
Serdica J. Computing 11 (2017), No 2, 183–198 Serdica
Journal of Computing

Bulgarian Academy of Sciences
Institute of Mathematics and Informatics

A WEB APPLICATION FOR TEXT DOCUMENT
CLASSIFICATION BASED ON k-NEAREST NEIGHBOR

ALGORITHM*

Adelina Aleksieva-Petrova, Emilyan Minkov, Milen Petrov

ABSTRACT. The paper gives insight on how the text document categorization
problem can be solved and implemented in a software product. On that score, it
specifies how input data are provided, processed and transformed into output
data. The goal of the paper is not only to suggest a simple theoretical solution to
the text document categorization problem but to provide a real-life
implementation as part of a software system.

1. Introduction. Classification can be defined as the “systematic
arrangement in groups or categories according to established criteria” [3].
When texts become the subject of classification the process can be referred to
as text classification or text categorization. Yang and Joachims describe it as
“the task of assigning predefined categories to free-text documents” [11].

 ACM Computing Classication System (1998): H.3.3, H.3.5, I.7.5.
Key words: clustering, document analysis, web-based services.
*The research presented in this paper was partially supported by the project FNI-SU-

2017/80 10-128 (St. Kliment Ohridski University of Sofia, Bulgaria) Secure and re-usable
software architectures for Technology-enhanced learning.

184 Adelina Aleksieva-Petrova, Emilyan Minkov, Milen Petrov

Text classification is a common task and can be required in various
situations. Examples include determining the type of a news article, e. g.,
politics, sports, culture, etc.; filtering spam in e-mails; managing archives
containing diferent types of documents; determining the most appropriate
section for a book in a library; determining the language when converting text
to speech; organizing fiction texts by genre; and others. These examples prove
that the need of text document classification may occur in completely diferent
situations and may involve diferent types of people. In addition, text
categorization may concern diverse text types, each of which may necessitate a
specific processing approach.

There are classifiers which are specifically designed to work with short
texts such as instant messages, blog and news comments as testing instances.
Such texts are characterized by small length of a couple of hundred characters,
frequent use of non-standard terms and misspellings—cf. [4]. These must be
properly handled in order to deliver satisfactory results. In contrast to short
texts, scientific or literature texts may require heavier focus on appropriate
feature selection, since they are larger in size and are semantically quite
diferent. One can draw the conclusion that text classification is a complex task
which requires that many aspects be taken into account. It is also practically
impossible to create a solution which guarantees optimal results for all cases.

The object of this paper is to propose a method for document
categorization and describe the development of a web application which
categorizes text documents according to user-specified categories. The
document categorization is achieved with an adaptation of the k-nearest
neighbor algorithm, whereby the documents are the test samples, the
categories are the classes and the keywords are the training set. The purpose of
the application is to ofer a means of grouping large amounts of data into
separate semantic units which would enable their easier further processing and
use. Each category is specified via a set of keywords. Each keyword is
additionally supplied with a weight which determines how strongly it
categorizes its respective category.

2. Text categorization. Nowadays, several theoretical models for
performing automatic text classification exist. These are based on diferent

A Web Application for Text Document Classifcation … 185

techniques and algorithms: decision trees (cf. [2]), support vector machines
(cf. [8]), naïve Bayes classifiers (cf. [4, 6]), etc. The solution proposed in this
paper uses the popular k-nearest neighbor algorithm. This particular
mechanism has been employed before to provide a means of performing text
categorization (cf. [9]), thus proving that k-nearest neighbors can be
successfully implemented to fulfil this type of linguistic task.

2.1. Classification algoritcm. The core task of the application is to
classify each item in a set of text documents in a user-defined category. This
necessitates the use of a specific algorithm. For this purpose, the k-nearest
neighbor classification was selected, which “finds a group of k objects in the
training set that are closest to the test object, and bases the assignment of a
label on the predominance of a particular class in this neighborhood” [10]. This
choice is based on the fact that k-nearest neighbors is easily comprehensible
and performs efectively. Thirumuruganathan [7] states that it is “very simple
to understand but works incredibly well in practice” and “is surprisingly
versatile”.

Going back to the definition from the previous paragraph, the
documents to classify are the test objects and the user-specified categories form
the training set. An accurate classification presupposes that each of them is
transformed into a suitable representation in a feature space.

The choice of a proper strategy to achieve this must take into account
several characteristics of the classification process itself and the expected
results. First, each document should be categorized independently from the
other documents which are part of the same classification process. Unlike a
task such as ranking documents, classification does not require that the
individual test items be taken into consideration in the context of the
remaining items. The only thing which is shared by each document is the
training set used to determine the category to which it should be assigned.
Second, it is not mandatory that each category should have a document
assigned to it at the end of the classification, which in turn discloses the
possibility that all items end up in the same category. Although this may not
be a desired result in all cases, it does provide a good idea about the semantics
of the document, bearing in mind that the user may not be acquainted with its
contents. If the document set in question must definitely result in multiple

186 Adelina Aleksieva-Petrova, Emilyan Minkov, Milen Petrov

categories having at least one associated item, then this knowledge can be used
to set the individual categories more precisely. A new classification run with
those is bound to lead to more satisfactory results. Thirdly, it is essential that
the means of representing the documents guarantee a balance between
accuracy and performance. In other words, the document processing should be
carried out via a technique which is quick to perform and does not use up too
many resources, whilst ensuring a sufcient and accurate representation of the
specified document.

Considering the specificities, the main approach selected for performing
a document representation is term frequency—the number of times each token
appears in a specific text document. On one hand, this type of weighting is, in
comparison to schemes such as the more complex tf-idf weighting, completely
independent on the remaining documents which are being classified. On the
other hand, term frequency can be easily and automatically obtained during a
single iteration over the document set, during which each of them is read and
analyzed.

In regard to optimization of the term frequency approach, several
adjustments are applied. When using term frequency, one must contemplate
what to consider a token. This task is language-specific and mainly dependent
on the use of punctuation and other non-alphanumeric symbols in texts. In the
framework of the proposed application, only English is taken into account due
to the fact that the current implementation of the classifier application works
with English texts. In this context, words are considered as tokens, with words
defined as the character sequences between whitespaces. Punctuation is not
considered part of the word when it is adjacent to a whitespace character, but
is when it is surrounded by alphanumeric characters.

The application of the term frequency approach in its current form
requires that each of the documents to be classified is split into separate words.
This is achieved by reading each document and performing a split operation
and word count whilst keeping count of all the words. At the end of this
process the following parameters are known:

• total number of words in the document;

• number of occurrences of each word in the document;

A Web Application for Text Document Classifcation … 187

• word with the most occurrences in the document;

• number of occurrences of the most common word.

These values are further used for transforming each document into its
classification representation.

The actual representation of each document is an n-dimensional vector
where n is the number of set keywords for a specific category. Each keyword
can be thought of as a separate feature and constitutes a dimension in this n-
dimensional space. Both keywords and documents are represented as points in
this space where the vector of each item holds the coordinate for each axis.
Keywords’ vectors are unit vectors which have a value of 1 for the axis which
is represented by the keyword itself and a value of 0 along the other axes.

To utilize the set of training points, each document is represented as a
vector in the same n-dimensional space. This is achieved by doing the
following: For each keyword in the category a check is performed to see how
many times this word occurs in the text document. The number of occurrences
are then divided by the most common word in the document, which results in
a value in the range [0; 1]. The most common word in the text would hence
have a value of 1, and a word which does not appear in the text, a value of 0.
The calculated value determines the vector coordinate of the document along
the axis specified by the current keyword.

2.2. Category keywords. In order to provide a more accurate
description of each category, each keyword is supplied with a specific weight
by the user. This weight is used during the document vector calculation to
increase to a certain extent the importance of a particular word in the
document. The value is determined with the help of a function and the user-
specified keyword weight. The current implementation of the classifier
application uses common multiplication as a weighting function—the number
of occurrences of the keyword in the text is multiplied by the keyword weight.
In other words, the keyword weight is used to create an efect, as if the word
were n times more common and thus specified the text better.

The current implementation of the classifier application uses a set of
standard stop words (such as a, an, the, in, on, of, I, you, etc.) to determine
which words should be ignored when estimating the document stats which are

188 Adelina Aleksieva-Petrova, Emilyan Minkov, Milen Petrov

relevant for the categorization process. These are taken from Ranks NL [5] and
represent the most common words in English which are considered stop words.
They are stored as a constant and put into action during the classification
process. It is possible, however, that the documents to be classified are more
specific and require special attention to certain words which are normally
considered stop words. In particular, it may be desired to ignore specific words
which may cause a more inaccurate document vector representation, hence an
inaccurate categorization. Considering this, the user has the option of
extending the stop word list by entering additional words. That means that
specific non-default words will also be ignored when performing the
classification.

After estimating the keyword and document vectors, both the
documents and the category keywords can be represented as points in space.
This situation is a standard starting position for performing a k-nearest
neighbors classification. For each test sample, i. e., each document the distance
to each training set point is calculated. Euclidean distance, defined by

S(d, k) = √ (d 1−k1)
2
+(d2−k 2)

2
+…+ (d n−k n)

2
, (1)

is considered a good distance measuring technique, since it corresponds to the
geometric notion of distance and is easy to grasp, visualize and calculate. The
rooting part of the formula can be skipped to reduce the computational efort,
since concrete values are not of importance to the algorithm, but are used
solely as a means of comparison to allow determining the nearest neighbors.

Since the number of keywords in a category determine what the vector
representation of a document is, each document would have a diferent vector
for each individual category with a diferent set of training points. Due to the
fact that keyword and document vectors have scaled values for their
coordinates, this would not cause any undesired deviation when determining
the nearest neighbors from diferent categories. In the end, it is known for each
document which are its k-nearest neighbors. These neighbors are composed of
the individual keyword points of possibly diferent categories. The category
whose keywords are the most common in the neighbors set, is the one to which
the document is assigned. If two or more categories have the same number of
keywords among the k-nearest neighbors, then the distances are also taken into

A Web Application for Text Document Classifcation … 189

consideration. The category for which the sum of its keywords that are
countable neighbors is the smallest is the one which gets chosen finally.

An important question to consider is how to choose an appropriate
value for k or in other words—how many neighbors to contemplate when
determining the appropriate category for a document. Since the training set
consists of points represented by the category keywords it is logical to derive
an appropriate value for k from the user-specified keywords. k is shared among
the individual categories, so the keywords of each of them should be taken into
account. Due to k being a quantitative measure and the fact that keywords are
assumed to be of equal importance (k should not be infuenced by their
weights) a function based on the number of keywords in each category
provides a suitable solution. A function meeting this requirement is the
number of keywords of the category which has the fewest keywords set. This
suggestion guarantees that each category would have a chance to have a
document assigned to it. This is assumed as an initial goal, otherwise it would
be pointless to have such a category set in the first place. That would not be
the case if the category with the most keywords or the average number of
category keywords was used.

3. Practical solution of tce problem.
3.1. Format of application input data. As with any software

system, input data is supplied, then processed and returned with the goal of
providing a basis for new information which can be further transformed into
knowledge. In order for this fow to work, the format of all input and output
data should be explicitly specified and known to both the user and the system.
The classifier application requires the following pieces of input data: text
documents to classify, category names, category keywords with weights,
specific stop words (optional), max keyword weight (optional) and some
additional settings. Output data consists of information about the category to
which each text document from the input was assigned.

The documents to classify are the main component of the input data.
The current implementation of the application restricts them to PDF format.
The choice for this particular format is conditioned by the fact that PDF
documents are the most used type over the web. A statistic published by Duf

190 Adelina Aleksieva-Petrova, Emilyan Minkov, Milen Petrov

Johnson [1] reveals that in spite of the slight decrease in the last years PDF
remains with 71.7% the most used format on the web. Furthermore, PDF
documents can be easily created and read, they are lightweight and many tools
for their processing exist. Due to the desired extensibility, kept in mind during
the development phase, the application is designed in a way which allows
support for other formats to be easily added in the future when desired.

Categories with their respective keywords and weights should be
provided, so that classification classes are known, as the current
implementation of the classifier application does not define default categories.
The weighting provides a means of determining how strongly a specific word is
taken into account during the categorization process. The default settings
specify that weights should be non-negative integers. A weight of 0 means that
the specified word should be completely ignored during the classification, and a
larger weight, that it should be considered with high priority. The right
endpoint can be explicitly provided as a piece of input data. For example,
setting a value of 20 would provide better granularity when specifying the
importance of diferent keywords, in contrast to a value of 5. For common use
cases and datasets, a default weight range of [0; 10] should provide satisfactory
results. Words in the text which are not explicitly specified by a keyword are
considered to have a standard weight of 1. Since categories and keywords are
small pieces of data, e. g., strings or numbers, they can be easily supplied via
the application’s user interface. Keywords are limited to character sequences
which contain no whitespace characters. Category names, on the other hand,
are allowed to consist of one or several words. Category and keyword names
are treated as case-insensitive.

The last obligatory item in the input data list are additional settings
which comprise diferent available adjustments to the business logic of the
application. These include locations of diferent files on the server, database
properties, input data for the classification algorithm, etc. They are not
intended to be exposed to the user but can be modified by the developer in
order to optimize the quality and performance of the application and manage
ingoing and outgoing data. Due to their nature, such settings are stored in a
configuration file on the server where they can be easily accessed and extended
by the application.

A Web Application for Text Document Classifcation … 191

3.2. Format of application output data. The output data includes
the result of the classification process. Likewise, it requires presenting in an
appropriate format, so that it is as useful as possible for further use. The
category association information by itself is helpful but not sufcient for the
desired result. For instance, let’s consider a case where 100 documents should
be classified. Let the object of the classification be the division of the document
set in several groups, so that each group can then be handed out to a separate
person for further reading or research. When only the appropriate category is
returned as output data the user will have an idea about the contents of the
documents but due to the relatively large amount of documents an extra time
and efort may be required to actually execute the document grouping and
have them distributed to the other people. A better way to expose the output
is to have the documents themselves as part of the output and have them
grouped before returning them to the user. This can be achieved easily by
having a separate folder for each category and putting each document in the
appropriate folder according to the classification result. It is, however,
convenient to have these folders combined in one chunk. This can be
accomplished by putting all folders in an archive.

This will allow having the documents sorted in one convenient location
and will, likewise, enable that classifications from diferent sessions are kept
apart and be distinguished from one another. The core of the application lies in
its backend which is responsible for the document categorization once all
required input data is supplied. This involves the execution of a classification
algorithm and the preparation of the results for output.

3.3. Application workfow. Fig. 1 presents the basic workfow of the
classifier application. Since it is a web application it is launched by making an
HTTP request. Once the request is processed, the graphic user interface (GUI)
is loaded and can be accessed by the user to specify which documents to
classify. Once selected, the documents are immediately uploaded to the server
where they become available for processing by the application. Categories with
their respective keywords and weights are also set through the GUI.

192 Adelina Aleksieva-Petrova, Emilyan Minkov, Milen Petrov

Fig. 1. Basic workfow of the classifier application

A Web Application for Text Document Classifcation … 193

During this stage the user is free to specify a custom keyword
maximum weight and additional stop words in addition to the default ones, in
accordance with the considerations outlined earlier in this section. After the
documents and categories are set, all input data is collected and the processing
is transferred to the backend of the application where the classification itself
takes place. The categorization is carried out along the lines of the algorithm
described above. The result of the execution of the algorithm is information
about each document’s assignment to a category. For each category which has
at least one document assigned to it a folder is created. All files are moved to
the folder of their respective category. Once all documents are in their right lo-
cation all category folders and their contents are added to an archive. A link to
the archive is presented to the user. Once clicked the archive is downloaded to
the user’s machine and the user has possession over the classified documents.

Finally, the category and keywords data is persisted to the database for
future reference. No history of documents is kept as it is considered unneces-
sary for the current version of the application. This is subject to change, if in
the future a means of optimizing the application’s performance based on the
documents themselves is developed. Currently, however, the documents are
deleted from the server after a predefined amount of time and the download
link expires. The session timeout is set in the additional settings file and has a
default value of 30 minutes, which can be changed if desired. A user therefore
has 30 minutes to accomplish the data input and to collect the categorized
documents. If this does not happen in time, the progress is lost and the process
has to be restarted.

4. Summary and conclusions. The classifier web application
which forms the primary focus of this paper employs a relatively simple scheme
for categorizing documents, based on the k-nearest neighbors classification
algorithm. It does, however, deliver satisfactory results and is a useful tool in
many situations where large amounts of data have to be processed. It is
designed in a way which gives the user complete freedom for setting the
categories to be used. It is also aimed to be user-friendly, i. e., assist the user
as much as possible and be pleasant to work with. Since it is implemented in
the form of a web application, it can be accessed easily via a browser and does

194 Adelina Aleksieva-Petrova, Emilyan Minkov, Milen Petrov

not require any installation or updates. This makes it desirable for a larger
group of users, thus achieving a high degree of practicability.

During the development phase multiple test runs were executed to
ensure that the algorithm performs appropriately. One of those sample runs
had the following input parameters:

• ten documents to be categorized, including the following: short personal
resume, music tutorial on chords, lecture in information retrieval, rule
book of curling, rule book of golf, lyrics of a rock song, router manual,
story by Oscar Wilde, clarification document for a university assignment,
electronic ticket for a plane and a bus;

• four categories with their respective weighted keywords:

◦ Music: music = 10; song = 8; guitar = 8; piano = 8; pop = 9;
rock = 9; hip-hop = 9; artist = 6; album = 5; sound = 4; noise
= 3; loud = 5; fun = 2; culture = 4; theory = 1; singer = 7; love
= 5

◦ Culture: music = 8; art = 9; sports = 4; ritual = 3; history = 8;
sight = 5; museum = 7; gallery = 7; nationality = 3; people = 7;
mentality = 4; language = 7

◦ Sports: sport = 10; sports = 10; football = 9; tennis = 9;
basketball = 9; volleyball = 9; athlete = 9; fitness = 5; healthy =
3; watch = 2; television = 4; politics = 2; team = 3; ball = 5;
coach = 6; player = 6; money = 2; fame = 1

◦ IT: programming = 9; IT = 10; language = 7; software = 9;
hardware = 9; computer = 9; innovation = 4; mobile = 6;
device = 6; company = 3; money = 3; business = 4; engineer =
5; work = 1; project = 2; network = 6; code = 7

• no additional stop words specified;

• default function for determining k.

The documents ranged in size from 1 page to 215 pages and had a total
size of 11.2 MB. The two rule books were assigned to the Sports category,
which was anticipated since they concern particular sports. The router manual
and the information retrieval lecture were assigned to the IT category, which

A Web Application for Text Document Classifcation … 195

was likewise expected. This category also contained the resume due to the
mentions of information technologies in it and the clarification document due
to its reference to a programming-based task. The Music category had a single
member which was the chord tutorial. The lyrics document was not assigned
to it but to the Culture category instead. The application cannot determine
the type of a text solely by its contents, hence the song text was considered
more appropriate for another category, in contrast to the Music category which
one might expect. Two of the documents – the ticket and the literature work –
had no matching keywords for any category, so they were assigned to the IT
category, which happened to be the first one in the category list specified by
the user. The results of the classification, as well as the preparation of the
output, took approximately 5 seconds.

Several conclusions can be drawn from the test run described in the
foregoing paragraph. First, providing a sufcient number of keywords for each
category and using a proper technique for determining the classification
algorithm parameter k is a key premise for an accurate categorization. Second,
the contents of a text document are the single factor which is currently used to
determine its semantics. This may cause unforeseen results in certain
situations. An appropriate way to handle this scenario is to extend the
classification algorithm by having it inspect the metadata and description of a
document, if present, and incorporate them in the estimation of the document
vector. These two additional data types provide essential information for the
document and their exploitation may prove crucial for a more adequate
classification. Third, documents which do not match any of the keywords may
cause inaccurate associations and thus noise in a certain category. To avoid
such undesired efects, a too wide spectrum of documents should not be used in
the same run. Since the user may be completely unaware of the contents of the
documents, this may not always be an option. In such cases providing a
greater number of categories, described by many keywords, should lead to
fewer erroneous classifications. Fourth, the execution time can be considered
satisfactory. Nevertheless, techniques for its reduction can be implemented in
the future, thus contributing to an overall improved performance of the
application.

196 Adelina Aleksieva-Petrova, Emilyan Minkov, Milen Petrov

A wider range of tests would help drawing further important
conclusions. Testing is further required for unveiling any weak points or areas
where the classifier application can be optimized. This includes runs with
diferent types of documents, diferent number of documents, documents of
diferent size, diferent number of categories, diferent strategy for choosing k,
diferent weighting functions, diferent edge cases, etc. An iterative process,
consisting of a test creation phase and a subsequent phase where new features
and improvements are added, may prove beneficial for better usability. The
design of the application ofers a good basis for adopting such an approach for
future updates.

Acknowledgements. The research presented in this paper was
partially supported by the FNI-SU-2017/80-10-128 project (St. Kliment
Ohridski University of Sofia, Bulgaria) Secure and re-usable software
architectures for technology-enhanced learning.

REFERENCES

[1] Duf Johnson Strategy & Communications. The 8 most popular
document formats on the Web in 2015. http://duff-
johnson.com/2015/02/12/the-8-most-popular-document-formats-

on-the-web-in-2015/, 17 February 2018.

[2] LEWIS D. D., M. RINGUETTE. A Comparison of Two Learning Algorithms
for Text Categorization. In: Third Annual Symposium on Document
Analysis and Information Retrieval, Las Vegas, 11–13 April 1994. 81–93.

[3] Merriam-Webster Online. Dictionary, s. v. classification.
https://www.merriam-webster.com/dictionary/classification,
18 February 2018.

A Web Application for Text Document Classifcation … 197

[4] NIGAM K., A. K. MCCALLUM, S. THRUN, T. MITCHELL. Text
Classification from Labeled and Unlabeled Documents using EM.
Machine Learning, 39 (2000), 103–134.

[5] Ranks.nl: Default English Stopwords list. http://www.ranks.nl/
stopwords, 18 February 2018.

[6] SONG G., Y. YE, X. DU, X. HUANG, S. BIE. Short Text Classification:
A Survey. Journal of Multimedia, 9 (2014), No 5, 635–643.

[7] THIRUMURUGANATHAN S. A Detailed Introduction to K-Nearest Neighbor
(KNN) Algorithm. 15 May 2010. https://saravananthirumuruganathan.
wordpress.com/2010/05/17/a-detailed-introduction-to-k-nearest-

neighbor-knn-algorithm/, 18 February 2018.

[8] TONG S., D. KOLLER. Support Vector Machine Active Learning with
Applications to Text Classification. Journal of Machine Learning
Research, 2 (2001), 45–66.

[9] TRSTENJAK B., S. MIKAC, D. DONKO. KNN with TF-IDF based
Framework for Text Categorization. Procedia Engineering, 69 (2014),
1356–1364.

[10] WU X., V. KUMAR, J. R. QUINLAN, J. GHOSH, Q. YANG, H. MOTODA,
G. J. MCLACHLAN, A. NG, B. LIU, P. S. YU, Z.-H. ZHOU, M. STEINBACH,
D. J. HAND, D. STEINBERG. Top 10 algorithms in data mining.
Knowledge and Information Systems, 14 (2008), No 1, 1–37. doi:
10.1007/s10115-007-0114-2

[11] YANG Y., T. JOACHIMS. Text categorization. Scholarpedia 3(5):4242,
2008. http://www.scholarpedia.org/article/Text_categorization,
18 February 2018. doi:10.4249/scholarpedia.4242

198 Adelina Aleksieva-Petrova, Emilyan Minkov, Milen Petrov

Adelina Aleksieva-Petrova
Computer Systems Department
Faculty of Computer Systems and Technologies
Technical University of Sofa
8, St. Kliment Ohridski Blvd
1000 Sofa, Bulgaria
e-mai1: aaleksieva@tu-sofia.bg

Emilyan Minkov
Faculty of German Engineering Education and Industrial Management
Technical University of Sofa
8, St. Kliment Ohridski Blvd
1000 Sofa, Bulgaria
e-mai1: emilyan.minkov@fdiba.tu-sofia.bg

Milen Petrov
Department of Software Engineering
Faculty of Mathematics and Informatics
St. Kliment Ohridski University of Sofa
5, J. Baurchier Blvd
1164 Sofa, Bulgaria
e-mai1: milenp@fmi.uni-sofia.bg

Received September 11, 2017
Final Accepted November 27, 2017

mailto:milenp@fmi.uni-sofia.bg
mailto:emilyan.minkov@fdiba.tu-sofia.bg

