ≥ d.
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Step 1. If n is even, take a binary vector g(0) = (g1, g2, . . . gn
2
) and

extend it to a vector g = (ω, g1, g2, . . . , gn
2
−1, gn

2
, gn

2
−1, . . . , g2, g1). If n is odd

then g(0) = (g1, g2, . . . gn−1
2

), and g = (ω, g1, g2, . . . , gn−1
2
, gn−1

2
, . . . , g2, g1)

Step 2. Construct a circulant matrix G (a generator matrix of an ACG
code) with generator vector g.

Step 3. Compute all linear combinations of 1, 2, ...., d− 1 rows of G and
check the weights. If all weights are ≥ d then the minimum distance is at least d.

Step 4. If g is not all-one vector then g = g + 1, Step 1.

END.

To obtain the nonequivalent codes among the constructed codes of given
length we use a transformation into linear binary codes shown in [3] (0→ 000, 1→
011, ω → 101, ω̄ → 110) and we check for equivalence the obtained binary images
by the program package Q-Extension [1].

4. Results. In this section we construct some ACG codes of lengths
34 ≤ n ≤ 39 with maximum d that the codes of this type can reach. Grassl and
Harada [7] performed a computer search of ACG codes over F4 of length up to
100 and obtained a lot of new results. One of their results is the constructed
code of length 36 with minimum weight d = 11. Here we prove the uniqueness of
this code. Also, we improve the lower bounds of the number of codes for lengths
34, 35, 37, 38, and 39. In [7] by exhaustive search was found that the maximum
possible minimum weight for ACG codes is: d = 10 (for n = 34, 35), d = 11 (for
n = 36, 37, 39), and d = 12 (for n = 38).

The obtained classi�cation results are the following:

• n = 34: For d = 10, we construct 295 nonequivalent codes.

• n = 35: For d = 10, we construct 81 nonequivalent codes.

• n = 36: In [7] a code with d = 11 was constructed. By exhaustive search
we construct 6 ACG codes with d = 11. Practically, in this case only the
exhaustive search is possible because of the small number of ACG codes
with these parameters. After check for equivalence, we obtain that all of
them are equivalent to the code constructed in [7]. Theferore, there exists
a unique ACG code of length 36 with minimum weight 11.

• n = 37: For d = 11, we construct 10 nonequivalent codes.
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• n = 38: For d = 12, we construct 7 nonequivalent codes. It is known [7]
that a code with these parameters can be only of Type II.

• n = 39: For d = 11, we construct 5 nonequivalent codes.

In Table 1 we summarize the obtained results.

Table 1. ACG codes of length 34 ≤ n ≤ 39 for the maximum reached d

n d old number new number Type I Type II

34 10 ≥ 144 [15] ≥ 295 ≥ 36 ≥ 259
35 10 ≥ 12 [15] ≥ 81 ≥ 81 �
36 11 ≥ 1 [7] 1 1 �
37 11 ≥ 1 [7] ≥ 10 ≥ 10 �
38 12 ≥ 1 [7] ≥ 7 � ≥ 7
39 11 ≥ 1 [7] ≥ 5 ≥ 5 �

5. Conclusions. Here we considered a special class of additive self-dual
codes over F4. By exhaustive computer search we proved the uniqueness of the
ACG code of length 36 with minimum weight 11. Also, we constructed new ACG
codes of length 34, 35, 37, 38 and 39 for the maximum reached minimum weight
and in this way we improved the lower bounds for the number of codes with these
parameters.
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