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ABSTRACT. The paper gives insight on how the text document categorization
problem can be solved and implemented in a software product. On that score, it
specifies  how input data are provided,  processed and transformed into output
data. The goal of the paper is not only to suggest a simple theoretical solution to
the  text  document  categorization  problem  but  to  provide  a  real-life
implementation as part of a software system.

1. Introduction. Classification  can  be  defined  as  the  “systematic
arrangement  in  groups  or  categories  according  to  established  criteria”  [3].
When texts become the subject of classification the process can be referred to
as text classification or text categorization. Yang and Joachims describe it as
“the task of assigning predefined categories to free-text documents” [11].
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Text classification is a common task and can be required in various
situations.  Examples  include  determining  the  type  of  a  news  article,  e. g.,
politics,  sports,  culture,  etc.;  filtering  spam  in  e-mails;  managing  archives
containing  diferent  types  of  documents;  determining  the  most  appropriate
section for a book in a library; determining the language when converting text
to speech; organizing fiction texts by genre; and others. These examples prove
that the need of text document classification may occur in completely diferent
situations  and  may  involve  diferent  types  of  people.  In  addition,  text
categorization may concern diverse text types, each of which may necessitate a
specific processing approach.

There are classifiers which are specifically designed to work with short
texts such as instant messages, blog and news comments as testing instances.
Such texts are characterized by small length of a couple of hundred characters,
frequent use of non-standard terms and misspellings—cf. [4]. These must be
properly handled in order to deliver satisfactory results. In contrast to short
texts, scientific or literature texts may require heavier focus on appropriate
feature  selection,  since  they  are  larger  in  size  and  are  semantically  quite
diferent. One can draw the conclusion that text classification is a complex task
which requires that many aspects be taken into account. It is also practically
impossible to create a solution which guarantees optimal results for all cases.

The  object  of  this  paper  is  to  propose  a  method  for  document
categorization  and  describe  the  development  of  a  web  application  which
categorizes  text  documents  according  to  user-specified  categories.  The
document  categorization  is  achieved  with  an  adaptation  of  the  k-nearest
neighbor  algorithm,  whereby  the  documents  are  the  test  samples,  the
categories are the classes and the keywords are the training set. The purpose of
the application is to ofer a means of grouping large amounts of data into
separate semantic units which would enable their easier further processing and
use.  Each  category  is  specified  via  a  set  of  keywords.  Each  keyword  is
additionally  supplied  with  a  weight  which  determines  how  strongly  it
categorizes its respective category.

2. Text categorization. Nowadays, several theoretical models for
performing  automatic  text  classification  exist.  These  are  based  on diferent
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techniques  and algorithms:  decision  trees  (cf.  [2]),  support  vector  machines
(cf. [8]), naïve Bayes classifiers (cf. [4, 6]), etc. The solution proposed in this
paper  uses  the  popular  k-nearest  neighbor  algorithm.  This  particular
mechanism has been employed before to provide a means of performing text
categorization  (cf.  [9]),  thus  proving  that  k-nearest  neighbors  can  be
successfully implemented to fulfil this type of linguistic task.

2.1. Classification algoritcm. The core task of the application is to
classify each item in a set of text documents in a user-defined category. This
necessitates  the use of a specific algorithm. For this purpose, the  k-nearest
neighbor classification was selected, which “finds a group of  k objects in the
training set that are closest to the test object, and bases the assignment of a
label on the predominance of a particular class in this neighborhood” [10]. This
choice is based on the fact that  k-nearest neighbors is easily comprehensible
and performs efectively. Thirumuruganathan [7] states that it is “very simple
to  understand  but  works  incredibly  well  in  practice”  and  “is  surprisingly
versatile”.

Going  back  to  the  definition  from  the  previous  paragraph,  the
documents to classify are the test objects and the user-specified categories form
the training set. An accurate classification presupposes that each of them is
transformed into a suitable representation in a feature space.

The choice of a proper strategy to achieve this must take into account
several  characteristics  of  the  classification  process  itself  and  the  expected
results.  First,  each document should be categorized independently from the
other documents which are part of the same classification process. Unlike a
task  such  as  ranking  documents,  classification  does  not  require  that  the
individual  test  items  be  taken  into  consideration  in  the  context  of  the
remaining items.  The only thing which is  shared by each document is  the
training set used to determine the category to which it should be assigned.
Second,  it  is  not  mandatory  that  each  category  should  have  a  document
assigned to it  at  the  end of  the  classification,  which  in  turn  discloses  the
possibility that all items end up in the same category. Although this may not
be a desired result in all cases, it does provide a good idea about the semantics
of the document, bearing in mind that the user may not be acquainted with its
contents. If the document set in question must definitely result in multiple
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categories having at least one associated item, then this knowledge can be used
to set the individual categories more precisely. A new classification run with
those is bound to lead to more satisfactory results. Thirdly, it is essential that
the  means  of  representing  the  documents  guarantee  a  balance  between
accuracy and performance. In other words, the document processing should be
carried out via a technique which is quick to perform and does not use up too
many resources, whilst ensuring a sufcient and accurate representation of the
specified document.

Considering the specificities, the main approach selected for performing
a document representation is term frequency—the number of times each token
appears in a specific text document. On one hand, this type of weighting is, in
comparison to schemes such as the more complex tf-idf weighting, completely
independent on the remaining documents which are being classified. On the
other hand, term frequency can be easily and automatically obtained during a
single iteration over the document set, during which each of them is read and
analyzed.

In  regard  to  optimization  of  the  term  frequency  approach,  several
adjustments are applied. When using term frequency, one must contemplate
what to consider a token. This task is language-specific and mainly dependent
on the use of punctuation and other non-alphanumeric symbols in texts. In the
framework of the proposed application, only English is taken into account due
to the fact that the current implementation of the classifier application works
with English texts. In this context, words are considered as tokens, with words
defined as the character sequences between whitespaces.  Punctuation is not
considered part of the word when it is adjacent to a whitespace character, but
is when it is surrounded by alphanumeric characters.

The application of  the term frequency approach in its current form
requires that each of the documents to be classified is split into separate words.
This is achieved by reading each document and performing a split operation
and word count whilst  keeping count of  all  the words.  At the end of  this
process the following parameters are known:

• total number of words in the document;

• number of occurrences of each word in the document;
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• word with the most occurrences in the document;

• number of occurrences of the most common word.

These values are further used for transforming each document into its
classification representation.

The actual representation of each document is an n-dimensional vector
where n is the number of set keywords for a specific category. Each keyword
can be thought of as a separate feature and constitutes a dimension in this n-
dimensional space. Both keywords and documents are represented as points in
this space where the vector of each item holds the coordinate for each axis.
Keywords’ vectors are unit vectors which have a value of 1 for the axis which
is represented by the keyword itself and a value of 0 along the other axes.

To utilize the set of training points, each document is represented as a
vector  in  the  same  n-dimensional  space.  This  is  achieved  by  doing  the
following: For each keyword in the category a check is performed to see how
many times this word occurs in the text document. The number of occurrences
are then divided by the most common word in the document, which results in
a value in the range [0; 1]. The most common word in the text would hence
have a value of 1, and a word which does not appear in the text, a value of 0.
The calculated value determines the vector coordinate of the document along
the axis specified by the current keyword.

2.2. Category  keywords. In  order  to  provide  a  more  accurate
description of each category, each keyword is supplied with a specific weight
by the user. This weight is used during the document vector calculation to
increase  to  a  certain  extent  the  importance  of  a  particular  word  in  the
document. The value is determined with the help of a function and the user-
specified  keyword  weight.  The  current  implementation  of  the  classifier
application uses common multiplication as a weighting function—the number
of occurrences of the keyword in the text is multiplied by the keyword weight.
In other words, the keyword weight is used to create an efect, as if the word
were n times more common and thus specified the text better.

The current implementation of the classifier application uses a set of
standard stop words (such as a,  an,  the,  in,  on,  of,  I,  you, etc.) to determine
which words should be ignored when estimating the document stats which are
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relevant for the categorization process. These are taken from Ranks NL [5] and
represent the most common words in English which are considered stop words.
They are stored as a constant and put into action during the classification
process. It is possible, however, that the documents to be classified are more
specific  and  require  special  attention  to  certain  words  which  are  normally
considered stop words. In particular, it may be desired to ignore specific words
which may cause a more inaccurate document vector representation, hence an
inaccurate  categorization.  Considering  this,  the  user  has  the  option  of
extending the stop word list by entering additional words. That means that
specific  non-default  words  will  also  be  ignored  when  performing  the
classification.

After  estimating  the  keyword  and  document  vectors,  both  the
documents and the category keywords can be represented as points in space.
This  situation  is  a  standard  starting  position  for  performing  a  k-nearest
neighbors classification. For each test sample, i. e., each document the distance
to each training set point is calculated. Euclidean distance, defined by

S(d, k) = √ (d 1−k1 )
2
+(d2−k 2 )

2
+…+ (d n−k n )

2
, (1)

is considered a good distance measuring technique, since it corresponds to the
geometric notion of distance and is easy to grasp, visualize and calculate. The
rooting part of the formula can be skipped to reduce the computational efort,
since concrete values are not of importance to the algorithm, but are used
solely as a means of comparison to allow determining the nearest neighbors.

Since the number of keywords in a category determine what the vector
representation of a document is, each document would have a diferent vector
for each individual category with a diferent set of training points. Due to the
fact  that  keyword  and  document  vectors  have  scaled  values  for  their
coordinates, this would not cause any undesired deviation when determining
the nearest neighbors from diferent categories. In the end, it is known for each
document which are its k-nearest neighbors. These neighbors are composed of
the individual  keyword points of possibly  diferent categories.  The category
whose keywords are the most common in the neighbors set, is the one to which
the document is assigned. If two or more categories have the same number of
keywords among the k-nearest neighbors, then the distances are also taken into
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consideration.  The  category  for  which  the  sum  of  its  keywords  that  are
countable neighbors is the smallest is the one which gets chosen finally.

An important question to consider  is  how to choose an appropriate
value  for  k or  in  other  words—how many neighbors  to  contemplate  when
determining the appropriate category for a document. Since the training set
consists of points represented by the category keywords it is logical to derive
an appropriate value for k from the user-specified keywords. k is shared among
the individual categories, so the keywords of each of them should be taken into
account. Due to k being a quantitative measure and the fact that keywords are
assumed  to  be  of  equal  importance  (k should  not  be  infuenced  by  their
weights)  a  function  based  on  the  number  of  keywords  in  each  category
provides  a  suitable  solution.  A  function  meeting  this  requirement  is  the
number of keywords of the category which has the fewest keywords set. This
suggestion  guarantees  that  each  category  would  have  a  chance  to  have  a
document assigned to it. This is assumed as an initial goal, otherwise it would
be pointless to have such a category set in the first place. That would not be
the case if the category with the most keywords or the average number of
category keywords was used.

3. Practical solution of tce problem.
3.1. Format  of  application  input  data. As  with  any  software

system, input data is supplied, then processed and returned with the goal of
providing a basis for new information which can be further transformed into
knowledge. In order for this fow to work, the format of all input and output
data should be explicitly specified and known to both the user and the system.
The  classifier  application  requires  the  following  pieces  of  input  data:  text
documents  to  classify,  category  names,  category  keywords  with  weights,
specific  stop  words  (optional),  max  keyword  weight  (optional)  and  some
additional settings. Output data consists of information about the category to
which each text document from the input was assigned.

The documents to classify are the main component of the input data.
The current implementation of the application restricts them to PDF format.
The choice for  this  particular  format is  conditioned by the fact that PDF
documents are the most used type over the web. A statistic published by Duf



190 Adelina Aleksieva-Petrova, Emilyan Minkov, Milen Petrov

Johnson [1] reveals that in spite of the slight decrease in the last years PDF
remains  with  71.7% the most  used format on the web.  Furthermore,  PDF
documents can be easily created and read, they are lightweight and many tools
for their processing exist. Due to the desired extensibility, kept in mind during
the development phase,  the  application  is  designed in  a  way which  allows
support for other formats to be easily added in the future when desired.

Categories  with  their  respective  keywords  and  weights  should  be
provided,  so  that  classification  classes  are  known,  as  the  current
implementation of the classifier application does not define default categories.
The weighting provides a means of determining how strongly a specific word is
taken  into  account  during  the  categorization  process.  The  default  settings
specify that weights should be non-negative integers. A weight of 0 means that
the specified word should be completely ignored during the classification, and a
larger  weight,  that  it  should  be  considered  with  high  priority.  The  right
endpoint can be explicitly  provided as a piece of input data. For example,
setting a value  of  20 would provide better granularity when specifying the
importance of diferent keywords, in contrast to a value of 5. For common use
cases and datasets, a default weight range of [0; 10] should provide satisfactory
results. Words in the text which are not explicitly specified by a keyword are
considered to have a standard weight of 1. Since categories and keywords are
small pieces of data, e. g., strings or numbers, they can be easily supplied via
the application’s user interface. Keywords are limited to character sequences
which contain no whitespace characters. Category names, on the other hand,
are allowed to consist of one or several words. Category and keyword names
are treated as case-insensitive.

The last obligatory item in the input data list are additional settings
which comprise  diferent  available  adjustments to  the  business  logic  of  the
application. These include locations of diferent files on the server, database
properties,  input  data  for  the  classification  algorithm,  etc.  They  are  not
intended to be exposed to the user but can be modified by the developer in
order to optimize the quality and performance of the application and manage
ingoing and outgoing data. Due to their nature, such settings are stored in a
configuration file on the server where they can be easily accessed and extended
by the application.
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3.2. Format of application output data. The output data includes
the result of the classification process. Likewise, it requires presenting in an
appropriate format,  so that it  is  as  useful as  possible  for further use.  The
category association information by itself is helpful but not sufcient for the
desired result. For instance, let’s consider a case where 100 documents should
be classified. Let the object of the classification be the division of the document
set in several groups, so that each group can then be handed out to a separate
person for further reading or research. When only the appropriate category is
returned as output data the user will have an idea about the contents of the
documents but due to the relatively large amount of documents an extra time
and efort may be required to actually execute the document grouping and
have them distributed to the other people. A better way to expose the output
is to have the documents themselves as part of the output and have them
grouped before returning them to the user.  This can be achieved easily by
having a separate folder for each category and putting each document in the
appropriate  folder  according  to  the  classification  result.  It  is,  however,
convenient  to  have  these  folders  combined  in  one  chunk.  This  can  be
accomplished by putting all folders in an archive.

This will allow having the documents sorted in one convenient location
and will,  likewise, enable that classifications from diferent sessions are kept
apart and be distinguished from one another. The core of the application lies in
its  backend  which  is  responsible  for  the  document  categorization  once  all
required input data is supplied. This involves the execution of a classification
algorithm and the preparation of the results for output.

3.3. Application workfow. Fig. 1 presents the basic workfow of the
classifier application. Since it is a web application it is launched by making an
HTTP request. Once the request is processed, the graphic user interface (GUI)
is  loaded and can be accessed  by the user  to  specify  which  documents to
classify. Once selected, the documents are immediately uploaded to the server
where they become available for processing by the application. Categories with
their respective keywords and weights are also set through the GUI.
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Fig. 1. Basic workfow of the classifier application
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During  this  stage  the  user  is  free  to  specify  a  custom  keyword
maximum weight and additional stop words in addition to the default ones, in
accordance with the considerations outlined earlier in this section.  After the
documents and categories are set, all input data is collected and the processing
is transferred to the backend of the application where the classification itself
takes place. The categorization is carried out along the lines of the algorithm
described above. The result of the execution of the algorithm is information
about each document’s assignment to a category. For each category which has
at least one document assigned to it a folder is created. All files are moved to
the folder of their respective category. Once all documents are in their right lo-
cation all category folders and their contents are added to an archive. A link to
the archive is presented to the user. Once clicked the archive is downloaded to
the user’s machine and the user has possession over the classified documents.

Finally, the category and keywords data is persisted to the database for
future reference. No history of documents is kept as it is considered unneces-
sary for the current version of the application. This is subject to change, if in
the future a means of optimizing the application’s performance based on the
documents themselves  is  developed.  Currently,  however,  the  documents are
deleted from the server after a predefined amount of time and the download
link expires. The session timeout is set in the additional settings file and has a
default value of 30 minutes, which can be changed if desired. A user therefore
has 30 minutes to accomplish the data input and to collect the categorized
documents. If this does not happen in time, the progress is lost and the process
has to be restarted.

4. Summary  and  conclusions. The  classifier  web  application
which forms the primary focus of this paper employs a relatively simple scheme
for  categorizing  documents,  based  on  the  k-nearest  neighbors  classification
algorithm. It does, however, deliver satisfactory results and is a useful tool in
many  situations  where  large  amounts  of  data  have  to  be  processed.  It  is
designed  in  a  way  which  gives  the  user  complete  freedom for  setting  the
categories to be used. It is also aimed to be user-friendly, i. e., assist the user
as much as possible and be pleasant to work with. Since it is implemented in
the form of a web application, it can be accessed easily via a browser and does
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not require any installation or updates. This makes it desirable for a larger
group of users, thus achieving a high degree of practicability.

During  the  development  phase  multiple  test  runs  were  executed  to
ensure that the algorithm performs appropriately. One of those sample runs
had the following input parameters:

• ten documents to be categorized, including the following: short personal
resume, music tutorial  on chords, lecture in information retrieval,  rule
book of curling, rule book of golf, lyrics of a rock song, router manual,
story by Oscar Wilde, clarification document for a university assignment,
electronic ticket for a plane and a bus;

• four categories with their respective weighted keywords:

◦ Music: music = 10; song = 8; guitar = 8; piano = 8; pop = 9;
rock = 9; hip-hop = 9; artist = 6; album = 5; sound = 4; noise
= 3; loud = 5; fun = 2; culture = 4; theory = 1; singer = 7; love
= 5

◦ Culture: music = 8; art = 9; sports = 4; ritual = 3; history = 8;
sight = 5; museum = 7; gallery = 7; nationality = 3; people = 7;
mentality = 4; language = 7

◦ Sports:  sport =  10;  sports =  10;  football =  9;  tennis =  9;
basketball = 9; volleyball = 9; athlete = 9; fitness = 5; healthy =
3;  watch = 2; television = 4; politics = 2;  team = 3; ball = 5;
coach = 6; player = 6; money = 2; fame = 1

◦ IT:  programming = 9;  IT = 10;  language = 7;  software = 9;
hardware =  9;  computer =  9;  innovation =  4;  mobile = 6;
device = 6; company = 3; money = 3; business = 4; engineer =
5; work = 1; project = 2; network = 6; code = 7

• no additional stop words specified;

• default function for determining k.

The documents ranged in size from 1 page to 215 pages and had a total
size of 11.2 MB. The two rule books were assigned to the Sports category,
which was anticipated since they concern particular sports. The router manual
and the information retrieval lecture were assigned to the IT category, which
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was likewise  expected. This  category also contained the resume due to the
mentions of information technologies in it and the clarification document due
to its reference to a programming-based task. The Music category had a single
member which was the chord tutorial. The lyrics document was not assigned
to it but to the Culture category instead. The application cannot determine
the type of a text solely by its contents, hence the song text was considered
more appropriate for another category, in contrast to the Music category which
one might expect. Two of the documents – the ticket and the literature work –
had no matching keywords for any category, so they were assigned to the IT
category, which happened to be the first one in the category list specified by
the user. The results of the classification, as well  as the preparation of the
output, took approximately 5 seconds.

Several conclusions can be drawn from the test run described in the
foregoing paragraph. First, providing a sufcient number of keywords for each
category  and  using  a  proper  technique  for  determining  the  classification
algorithm parameter k is a key premise for an accurate categorization. Second,
the contents of a text document are the single factor which is currently used to
determine  its  semantics.  This  may  cause  unforeseen  results  in  certain
situations.  An  appropriate  way  to  handle  this  scenario  is  to  extend  the
classification algorithm by having it inspect the metadata and description of a
document, if present, and incorporate them in the estimation of the document
vector. These two additional data types provide essential information for the
document  and  their  exploitation  may  prove  crucial  for  a  more  adequate
classification. Third, documents which do not match any of the keywords may
cause inaccurate associations and thus noise in a certain category. To avoid
such undesired efects, a too wide spectrum of documents should not be used in
the same run. Since the user may be completely unaware of the contents of the
documents,  this  may  not  always  be  an  option.  In  such  cases  providing  a
greater  number of  categories,  described by many keywords,  should  lead  to
fewer erroneous classifications. Fourth, the execution time can be considered
satisfactory. Nevertheless, techniques for its reduction can be implemented in
the  future,  thus  contributing  to  an  overall  improved  performance  of  the
application.
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A  wider  range  of  tests  would  help  drawing  further  important
conclusions. Testing is further required for unveiling any weak points or areas
where  the  classifier  application  can  be  optimized.  This  includes  runs  with
diferent types of  documents,  diferent number of  documents,  documents of
diferent size, diferent number of categories, diferent strategy for choosing k,
diferent weighting functions,  diferent edge cases,  etc.  An iterative process,
consisting of a test creation phase and a subsequent phase where new features
and improvements are added, may prove beneficial for better usability. The
design of the application ofers a good basis for adopting such an approach for
future updates.
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