
Serdica J. Computing 11 (2017), No 3–4, 199–224 Serdica
Journal of Computing

Bulgarian Academy of Sciences
Institute of Mathematics and Informatics

DESIGN AND DEVELOPMENT OF METADATA

EDITORS: DATA-CENTRIC AND USER-CENTRIC

APPROACHES

Pavel Boytchev

ABSTRACT. This paper presents the design and the development of two

metadata editors for the RAGE project. The work is based on two

conceptually different approaches. One of the editors follows a data-

centric approach, while the other follows a user-centric one. Discussed are

the design challenges, the internal structure and a comparison of both

metadata editors.

1. Introduction. The EU Horizon 2020 Framework Programme for

Research and Innovation spans over a period of seven years and is focused on

“taking great ideas from the lab to the market” [1]. One of the projects funded

by Horizon 2020 is RAGE — Realising an Applied Gaming Ecosystem [2]. The

goal of this project is to support applied gaming industry by developing

gaming modules, called software assets or just assets. These modules

implement pedagogical functions, like capturing and assessing users and their

learning via applied games [3]. The RAGE software assets contain a software

ACM Computing Classification System (1998): H.5.2, H.3.5, J.1, D.2.8.

Key words: metadata, metadata editor, metadata meta-editor.

200 Pavel Boytchev

core, implementing the functionality of the asset, as well as a rich set of

complementary content (tutorials, examples, methodologies, etc.).

All assets are described by additional data, called metadata. These

metadata follow a metadata model developed specifically for RAGE [4].

Currently the model envisions a significant amount of metadata to be collected

for each asset. These metadata are used not only to describe the asset, but also

to classify it and provide a convenient way for searching and filtering.

In order to programmatically analyse and process these metadata, they

must be presented in a fixed format. However, due to the amount of metadata

for an asset, it is not feasible for a human to work directly with this format —

users would need a metadata editor, which is a software tool for presenting

and manipulating metadata for people.

There are several approaches for making a metadata editor, depending

on the goals, the target users and the actual metadata. Two of these

approaches are used in the RAGE project. One of them is data-centric — i. e.,

the most important element is the metadata and all other elements, including

the user, are adjusted to accomplish more effective metadata processing. This

is the first approach used to make a metadata editor. The resulting software is

called RAGE Metadata Editor and details about it are included in Section 2.

The other approach is user-centric. This approach considers the user as

the most important element and all other elements are processed in a way to

make the user’s experience more comfortable and confusion-free. This is the

other approach used to make a metadata editor for RAGE. To distinguish it

from the previous editor, the second one is named RAGE Metadata Wizard.

Details about it are presented in Section 3.

2. The data-centric approach. The RAGE Metadata Editor is

software for editing metadata. Formally, it is a metadata meta-editor for

RAGE assets, packages and other entities. It is designed to simplify the user

interface visually and to adhere to some flexibility in metadata structure.

The RAGE asset metadata entry form is split into several tabs, which use

standard web controls for user input — text boxes, list boxes, buttons and

links. The visual appearance of the form is customizable through widgets and

CSS styling.

 Design and Development of Metadata Editors … 201

Internally, the meta-editor collects descriptions of the metadata from

several schema files by recognizing several XML Schema structures. Then it

dynamically generates a specific metadata editor for a given metadata set. The

generated user interface depends on the structure of the metadata and the

collected descriptions. The interface uses customizable widgets to present

appropriate visual layouts for different metadata. When the editing is

completed, the editor performs basic verification of the metadata and converts

it back into the same format as the input metadata.

The concept of generating a metadata editor from a metadata schema

is not new. MDEdit is an example of such editor [5]. Although it uses the same

general concept as the RAGE meta-editor, two implementation aspects make

it different: (1) MDEdit does not handle nested structures, which are required

for RAGE metadata; and (2) the schema files are extended with new

formatting tags, while RAGE relies on unmodified XSD schemas. Another

editor is EUOSME (European Open Source Metadata Editor), which is not a

production tool, but a research outcome. Its interface is close to the RAGE

meta-editor, but it is tuned to geospatial and other metadata, which are not

part of the RAGE metadata model [6]. The OLR3-Editor is a promising editor,

which is described as able to accommodate any metadata description. The

downside is that it “assumes only local data, which are stored in the OLR3

database, and is not yet adapted for working with distributed data” [7, 26].

Finally, the ARCADE (Architecture for Reusable Courseware Authoring and

Delivery) Authoring Tool uses DTD and XSD content templates together with

XSL presentation templates. As a result, it generates XML/WML course

content and HTML course presentation [8]. This authoring tool supports

hierarchies and could be extended by additional export modules. The

ARCADE Authoring Tool is not immediately applicable to the context of

RAGE, as the two projects have different goals and domains.

2.1. Design principals. The design of the metadata editor follows

several core principles. The first one is visual simplicity. The editor hides the

internal hierarchy and complexity of the metadata representation. An XML

schema defines the metadata properties, relations and constraints. Some items,

however, are implemented in different ways and the editor hides these

differences. Thus it presents the metadata to the user in a unified way.

202 Pavel Boytchev

An example of such a difference in defining a metadata concept can be

seen in the cardinality of attributes, which is defined in the schema as

use="required", and the cardinality of tags, which is defined as

minOccurs="1".

Another example is the use of controlled vocabularies, which are

implemented in three ways:

 schema enumeration types <enumeration>;

 external taxonomies;

 xml:lang attributes.

Another core design principle is flexibility. It has significant impact on

the internal realization of the metadata editor, which is not bound to a single

fixed and predetermined metadata structure. Instead, it reads a schema about

the metadata and reconstructs the structure of the metadata.

Currently the RAGE asset schema is composed of private RAGE-specific

definitions enriched by industry-standard definitions from ADMS (Europeana’s

Asset Description Metadata Schema — a general schema for web-based assets

[9]), DCAT (Data Catalog Vocabulary — provides interoperability between

web-based data catalogues [10]), DCTERMS (Dublin Core Terms — a

vocabulary describing resources in a searchable way [11]), FOAF (Friend-of-a-

friend Schema — a semantic description of people and their social relations [12])

and RDF (Resource Description Framework — a specification for conceptual

description of metadata models for web resources [13]).

The third underlying principle is abstraction. The RAGE Metadata

editor is actually a meta-editor. It is not an editor by itself, but it builds a

metadata editor in real time as pictured in Fig. 1.

Fig. 1. Metadata meta-editor constructing a metadata editor in real time

 Design and Development of Metadata Editors … 203

The meta-editor is equipped with a collection of building blocks and

construction algorithms. The input data contain heterogeneous definitions of

metadata, like the metadata model itself, additional schemas, taxonomies and

styling preferences. Then the meta-editor constructs the façade (the graphical

user interface) of an editor, which is presented to the user.

The development of a metadata meta-editor, rather than merely a

metadata editor, is a complex task. The reason for working at a more-abstract

level is supported by the advantages that this level provides:

 Changes in the structure of metadata do not require changes in the

meta-editor. This provides the flexibility to adapt the metadata model

with minimal impact on other project software.

 If another metadata schema is given to the meta-editor, it will generate

another editor. In this way the initial intent of building an editor of asset

metadata is implemented as a general-purpose metadata editor that

could process other RAGE entities like asset packages and artefacts.

These benefits come at a price. The most notable disadvantage of

building a meta-editor is that it is a more complex piece of software and

requires significantly more efforts. To ease future improvements and

modifications of the meta-editor, it relies on widgets that encapsulate the

underlying variety of metadata definitions.

2.2. User interface. A typical initial view of a RAGE Metadata

Editor is shown in the left-hand snapshot in Fig. 2. The metadata elements are

grouped into several tabs, called Main, Classification, Status, License,

Solution and Usage. There is one additional tab, named All, which lists all

metadata in a single and rather long web page.

Each tab (except for tab All) contains metadata elements in a specific

category:

 Main — metadata about the general properties of the asset: title,

description, type, date, language, and access URL.

 Classification — metadata describing and classifying the asset: keywords

and taxonomy classifications.

 Status — metadata about the current version and development status, as

well as the asset’s relation to other assets: version, version notes, status,

204 Pavel Boytchev

maturity level, custom metadata, related assets and dependencies with

other assets.

 License — metadata about the people and organizations related to the

asset and its license: creator, publisher, owner, and license.

 Solution — metadata about the software and components that build up

the asset: description, requirements, implementation, design, engine,

platform, programming language, and tests.

 Usage — metadata about asset installation, customization, configuration

and usage.

Fig. 2. The opening page (left) and the metadata hierarchy (right)

 in the RAGE Editor

The last two categories contain metadata for artefacts (these are asset

resources, usually data or documentation files), which have their own set of

metadata, such as name, reference, type, creator, version, format, license, etc.

The metadata elements are positioned vertically from top to bottom

and follow the order and the nesting defined in the metadata schema. The

actual appearance of the elements depends on the browser. The hierarchy of

the metadata model is preserved in the editor. Nested metadata are

 Design and Development of Metadata Editors … 205

represented as nested blocks (see the right-hand snapshot in Fig. 2), which can

be expanded, collapsed, duplicated or deleted.

Most of the metadata use standard user interface control elements like

text boxes, list boxes and buttons. The only exception is the section for asset

classification, where users select concepts from taxonomies, relevant to the

asset. The visualization of the classification section is managed by another

RAGE tool — the Taxonomy Selector.

The role of the meta-editor is to embed this tool in the front page and

to manage the data transfer between itself and the tool. A snapshot of the

selector is shown in Fig. 3 with a fragment of the hierarchy of the ACM

Computing Classification System of Applied computing.

Fig. 3. The RAGE Taxonomy Selector

2.3. Metadata verification. The definition of assets’ metadata in

RAGE can happen through several data streams. The metadata meta-editor is

one of these streams. Other ways to get metadata are via direct upload of

assets or via harvesting. Thus the verification module, responsible for

verification of the metadata of each incoming or edited asset, is not a

component of the meta-editor. As a result, the meta-editor does not provide a

206 Pavel Boytchev

full verification, but it executes some rudimentary measures to partially verify

the metadata entered by the user. Some verification items are checked

explicitly, others are embedded in the user interface layout. Details are

provided in Table 1.

Table 1. Partial verification within the meta-editor

Item Description Means of verification

Metadata

structure

Asset metadata is a

complex hierarchical

structure conforming

to the metadata model.

The metadata model is encoded in the

metadata schema. The meta-editor

creates the user interface in accordance

with the schema. The location of

metadata in the model’s hierarchy is

enforced on the user interface.

Missing

metadata

Some metadata are

optional and may be

omitted, other are

compulsory.

There is a visual indication for

compulsory metadata — red asterisks

beside the labels. Additionally, when the

metadata are prepared for the server, the

user is notified about all missing

compulsory metadata.

Conditionally

missing

metadata

Some compulsory

metadata are inside an

optional block. They

are treated as

compulsory only if the

block is not otherwise

empty.

When the metadata are prepared for the

server, the editor explicitly checks all

compulsory metadata inside optional

metadata. This check is performed on

the full depth of the hierarchy. The user

is notified if there are missing

compulsory data in optional blocks.

Date

metadata

Some metadata hold

dates as strings.

The editor uses the HTML5 date input

type. If the browser supports it, then the

user will fill a predefined template for

the date or select a date interactively.

For older browsers the date metadata is

accepted as a string without verification

of the contents.

Schema-based

controlled

vocabulary

Some metadata may

have a value from a

fixed list of values

coded in the schema.

The editor generates a list box with the

available values, so the user cannot

select a value which is not allowed. The

only exception is the “empty” value,

which is identical for lack of data.

 Design and Development of Metadata Editors … 207

Taxonomy-

based

controlled

vocabulary

Some metadata may

have a value from the

RAGE taxonomy.

The editor generates a list box with the

available taxonomy concepts, so the user

cannot select an unknown concept. The

only exception is the “empty” value,

which is identical for lack of data. If

taxonomy is changed and some metadata

become invalid, they will be skipped by

the editor as if they were “empty” values.

Classification

taxonomy

The user may add a

classification to an

asset based on selected

concepts from selected

taxonomies.

The editor allows the user to select only

taxonomies which are compatible with

the taxonomy tools and exist in the

RAGE repository. When the user selects

concepts from these taxonomies, the

same verification as in the taxonomy-

based controlled vocabulary is used.

Apart from this partial verification, the meta-editor has a special

developer’s mode. This mode is used during the development of the meta-

editor while the actual asset metadata records are still incomplete or incorrect.

When the tool works in this mode, it provides additional internal details like

links between visual elements and the metadata schema, log files of metadata

properties, toggling metadata visibility, etc.

In addition to the developer’s mode, the meta-editor may be configured

at run-time. It may change the source of metadata (retrieving metadata from

the server or from a local file), the visual appearance (by using alternative

CSS files), or the metadata schema.

3. The User-centric approach. The second approach to

designing and implementing a metadata editor is focused on the user and the

user experience. This shifts both the design and the internal architecture of the

editor. While the data-centric meta-editor is targeted towards experienced

users, who know in detail the metadata model of RAGE assets, the user-

centric metadata editor is targeted to external asset developers, who are not

expected to be familiar with how the description of assets is presented in the

metadata records. As a result, the user-centric metadata editor is closer to a

wizard software, rather than to a general editor. Therefore this metadata

editor is named RAGE Asset Metadata Wizard.

208 Pavel Boytchev

Although both the meta-editor and the wizard are used to modify the same

record of metadata, they follow completely different approaches. This

significantly affects the implementation of both tools. The metadata wizard is

built from scratch. It does not use any internal components from the meta-

editor. The data processing is straightforward, because the interface and the

analysis of metadata are hardcoded in the source code. The wizard provides

several advantages over the data-centric meta-editor:

1. The wizard guides the asset developer through several steps of describing

the asset.

2. The interface is simple, easy to use and self-explanatory.

3. The effective use of the wizard requires no preliminary knowledge of

the metadata model.

4. There are indicators of how complete and accurate the asset

description is.

5. Verification is done as early and completely as possible.

The following subsections discuss some details of several of these

properties of the asset metadata wizard.

3.1. User interface. Considering the actual needs of the contents of

the asset description, the wizard shows only a minimal set of 20 compulsory

and 14 optional preselected metadata elements. The other elements are not

used by the wizard, but they are still accessible by the data-centric meta-

editor. The preselected metadata elements are semantically clustered into eight

groups. Each group forms a step of the asset description process — see table 2.

Table 2. Semantic grouping of metadata

Group / page Description Metadata elements

About General information about the asset, e.g.,

title, description, logo, access URL, etc.

5 compulsory

3 optional

Classification Information about target platforms,

programming language and applied

computing keywords.

1 compulsory

5 optional

Status Contains software version, version notes,

commit reference, development status.

3 compulsory

1 optional

 Design and Development of Metadata Editors … 209

License Details about licenses, conditions and

potential restrictions.

2 compulsory

1 optional

Contacts Information about owners and creators of

the asset.

2 compulsory

Resources Files or references of the software,

documentation, tests, etc.

3 compulsory

3 optional

Quality Information about the asset’s quality and

self-declaration form.

4 compulsory

1 optional

Submission Review of asset description completeness;

asset submission.

No metadata

elements

The appearance of the wizard is presented in Fig. 4. The snapshot on

the left is the first step containing the general asset description (group About);

the snapshot on the right is the 7
th
 step, which contains the self-declaration

form (group Quality).

Fig. 4. Snapshots from the RAGE Software Asset Wizard

All pages share the same visual style. The left-hand part contains the

sequence of steps (1 to 8), the top contain an explanation about the step. Each

metadata element in these pages has its own title and description, which are

used to reduce the user confusion about the purpose of the metadata.

210 Pavel Boytchev

3.2. Metadata verification. The top right corner of each page of the

wizard shows the percentage of completeness of the metadata on the page.

Showing an indicator of completeness is a major requirement for the wizard,

along with the requirement of guiding the user through a series of steps.

While asset developers describe their software assets in the wizard, it

continuously calculates and updates two scores. Apart from the completeness,

there is also a score for the asset quality. Both scores are recorded in the

metadata of the asset, but users cannot access and modify them directly.

The scoring algorithm of the wizard is designed to provide as much

detail and granulated verification as reasonably possible. Counting just the

presence of metadata and considering whether it is compulsory or optional

does not provide enough details — this would be just a rough indicator for

completeness.

Although the metadata completeness is shown in the top right corner

of each wizard’s page (see snapshots in Fig. 4), they are also summarized in

the last page of the wizard. Fig. 5 is a snapshot of a fragment of this page.

Fig. 5. The last step of the wizard with metadata completeness scores

The user describing an asset can see the completeness for each group of

metadata elements, as well as the asset’s overall completeness. If compulsory

elements are missing, then the wizard shows a warning.

 Design and Development of Metadata Editors … 211

The wizard fine-tunes the scoring by attaching verification rules for

each metadata element. Most of the rules inspect not only the presence or

absence of metadata, but also the contents of the metadata. Thus the wizard

uses an approach which could capture minor differences based on the actual

values. The list of defined rules is presented in Table 3.

Table 3. Verification rules in the wizard

No Rule Description

1 Default value
The metadata value is the same as the default value

provided automatically by the wizard.

2 “Others” value

The “others” option from a list of predefined values is

selected, so the actual value is to be provided as custom

metadata.

3 Common value
The value is too common (e.g., the name of the asset is

“RAGE asset”); a more specific value is expected.

4 Empty The value is missing or is an empty string.

5 Optional empty
The value of an optional metadata element is missing or is

an empty string.

6 Internal link
The value is a link, URL or URI to a local resource or

service within the RAGE server.

7 Length (N) The number of characters in the value is less than N.

8 Words (N) The number of words in the value is less than N.

9 Phrases (N) The number of comma-separated phrases is less than N.

10 Sentences (N) The number of sentences in the value is less than N.

11 No connection
No connection to the RAGE server, the value is checked

against cached taxonomies.

12 Version The version number not N.N, N.N.N or N.N.N.N.

13 Invalid date Either the date or its formatting is invalid.

14 Strange date The date is too old or it is in the future.

15
Custom

metadata (N)

The formatting of the custom metadata is not split into N

or more pairs name=value.

16 URL The URL is not correct.

17 Path The absolute or relative path is not correct.

18 Email The email address is not correct.

19 English The value does not appear to be a text in English.

20 Always This rule is always applicable — it is the termination rule.

212 Pavel Boytchev

Each metadata element has a maximal weight from 0 to 10, defining its

importance. The most important elements, like the asset title, have a weight

of 10. Less important ones have smaller weights, e.g. the development status

is 8, the programming language is 6, the asset date is 5. Depending on the

actual value, some metadata may have their weights reduced. This reduction

contributes to the fine granulation of completeness indicators.

The overall completeness score is the ratio of the total actual weight of

all metadata (from 0 to 236) and the total of their maximal weight. Each of

the steps in the wizard has its own completeness score, which is calculated in

the same way as the overall score, but it considers only the metadata from the

step. Table 4 shows the maximal score of each group and its contribution to

the overall score. The distribution of weights reflects the relative importance of

the metadata groups, thus the two most important fragments of the metadata

are the general descriptions of the asset and its resources.

Table 4. Weight of metadata groups.

Group
Maximal

Score
Contribution to
the total score

Number
of rules

About 62 26.3% 32
Classification 28 11.9% 8
Status 31 13.1% 11
License 25 10.6% 6
Contacts 25 10.6% 12
Resources 40 16.9% 10
Quality 25 10.6% 4
Submission - 7
Total 236 100% 90

There is a list of rules attached to each metadata element (the total

number of rules in each metadata group is shown in the last column of

Table 4). Each rule verifies a specific aspect of the metadata value and reduces

the weight of the element if the rule is not followed.

The score of a group of metadata elements �� and the score of the

whole asset metadata is calculated as:

� = ��1 − ��,���(�):��,�� ��

 Design and Development of Metadata Editors … 213

where �� is the maximal score of ��, ��,� is the reduction factor (penalty) from

the j-th rule for ��; and ��,� is true if the j-th rule is applicable or effective to

metadata element ��.

When the metadata value is checked, only the first failing reduction

rule is applied — this is the reason to use min(j) in the formula. For example,

the metadata element containing the asset’s keywords has a maximal initial

weight of 3. The value is evaluated by checking its rules from top to bottom,

stopping at the first applicable rule. The rules (see Table 3) for the asset’s

keywords are:

 Rule 4: If the value is empty, then the element’s score is 0

(i. e., 100% reduction)

 Rule 15: If the value contains less than 3 keywords, then the

score is 2.7 (i. e., 10% reduction)

 Rule 19: If the value looks like non-English text, then the

score is 1.5 (i. e., 50% reduction)

 Rule 20: If none of the above rules are activated, then the

score is 3 (i. e., no reduction at all).

Some metadata elements have only one or two rules, while other may

have up to six rules. Usually, the more complex or important element is, the

more sensitive it is to its content, and more rules are checked.

An example of such a sensitive element is the asset description. Its

rules are: rule 4 (the description is empty), rule 1 (the text is same as the

default value), rule 7 (is it less than 10 characters), rule 8 (is it less than 3

words), rule 10 (is it just one sentence); rule 19 (does it sound like a text in

English) and rule 20 (termination rule). Because the rules are embedded in the

code of the wizard, the source of the verification of the asset description looks

like this:

setPenalty(id,0);
if (stringEmpty(str)) return setPenalty(id,1.0);
if (stringDefault(str,'Empty RAGE Asset description.'))
 return setPenalty(id,0.5);
if (stringLength(str,30)) return setPenalty(id,0.2);
if (stringWords(str,10)) return setPenalty(id,0.1);
if (stringSentence(str)) return setPenalty(id,0.1);
if (stringEnglish(str)) return setPenalty(id,0.5);

214 Pavel Boytchev

where id is the metadata element, str is its value as a string, setPenalty

sets the reduction factor and the family of all stringXXX functions are the

software implementations of the rules. This code fragment also shows that the

reduction factors for the rules are not fixed, because the same rule for different

metadata elements may impose different impact.

Many of the rules are general checks, like number of words, out of

range dates, etc. Other rules are based on regular expressions, like rule 18 that

verifies syntactically an e-mail address /\S+@\S+\.\S+/ or rule 16 for

checking a resource URL (http|ftp|https)://[\\w-]+(\\.[\\w-

]+)+([\\w-.,@?^=%& :/~+#-]*[\\w@?^=%&;/~+#-])?.

The most complex implementation is that of Rule 19, which checks

whether some text sounds like English. It is neither feasible to have a huge

dictionary with English words, nor to access external linguistic services.

Instead, the wizard adopts its own statistical algorithm, which evaluates the

“Englishability” of some text by evaluating three factors: variety of character

pairs ��, frequency of character pairs �� and variety of characters ��,

� = 10�� + �� − �� = 10
|�����|

|����|�����
��

+
∑���,� − 15�

|����|���������
��

−
min(|����|, 26)

|�ℎ���|�����������
��

where |����| is the length of the text in characters, |�ℎ���| is the number of

distinct characters, |�����| is the number of distinct pairs of characters and

��,� is the frequency of specific pair of characters based on seven novels [14].

The calculated value � is a metric for the “Englishability” of the text.

If � > ����� for some limit, then the text is considered to be in English.

The formula is shaped experimentally by testing with different

metadata strings, harvested from existing asset descriptions. The most

influential and English-language-specific factor is the frequency component ��.

The other two factors are present to fine-tune the result, because the

frequency statistics for short texts does not provide adequate results.

For most elements the limit for E is set to 20, except for the keywords,

which have a limit of 14, because they may contain non-English text like

acronyms, abbreviations, product version numbers, etc. Table 5 shows the

calculated Englishability of two English texts and three texts which are not

judged as English.

 Design and Development of Metadata Editors … 215

Table 5. Englishability of some texts

Text
Englishability

English?
10�� �� �� �

Empty RAGE Asset 6.88 19.44 1.78 24.53 Yes

This asset is linked through a

game and it produces a visual

representation of player and

group performance statistics.

5.04 40.76 1.30 44.51 Yes

Asdf asdf asdfasdfasdf 1.82 16.36 5.50 12.68 No

Blah-blah 3.33 3.78 2.25 4.86 No

9c8w37nroc iuerh ncs8qe 4.35 5.91 2.09 8.17 No

3.3. New metadata elements. The RAGE Metadata wizard is

developed after the metadata editor. This changed some of the requirements

for the wizard with respect to the metadata. Namely, several new metadata

elements were suggested for inclusion in the wizard such as several types of

descriptions (short, long, general, technical), asset logo, asset artefacts, quality

assurance self-declaration form, etc.

Some of these elements were not present in the metadata model.

Therefore, if the data-centric meta-editor were modified to support these

elements, that would require a change in the metadata model itself. The

wizard, however, has its own metadata model, which is transparently

translated to and from the official RAGE metadata model. The difference

between the two models reflects the difference between what users see when

they use the data-centric and the user-centric editors.

The metadata elements that are dropped out of the wizard are easy to

handle. Optional elements are just ignored, while compulsory elements are

filled in with predefined stock values.

The new metadata elements are the actual challenge for the wizard,

because one of the initial requirements is that the wizard uses the same official

metadata model as the meta-editor. After collecting the revised requirements

for the wizard, it was possible to summarize the new metadata elements:

 Asset quality — the value is a numeric score, calculated upon a self-

declaration form.

216 Pavel Boytchev

 Detailed description — a new longer description of the asset.

 Promotional description — another variant of the description, which is

used in promotional materials.

 Technical description — description with technical details about the

platform, the software, the protocols, etc.

 Commit URL — a link to GitHub commit resource for the asset, useful

for the asset developers and asset users.

 Asset completeness — the automatically calculated completeness score is

stored in the metadata, so that other tools may access it directly.

 Coding style — a part of the self-declaration form, describing the coding

style of the asset software.

 Architectural conformance — describes the asset conformance to a set of

requirements and specification.

 Software testing — lists the types of internal tests passed successfully by

the asset.

 Self-declaration — indicates whether the self-declaration form is

completed.

The solution adopted in the wizard is to implement new metadata

elements as custom metadata elements. The official metadata model contains

custom, user-definable elements with the sole purpose of extending the model

with new metadata.

To make a seamless transition between the two metadata models, the

wizard automatically converts custom metadata from the official metadata

model to normal metadata elements in the wizard’s model and vice versa.

The only way for a user to understand that some metadata are stored

as custom metadata is to view the asset through the data-centric meta-editor,

because it shows the metadata as it is stored. The other option is to monitor

and inspect the actual XML data stream between the wizard and the server.

Except for these new metadata elements, there are other elements

which the wizard supports — these are resources (artefacts) such as data files,

source code, tutorials, documentation, configuration files, etc. Although these

resources are included in the RAGE metadata model, they are not

implemented in the meta-editor in the same way as in the wizard.

 Design and Development of Metadata Editors … 217

The incoming metadata have two indicators of each resource — its

type and its location section within the metadata model; however, sometimes

these two indicators conflict with each other. On the other hand, the wizard

supports only sections, but not the same set of sections as the metadata model.

To resolve this discrepancy, the wizard translates incoming types and sections

into wizard’s sections. Before the asset metadata are sent to the server, the

wizard’s sections are converted back into metadata sections. The conversion

mapping of resource types is shown in Fig. 6 — the incoming metadata is on

the left, the resulting outgoing metadata is on the right.

Fig. 6. Conversion of resource types

Finally, there is yet another new metadata element, which is also a

resource – the asset logo – an image, shown along with the asset title and

description both in the RAGE portal and in promotional materials. The

wizard handles the asset logo as a standalone metadata element. Internally, it

is represented as an image resource and is stored as one of the asset’s artefacts.

Incoming

metadata

Wizard

metadata

Type

Section

Source code

Implementation

Type Documentation

Type Tutorial

Section Design

Type Demonstration

Type Setup/config

Type Test

Section Tests

Type Data

Section Requirements

Source code

Documentation

Setup files

Test

Other resources

Section Usage

Outgoing

metadata

Type

Section

Source code

Implementation

Type Documentation

Type Tutorial

Section Design

Type Demonstration

Type Setup/config

Type Test

Section Tests

Type Data

Section Requirements

Section Usage

218 Pavel Boytchev

3.4. Web portal. When users access the metadata of software assets

developed by others, they are not allowed to modify them. The data-centric

meta-editor uses a single interface — when data modifications are forbidden,

the Save button is removed from the web form and all data entry elements are

set to read-only mode and are greyed out to indicate visually their mode.

The wizard assists the describing of the asset’s metadata, but the

interface is not tailored for the case when users just want to view the asset

metadata. To address the problem another tool is developed — the metadata

viewer.

Fig. 7. The RAGE Metadata Viewer

The viewer extracts the metadata of a software asset and arranges

them in a structured page as shown in Fig. 7. This interface is suitable for a

quick overview of an asset, because its metadata are presented in a more

 Design and Development of Metadata Editors … 219

compact style; usually they fit in a page or two. Additionally, the interface is

printer-friendly and the asset description could be printed as a hard copy of

the asset dossier.

The metadata viewer shows only the metadata which are processed by

the wizard. To see the full metadata, the user must use the meta-editor.

Although the purpose of the viewer is to show the metadata, it is also

the intermediate layer between the front-end asset manager and the asset

wizard — see Fig. 8. Asset users browse and search all assets in the repository

within the asset manager. When they click on a selected asset, it is opened in

the asset viewer. Then the users can inspect the asset description and

download it if they wish to incorporate it in their game. However, if the users

are the developers of this asset or if they have sufficient write permissions,

they can further open it in the wizard to edit it. When finished editing the

asset, they automatically return to the viewer to review the changes.

Fig. 8. The viewer as an intermediate layer between the asset manager and the wizard

The first two tools – the asset manager and the asset viewer – are

available to all RAGE users. The third tool, the asset wizard, is only available

to asset developers.

4. Comparison of the two approaches. The first working

prototype of the meta-editor was developed in early 2016. Its purpose is to edit

Asset Manager

Lists all assets

Asset Viewer

Shows one asset

Asset Wizard

Edits one asset

Viewing Editing

Reviewing

220 Pavel Boytchev

the asset metadata by exposing the full complexity of the metadata model. An

internal review in 2017 revealed that asset developers outside the RAGE

consortium might find it difficult to use the data-centric meta-editor, as they

are not familiar with the metadata mode structure, nor are they expected to.

After a short but intensive design phase, the RAGE Metadata Wizard

was developed in March and April 2017. Although it has the same purpose —

to edit asset metadata — its approach and implementation are conceptually

different. Instead of being data-centric like the meta-editor, the wizard is

designed as a user-centric tool. It is not possible to compare the two tools in

terms of better or worse, because they both have their own specific advantages

and disadvantages.

For low-level work (internal asset developers and RAGE developers)

the data-centric meta-editor might be more appropriate, because it shows the

metadata as they are — both their contents and their hierarchy. For high-level

work (external asset developers and RAGE users) the user-centric wizard is

more suitable, because it hides the complexity of the metadata and presents

them in a comprehensive way. A side-by-side comparison of the meta-editor

and the wizard is presented in the following table 5.

Table 5. Comparison of data-centric and user-centric metadata editors

Criteria Data-centric

Meta-editor

User-centric

wizard

Developer’s perspective

Implementation efforts High Moderate

Development time An year A month

Supporting and upgrading

effort

No effort for changes

in the metadata model

Significant effort for

changes beyond that

Moderate effort

Performance Slower, data pass

several transitions

Faster, processing is

computationally simple

User interface Generated in real-time Prebuilt and fixed

Metadata verification Rudimentary Complete, except for

artefacts

 Design and Development of Metadata Editors … 221

User’s perspective

Target users Asset developers and

data administrators

External asset

developers

Complexity of metadata

presentation

Hierarchical Flat and simplified

Filling metadata elements Homogeneous,

unguided

Heterogeneous,

guided

Indicators Only missing

compulsory metadata

Detailed indicators of

metadata completeness

Graphical interface Focus on completeness

and accuracy

Focus on navigation and

comprehension

Viewing others’ assets

(read-only mode)

Same interface. All UI

elements are forced

into read-only mode

Separate tool — the

metadata viewer

In terms of implementation, the data-centric meta-editor is much more

complex, with its cascading data flow through several metadata-processing

phases. The development took about a year, but the flexibility in the design

allows upgrading and improvement — the meta-editor generates an editor in

real time following a metadata schema. Therefore, if the metadata are

modified, the meta-editor will create another editor. However, if the changes

go beyond the schema, then the effort to implement them would be significant.

The wizard has a moderate complexity; its implementation took a

month because it is relatively simpler and straightforward. As all metadata

elements are hardcoded in the wizard, any modification, even the slightest one,

would require modification of the source code.

Because of its internal complexity, the meta-editor has slightly lower

performance; the user interface needs a second to be generated, because several

schema files and taxonomies are downloaded over the internet. The tool

performs only rudimentary metadata verification, relying on the server to run

a complete verification.

The wizard, on the other hand, is faster, its interface is prebuilt, and it

performs complete verification of the metadata in real-time. The only

exceptions are the artefacts — the wizard expects the RAGE server to signal

back problems with the uploaded resources, like duplicate names, unsupported

file types, etc.

222 Pavel Boytchev

In terms of users’ experience, the meta-editor and the wizard are also

quite different. The target users of the meta-editor are internal asset

developers and data administrators, who are familiar with the metadata model.

These users can work with the full complexity of the metadata hierarchy,

including several levels of nested metadata blocks. The wizard is more

appropriate to external asset developers, who are not expected to know the

details of the metadata model. This is because the wizard shows a flat

oversimplified list of elements.

In terms of the user interface, the RAGE meta-editor indicates only

missing compulsory data, while the wizard shows detailed indicators of

metadata completeness, accompanied by hints and suggestions. Additionally,

the wizard’s interface is focused on easier navigation and guided data entry.

5. Conclusion. This paper presents the main aspects of two

metadata editors, designed and developed for the Horizon 2020 project RAGE.

Both editors are used to edit the metadata of RAGE software assets — these

metadata contain descriptions and additional details about the assets and are

used to search and classify them.

The first metadata editor is based on the data-centric approach. It

provides a complete unabridged view of the metadata of an asset. This exposes

the full metadata hierarchy and internal structure. This editor is implemented

as a meta-editor — i. e., it reads the metadata descriptions of an asset and

builds a corresponding metadata editor in real time. The user interface is with

nested blocks that recreate the metadata hierarchy. The other editor follows

the user-centric approach. It reshapes the metadata model and presents it to

the users in a more manageable way. Additionally, the wizard guides the user

through the process of describing an asset, while providing instant feedback of

the description’s completeness and accuracy.

To utilize the full functionality of both editors, they need additional

tools. The meta-editor uses a taxonomy selector, embedded in the generated

editor, while the wizard is connected to the portal via a metadata viewer.

Although both metadata editors have the same purpose – to describe

an asset via metadata – their designs, internal architectures, implementations

and appearances are completely different. This difference significantly affects

 Design and Development of Metadata Editors … 223

the user’s experience. As a result, the data-centric meta-editor is more

appropriate for experienced users, who need to view and access the metadata

in their full complexity; while the user-centric wizard is more suitable for the

general asset developers, who are focused on the development of their assets

and do not need to be familiar with the RAGE metadata model.

Acknowledgements. This work has been partially funded by the EC

H2020 project RAGE (Realising an Applied Gaming Eco-System);

http://www.rageproject.eu/; Grant agreement No 644187.

REFERENCES

[1] What is Horizon 2020? European Commission, The EU Framework

Programme for Research and Innovation. http://ec.europa.eu/

programmes/horizon2020/en/what-horizon-2020, 15 October 2018.

[2] RAGE. Project website. http://www.rageproject.eu, 15 October 2018.

[3] VAN DER VEGT W., W. WESTERA, E. NYAMSUREN, A. GEORGIEV,

I. ORTIZ. RAGE Architecture for Reusable Serious Gaming Technology

Components. International Journal of Computer Games Technology,

2016, Article 3. DOI: 10.1155/2016/5680526

[4] GEORGIEV A., A. GRIGOROV, B. BONTCHEV, P. BOYTCHEV,

K. STEFANOV, K. BAHREINI, E. NYAMSUREN, W. VAN DER VEGT,

W. WESTERA, R. PRADA, P. HOLLINS, P. MORENO. The RAGE

Software Asset Model and Metadata Model. In: JCGS 2016: Serious

Games. LNCS, 9894 (2016), 191–203.

[5] SULEMAN H. Metadata Editing by Schema. In: T. Koch, I. T. Sølvberg

(eds). Research and Advanced Technology for Digital Libraries, 7th

European Conference, ECDL 2003, Trondheim, Norway, 2003. LNCS,

2769 (2003), 82–87.

[6] GRASSO M., M. CRAGLIA. D 2.2.3A: European Open Source Metadata

Editor Developers' Guide v.1.0. EuroGEOSS, 2010.

http://www.eurogeoss-fp7-project.eu/Documents/

EuroGEOSS_D_2_2_3A.pdf, 15 October 2018.

224 Pavel Boytchev

[7] KUNZE T., J. BRASE, W. NEJDL. Editing learning object metadata:

Schema driven input of RDF metadata with the OLR3-Editor. In:

Semantic Authoring, Annotation & Knowledge Markup Workshop, 2002,

22–26.

[8] BONTCHEV B., T. ILIEV. ARCADE — Web-based Authoring and

Delivery Platform for Distance Education. In: First Balkan Conference

on Informatics, Thessaloniki, Greece, 2003, 293–306.

[9] DEKKERS M. Asset Description Metadata Schema (ADMS). W3C

Working Group Note, 2013. https://www.w3.org/TR/vocab-adms/,

15 October 2018.

[10] MAALI F., J. ERICKSON (eds). Data Catalog Vocabulary (DCAT). W3C

Recommendation, 2014. http://www.w3.org/TR/vocab-dcat/,

15 October 2018.

[11] DCMI Metadata Terms. Dublin Core Metadata Initiative, 2012.

http://dublincore.org/documents/dcmi-terms/, 15 October 2018.

[12] BRICKLEY D., L. MILLER. FOAF Vocabulary Specification 0.99. 2014.

http://xmlns.com/foaf/spec/, 15 October 2018.

[13] SCHREIBER G., Y. RAYMOND (eds). RDF 1.1 Primer. W3C Working

Group Note, 2014. http://www.w3.org/TR/rdf11-primer,

15 October 2018.

[14] LEON J. S. Frequency of Character Pairs in English Language Text.

Codes and Cryptography, 2008. http://homepages.math.uic.edu/

~leon/mcs425-s08/handouts/char_freq2.pdf, 15 October 2018.

Pavel Boytchev

Department of Information Technology

Faculty of Mathematics and Informatics

St. Kliment Ohridski University of Sofia

5, James Bourchier Blvd

1164 Sofia, Bulgaria

e-mail: boytchev@fmi.uni-sofia.bg

Received October 20, 2017

Final Accepted June 20, 2018

