
Serdica J. Computing 11 (2017), No 1, 45–57 Serdica
Journal of Computing

Bulgarian Academy of Sciences
Institute of Mathematics and Informatics

FAST BITWISE IMPLEMENTATION OF THE ALGEBRAIC
NORMAL FORM TRANSFORM∗

Valentin Bakoev

Abstract. The representation of Boolean functions by their algebraic nor-
mal forms (ANFs) is very important for cryptography, coding theory and
other scientific areas. The ANFs are used in computing the algebraic de-
gree of S-boxes, some other cryptographic criteria and parameters of error-
correcting codes. Their applications require these criteria and parameters to
be computed by fast algorithms. Hence the corresponding ANFs should also
be obtained by fast algorithms. Here we continue our previous work on fast
computing of the ANFs of Boolean functions. We present and investigate
the full version of bitwise implementation of the ANF transform. When we
use a bitwise representation of Boolean functions in 64-bit computer words,
we obtain a time complexity of Θ((n + 44) . 2n−7) and a space complex-
ity of Θ(2n−6). The experimental results show that this implementation is
more than 25 times faster in comparison to the well-known byte-wise ANF
transform.

ACM Computing Classification System (1998): F.2.1, F.2.2.
Key words: Boolean function, algebraic normal form transform, Möbius (Moebius) transform,

Zhegalkin transform, positive polarity Reed–Muller transform, bitwise implementation.
*This work was partly supported by the Research Fund of the University of Veliko Turnovo

(Bulgaria) under Contract FSD-31-653-07/19.06.2017. Some of the results were announced at
the OCRT mini-symposium in the frames of the Mathematics Days in Sofia, 10–14 July, 2017.

46 Valentin Bakoev

1. Introduction.
The representation of a Boolean function by its Algebraic Normal Form

(ANF) is widely used in cryptography, coding theory (in Reed–Muller codes)
and many other scientific areas [3, 4]. Each of them involves Boolean functions
that satisfy specific criteria. Some of them are defined and computed by the
corresponding Algebraic Normal Forms (ANFs). For example, the algebraic degree
of a vectorial Boolean function (called also an S-box) is one of its most important
cryptographic parameters. Its computing operates with the coordinate Boolean
functions that form the S-box and is done in two main ways:

• by obtaining the ANFs of these functions and operating with them;

• by operating with the truth table vectors of the functions. In [6] some
algorithms of such type are developed, but their complexities are not de-
rived. This approach is quite faster than the first one for about the half of
all Boolean functions of n variables. However the numerical results do not
show the superiority of this approach for the remaining Boolean functions.
These results raise some questions, discussed at the end of this work.

In generation of S-boxes the computing of the algebraic degree should be
done as fast as possible (as well as the computing of the other cryptographic
criteria), in order to obtain more S-boxes and to select the best of them. This
requires fast computing of the ANFs of the coordinate Boolean functions. A need
for efficient computing of the ANFs or algebraic degrees of Boolean functions arises
in many other cases, for example in computing of other cryptographic parameters
of S-boxes [7], or those of pseudo-random generators in stream ciphers [4, 5], or
in computing of parameters of Reed–Muller codes [4], etc.

The algebraic degree of a Boolean function is defined by its special repre-
sentation—in the area of algebra and cryptology it is known as an algebraic
normal form. It is not well-known that this representation is considered in the
literature from other viewpoints and has many generalizations, for example:

• The classical (logical) one—this representation is known as Zhegalkin
polynomial. The famous Zhegalkin theorem states that for every Boolean
function there exists a unique polynomial form of it over the set of Boolean
functions {x . y, x ⊕ y, 1̃} (1̃ is the constant 1) [11, 14]. From an algebraic
point of view, analogous theorems are formulated and proven in [3, 4].

• Circuit theory, theory of switching functions, etc.—such a representa-
tion is known as: modulo-2 sum-of-products, Reed–Muller-canonical expan-
sion, positive polarity Reed–Muller form, etc. [10, 13].

Fast Bitwise Implementation of the ANF Transform 47

The computing of these representations for a given Boolean function can
be done in different ways [3, 4, 13]. The fastest of them are based on multiplication
of a special transformation matrix and the truth table vector of the Boolean
function. This matrix is the same in the scientific areas mentioned above and so
the obtained algorithms and representations are equivalent. However, depending
on the area under consideration, they have different names: ANF Transform
(ANFT), fast Möbius (or Moebius) Transform, Zhegalkin Transform, Positive
Polarity Reed–Muller Transform (PPRMT), etc. Our experience convinced us
how important these facts are in searching papers by keywords.

The algorithm for performing the ANFT in its typical form (i. e., operating
on bytes, as Algorithm 1 on page 50) is well-known and is given in many sources.
However, its bitwise implementation is considered very seldom, for example in [8,
9]. In [8] J. Fuller paid special attention to the need for appropriate optimization
techniques which exploit the full processing power and considered some general
optimization issues. She discussed two naive version of the algorithm for ANF
transformation and commented on how to optimize their bitwise implementation.
J. Fuller used 32-bits computer words and a look-up table where the ANFs of
all Boolean functions of 3 variables were precomputed and stored. The code
of this algorithm in C language was given in Application C; some results for
comparison the running times were also shown. Another known source on the
topic is [9]. There A. Joux considered some general issues for optimization borne
by the recent microprocessors. The ANFT was represented in its usual (byte-
wise) form by Algorithm 9.6. Its bitwise implementation in C language was given
in Program 9.2. It also operated with 32-bits computer words, but it did not
use precomputed ANFs. Firstly the program performed the ANFT on whole
computer words (this part is analogous to the one in J. Fuller’s work). Thereafter
it performed the transform into the computer words—in a top-down manner, from
the largest to the smallest size of blocks, conversely to J. Fuller’s program. She
used left and right shifts, whereas A. Joux used left shifts only. Experimental
results about his Program 9.2 were not given.

In both sources [8, 9] the role of shifts and masks was not explained, the
correctness and complexity of the programs were not given. So it is not clear how
to rewrite them to run on 64-bit (or more bits) computer words.

In 1998 we developed an algorithm for computing the Zhegalkin transform
[12]. In 2008 we proposed another version of this algorithm (called PPRMT),
which is derived in a different way [1]. We also discussed its bitwise representation
and implementation, which can improve its time and space complexity. However,
this work stayed out of the attention of cryptographers and a reason for this may

48 Valentin Bakoev

have been its name, PPRMT.
This paper is a continuation of [1]. Here we present our full version of

the bitwise ANFT with comments about its implementation and correctness. In
Section 2 we give the necessary basic notions and offer some preliminary results—
a starting point for the next section. At the beginning of it we argue why a
bitwise implementation of the ANFT is possible. After that we use an example
with a Boolean function of three variables to explain the steps of the bitwise
performance of ANFT for the considered function (i. e., for one byte). Then we
extend and generalize the conclusions from the example for more variables. The
obtained program for performing of the ANFT has a general time complexity
of Θ((n + 44) . 2n−7) and a space complexity of Θ(2n−6) when we use a bitwise
representation of Boolean functions in 64-bit computer words. The code of the
program (in C language) and comments about its correctness are given at the
end of Section 3. The last section is devoted to the experimental results. Firstly
we discuss the conditions for testing and the parameters of the tests. Then the
experimental results are presented—they show that the bitwise ANFT is more
than 25 times faster in comparison to the usual byte-wise ANFT. Finally some
concluding remarks are given.

2. Basic notions and preliminary results.
Here we give the terms and notations usual for cryptography following

[4, 3]. We consider the field of two elements F2 = {0, 1} with two operations:
sum modulo 2 (XOR), denoted by x⊕ y, and multiplication (AND), denoted by
x . y or simply by xy, for x, y ∈ F2. The n-dimensional vector space over F2 is
Fn

2 and it includes all 2n binary vectors. For an arbitrary a = (a1, a2, . . . , an) ∈

Fn
2 , ā denotes the natural number ā =

n∑
i=1

ai . 2n−i and is often called a serial

number of the vector a. The binary representation of ā (0 ≤ ā ≤ 2n − 1) in
n bits determines the coordinates of a. The correspondence between a and ā is
a bijection. For a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) ∈ Fn

2 , we say that
”a lexicographically precedes b” and denote it by a ≺ b if ∃ k, 0 ≤ k < n, such
that ai = bi, for i ≤ k, and ak+1 < bk+1. The relation “≺”, defined over Fn

2 ,
gives a unique lexicographic (standard) order of the vectors of Fn

2 in the sequence
a0 = (0, 0, . . . , 0) ≺ a1 = (0, 0, . . . , 0, 1) ≺ · · · ≺ a2n−1 = (1, 1, . . . , 1) and so
ā0 = 0 < ā1 = 1 < · · · < ā2n−1 = 2n − 1.

A Boolean function of n variables (denoted usually by x1, x2, . . . , xn) is a
mapping f : Fn

2 → F2, i. e., f maps any binary input x = (x1, x2, . . . , xn) ∈ Fn
2 to

a single binary output y = f(x) ∈ F2. Any Boolean function f can be represented

Fast Bitwise Implementation of the ANF Transform 49

in a unique way by the vector of its functional values, called a Truth Table vector:
TT (f) = (f0, f1, . . . f2n−1), where fi = f(ai) and ai is the ith vector in the
lexicographic order of Fn

2 , for i = 0, 1, . . . , 2n − 1. When the TT (f) is considered
as a vector-column, it is denoted by [f]. The set of all Boolean functions of n
variables is denoted by Fn and its size is |Fn| = 22n .

Another unique representation of any Boolean function f ∈ Fn is by
algebraic normal form, which is a multivariate polynomial

f(x1, x2, . . . , xn) =
⊕
u∈Fn

2

aū x
u .(1)

Here u = (u1, u2, . . . , un) ∈ Fn
2 , aū ∈ {0, 1}, and xu means the monomial

xu1
1 xu2

2 . . . xun
n =

n∏
i=1

xui
i , where x0

i = 1 and x1
i = xi, for i = 1, 2, . . . n.

When f ∈ Fn and the TT (f) (with 2n values) is given, the values of the
coefficients a0, a1, . . . , a2n−1 can be computed by a fast algorithm, usually called
ANF transform. This algorithm is derived in different ways, but its versions are
similar to each other. The vector a = (a0, a1, . . . , a2n−1) obtained after ANFT is
denoted by Af , or by [Af] when it is considered as a vector-column.

In [12, 1] we developed an algorithm for fast computing of ANFT in two
different ways, based on the equalities with the transformation matrix, as in [10].
So, if f ∈ Fn and TT (f) = (f0, f1, . . . f2n−1), then:

[Af] = Mn . [f] , and [f] = M−1
n . [Af] over F2.

The matrix Mn is defined recursively, as well as by Kronecker product:

M1 =

(
1 0
1 1

)
, Mn =

(
Mn−1 On−1

Mn−1 Mn−1

)
, or Mn = M1 ⊗Mn−1 =

n⊗
i=1

M1,

where Mn−1 is the corresponding transformation matrix of dimension 2n−1×2n−1,
and On−1 is a 2n−1 × 2n−1 zero matrix. Furthermore Mn = M−1

n over F2 and
hence the forward and the inverse ANFT are performed in the same way—so we
consider only the forward ANFT. The pseudocode of our algorithm (referred here
as Algorithm 1) is given below. The elements of the array f are bytes and they
are numbered starting from 0. Every value of TT (f) is stored in a separate byte
as a Boolean value true or false. The result Af is obtained in the same array. The
precise estimation of the time complexity of Algorithm 1 is Θ(n . 2n−1), whereas
many authors give an estimation O(n.2n) (instead of Θ) for analogous algorithms.

50 Valentin Bakoev

Algorithm 1 ANF_Transform (f, n)

1: blocksize← 1
2: for step = 1 to n do
3: source← 0 {initial position of the first source block}
4: while source < 2n do
5: target← source + blocksize {initial position of the first target block}
6: for i = 0 to blocksize− 1 do
7: f [target + i]← f [target + i] XOR f [source + i]
8: end for
9: source← source + 2 ∗ blocksize {beginning of the next source block}

10: end while
11: blocksize← 2 ∗ blocksize
12: end for
13: return f

3. Fast implementation of the ANFT.
We note that an implementation of ANFT based on the bitwise represen-

tation of Boolean function is possible because:

1. The values of the vectors TT (f) and Af are zeros or ones, i. e., bits.

2. The sizes of the blocks XOR-ed to other blocks in Algorithm 1 are powers of
2, as well as the sizes of the computer words for representation of integers.
So the source and the target blocks occupy parts of a computer word or
adjacent computer words—their number is also a power of 2.

3. All necessary operations are available as fast processor instructions—shifts,
bitwise XOR, AND, etc.

We note that the well-known Walsh Transform is performed by a similar
algorithm. Condition 3 holds for it, whereas conditions 1 and 2 do not, since
XOR in condition 2 is replaced by addition of integers and so the resulting vec-
tor contains integers. That is why the Walsh Transform cannot have a bitwise
implementation.

The idea of a bitwise implementation of the ANFT was given in [1]. Firstly
we shall explain it in detail by an example.

Example 1. Let us consider the function f(x1, x2, x3) = (1, 0, 1, 1, 0, 1, 1, 0). The
steps of ANFT for f , performed by Algorithn 1, are illustrated as usually by its
butterfly (signal-flow) diagram in Figure 1.

Fast Bitwise Implementation of the ANF Transform 51

Fig. 1. The butterfly diagram for f(x1, x2, x3) = (1, 0, 1, 1, 0, 1, 1, 0)

The bitwise representation of f needs one byte, f = 10110110. We follow
the steps of Algorithm 1 and implement them in a bitwise manner. We form
a mask for each step, so that it has ones in the positions of the source bits
and zeros in the remaining (target) bits. For the first step we use the mask
m1 = 10101010 (its hexadecimal value is 0XAA)—the values and the operations
on each step are given in Table 1, where SHR means a right shift. The assignment

Table 1. Step-by-step bitwise ANFT for f(x1, x2, x3) = (1, 0, 1, 1, 0, 1, 1, 0)

Step Variables or operators Values or results
Input f 10110110
1.0 m1 10101010
1.1 temp = f AND m1 10100010
1.2 temp = temp SHR 1 01010001
1.3 f = f XOR temp 11100111
2.0 m2 11001100
2.1 temp = f AND m2 11000100
2.2 temp = temp SHR 2 00110001
2.3 f = f XOR temp 11010110
3.1 temp = f 11010110
3.2 temp = temp SHR 4 00001101
3.3 f = f XOR temp 11011011

Output Af = f 11011011

temp = f AND m1 moves the values of all source bits to the variable temp, so
temp = 10100010. A right-shift on temp by one bit (since the variable blocksize

52 Valentin Bakoev

in Algorithm 1 takes an initial value of 1) yields temp = 01010001. Thus in temp:
(1) the source-bits are slid to the positions of the target bits and (2) the places
of all source bits in temp are occupied by zeros. The third operation is f = f
XOR temp—thus the values from the source blocks are added modulo 2 to the
corresponding values of the target blocks, and the source bits are preserved. So,
after the first step f gets the value f = 11100111 (as f1 in Figure 1). In the second
step we use the mask m2 = 11001100 (i. e., 0XCC) and right-shift by two bits (the
variable blocksize in Algorithm 1 takes a value of 2 in the second step), the third
operation is the same. Analogously, in the third step the mask is m3 = 11110000
(i. e., 0XF0) and the right-shift is by four bits. This is the half of eight bits and
now we have one source block and one target block. So we can obtain the same
result in the last step without using the mask m3. Instead of temp = f AND m3,
we simply set temp = f . After the right shift on temp by four bits the result is
the same. The last operation is f = f XOR temp again. Thus we economize one
AND operation. Finally we obtain Af = (1, 1, 0, 1, 1, 0, 1, 1). Following Eq. (1),
the ANF of f is f(x1, x2, x3) = 1⊕ x3 ⊕ x2x3 ⊕ x1 ⊕ x1x2 ⊕ x1x2x3.

So, for any f ∈ F3, the bitwise ANFT performs the same steps and we
unify them in the following three operators in C language:

f^= (f & m1) >> 1 ; f^= (f & m2) >> 2 ; f^= f >> 4 ;

Hence, for any f ∈ F3, the bitwise ANFT is performed by 4 + 4 + 3 = 11
operations.

For the functions f ∈ F4, the bitwise ANFT can be done in a similar
way. We have to double the masks (i. e., to concatenate each of them with itself)
to fill in 2 bytes—so they should be: m1 = 1010101010101010 (0XAAAA) and
m2 = 1100110011001100 (0XCCCC). For the third step the mask should be m3 =
1111000011110000 (0XF0F0). For the last (fourth) step we do not need a mask
again. Analogously, for the functions f ∈ F5 we use four bytes, we double the
masks m1,m2,m3 and add a new mask m4 = 0XFF00FF00, and so on. For the
functions f ∈ F6 the masks and the steps are given in Listing 1. As we have
shown, when f ∈ Fn and 3 ≤ n ≤ 6, there are n steps. The first (n − 1) of
them are performed by four operations and the last one is performed by three
operations. So Af is obtained by 4n− 1 operations only. Thus we have described
the first case when the bitwise representation of f occupies one computer word of
1, 2, 4, 8 bytes. So the space complexity is the constant 1 and the time complexity
is linear: Θ(4n− 1).

The second case is when f ∈ Fn and n > 6. We use a bitwise represen-
tation of f as an array of 2n−6 computer words of size 26 = 64 bits. So the space
complexity is Θ(2n−6). The bitwise ANFT performs two main steps:

Fast Bitwise Implementation of the ANF Transform 53

Step 1. Bitwise ANFT on each computer word, as was described above. Since we
have 2 additional assignments (see Listing 1), we obtain exactly 4.6−1+2 =
25 operations for one computer word. We have 2n−6 computer words and
so on this step Θ(25 . 2n−6) operations are performed.

Step 2. The usual ANFT (as in Algorithm 1), but with bitwise XORs, performed
on whole computer words. The number of operations is Θ((n − 6) . 2n−7)
on this step.

Hence, for f ∈ Fn and n > 6, the total time complexity of the bitwise
ANFT is

Θ(25 . 2n−6) + Θ((n− 6) . 2n−7) = Θ((n + 44) . 2n−7) .

The correctness of the bitwise ANFT follows from the notes at the begin-
ning of this section and also from the correctness of Algorithm 1, since the bitwise
ANFT does the same, but in an optimized way. Its code in C language is shown
below.

Listing 1. The C code of the bitwise ANFT
typedef unsigned long long u l l ;
const u l l m1= 0XAAAAAAAAAAAAAAAA,

m2= 0XCCCCCCCCCCCCCCCC,
m3= 0XF0F0F0F0F0F0F0F0 ,
m4= 0XFF00FF00FF00FF00 ,
m5= 0XFFFF0000FFFF0000 ;

const int num_of_vars= 8 ; //number o f v a r i a b l e s
const int num_of_steps= num_of_vars − 6 ; // f o r Step (2) o f ANFT
const int num_of_comp_words= 1<<num_of_steps ; //=4 fo r 8 vars
u l l f [num_of_comp_words] ; // f o r r ep r e s en t a t i on o f the TT(f)

void ANF (u l l f []) {
// Step 1 − b i t w i s e ANF on computer words

for (int k= 0 ; k < num_of_comp_words ; k++) {
u l l temp= f [k] ;
temp ^= (temp & m1)>>1;
temp ^= (temp & m2)>>2;
temp ^= (temp & m3)>>4;
temp ^= (temp & m4)>>8;
temp ^= (temp & m5)>>16;
temp ^= temp>>32;
f [k]= temp ;

}

54 Valentin Bakoev

// Step 2
int b l o c k s i z e= 1 ;
for (int s tep= 1 ; s tep <= num_of_steps ; s tep++) {

int source= 0 ;
while (source < num_of_comp_words) {

int t a r g e t= source + b l o c k s i z e ;
for (int i= 0 ; i < b l o c k s i z e ; i++) {

f [t a r g e t + i] ^= f [source + i] ;
}
source += 2∗ b l o c k s i z e ;

}
b l o c k s i z e ∗= 2 ;

}
}

4. Experimental results and conclusions.
For the usual byte-wise implementation of ANFT (Algorithm 1) and the

bitwise ANFT (the implementation from Listing 1) we obtained time complexi-
ties of the same type, Θ(n . 2n). The difference between them is in the constants,
hidden in the Θ-notation. To compare the real time complexities of both imple-
mentations we conduct a sequence of tests at the following conditions:

1. Hardware parameters—Intel Pentium CPU G4400, 3.3 GHz, 4GB RAM,
Samsung SSD 650 120 GB.

2. Software parameters—Windows 10 OS and Code::Blocks 13.12 IDE. All pro-
grams are created as 32-bits console applications in C++, built in Release
mode and executed without Internet connection.

3. Methodology of testing:

• all tests are performed three times and their running times are taken
in average;

• for every test the obtained ANFs from the byte-wise ANFT and from
the bitwise ANFT are compared for matching;

• the times for file reading, for converting the input to array of bytes (for
the byte-wise ANFT), etc., are excluded;

• the following running times concern only the executions of the byte-
wise ANFT and the bitwise ANFT.

Fast Bitwise Implementation of the ANF Transform 55

For all 216 Boolean functions of 4 variables the running times of the tested
programs are very close to 0 seconds and they cannot be compared.

For all 232 Boolean functions of 5 variables and for 32-bits application,
the byte-wise ANFT runs in 313.032 seconds, whereas the bitwise ANFT runs in
3.772 seconds—it is about 83 times faster.

For the other tests we created 4 files with 106, 107, 108 and 109 integers,
randomly generated in 64-bit computer words. They were used as input data,
i. e., as truth table vectors of functions. The following results concern the largest
file, its size is ≈14 GB. The running times of both implementations are given in
Table 2. The experimental results show that the bitwise ANFT is at least 20

Table 2. Experimental results about the executions of the byte-wise ANFT
and the bitwise ANFT

Running times in seconds for:
Number of variables 6 8 10 12 14 16
Number of functions 109 109/4 109/16 109/64 109/256 109/1024

Byte-wise ANFT 170.804 213.741 249.073 285.577 322.185 362.497
Bitwise ANFT 5.032 8.147 9.605 11.356 12.252 12.763

Ratio 33.944:1 26.237:1 25.931:1 25.148:1 26.297:1 28.462:1

times faster than the byte-wise ANFT for smaller input files and this ratio grows
when the file size increases. As Table 2 shows, the bitwise ANFT is more than 25
times faster than the byte-wise ANFT for the largest test file. We consider that
it is worth to built the same programs as 64-bit applications and to repeat the
tests, although they need many hours of work. The next possible goal – a parallel
implementation of the bitwise ANFT and tests with it – is already achieved in [2].
Comparing the results obtained here (for example, milliseconds for computing the
ANF of one function) with these in [2], the reader can choose easily when to use
a parallel version instead of a serial (non-parallel) version and vice versa.

Finally, as we mentioned at the beginning of this work, we comment on
the numerical results from Section 4 of [6]. There the authors write: “For n =
13; 14 we have not enough memory in our computer to obtain the ANF” (here
n is the number of variables). This section (Table 2) and the results from [2]
show why this result is very questionable for us. Obviously the implementation of
the ANFT in [6] is not efficient enough and hence the comparison results are not
realistic. So the necessity of future investigations, estimations, comparisons, etc.,
between both approaches for computing the algebraic degree of S-boxes becomes
evident.

56 Valentin Bakoev

REFERENCES

[1] Bakoev V., K. Manev. Fast computing of the positive polarity Reed–
Muller transform over GF(2) and GF(3). In: Proc. of the XI Intern. Work-
shop on Algebraic and Combinatorial Coding Theory (ACCT), Pamporovo,
Bulgaria, 2008, 13–21.

[2] Bikov D., I. Bouyukliev. Parallel Fast Möbius (Reed–Muller) Transform
and its Implementation with CUDA on GPUs. In: PASCO 2017, Proc. of the
Intern. Workshop on Parallel Symbolic Computation, Kaiserslautern, Ger-
many, 2017, 5:1–5:6.

[3] Canteaut A. Lecture notes on Cryptographic Boolean Functions. Inria,
Paris, France, 2016.

[4] Carlet C. Boolean Functions for Cryptography and Error Correcting
Codes. In: Crama Y., P. L. Hammer (eds). Boolean Models and Methods in
Mathematics, Computer Science, and Engineering. Cambridge Univ. Press,
2010, 257–397.

[5] Carlet C. Vectorial Boolean Functions for Cryptography. In: Crama Y.,
P. L. Hammer (eds). Boolean Models and Methods in Mathematics, Com-
puter Science, and Engineering. Cambridge Univ. Press, 2010, 398–469.

[6] Climent J.-J., F. Garcı́a, V. Requena. The degree of a Boolean func-
tion and some algebraic properties of its support. In: Data Management and
Security, WIT Press, 2013, 25–36.

[7] Çalik Ç. Computing Cryptographic Properties of Boolean Functions from
the Algebraic Normal Form Representation. PhD thesis, Middle East Tech-
nical University, Ankara, Turkey, 2013.

[8] Fuller J. Analysis of affine equivalent Boolean functions for cryptography.
PhD thesis, Queensland University of Technology, Australia, 2003.

[9] Joux A. Algorithmic Cryptanalysis. Chapman & Hall/CRC Cryptography
and Network Security, 2012.

[10] Harking B. Efficient algorithm for canonical Reed–Muller expansions of
Boolean functions. IEE Proc. Comput. Digit. Tech., 137 (1990), No 5, 366–
370.

Fast Bitwise Implementation of the ANF Transform 57

[11] Manev K. Introduction to Discrete Mathematics. KLMN, Sofia, Bulgaria,
2007 (in Bulgarian).

[12] Manev K., V. Bakoev. Algorithms for performing the Zhegalkin transfor-
mation. In: Mathematics and education in mathematics. Proc. of the XXVII
Spring Conf. of the Union of Bulgarian Mathematicians (Pleven, Bulgaria,
April 9–11, 1998), Sofia, 1998, 229–233.

[13] Porwik P. Efficient calculation of the Reed–Muller form by means of the
Walsh transform. Intern. Journal Appl. Math. Comput. Sci., 12 (2002), No 4,
571–579.

[14] Yablonski S. Introduction to Discrete Mathematics. Vysshaia Shkola,
Moscow, 2003 (in Russian).

Valentin Bakoev
Faculty of Mathematics and Informatics
University of Veliko Turnovo
Veliko Turnovo, Bulgaria
e-mail: v.bakoev@uni-vt.bg

Received August 31, 2017
Final Accepted October 4, 2017

