
Serdica J. Computing 11 (2017), No 2, 115–136 Serdica
Journal of Computing

Bulgarian Academy of Sciences
Institute of Mathematics and Informatics

AN OVERVIEW OF SELF-ADAPTIVE TECHNIQUES
FOR MICROSERVICE ARCHITECTURES*

Krasimir Baylov, Aleksandar Dimov

ABSTRACT. Contemporary software systems are continuously growing in
size and a large number of users need to deal with new class of problems
—complexity and evolution. To overcome this, new technologies and
methods in software engineering emerge. One of them is the architectural
style of microservices. It tends to provide solutions, however it introduces
additional complexity in terms of administration, detecting fault behavior
and applying fxes. Self-adaptive systems address the problems of
complexity and evolution by providing mechanisms that allow systems to
respond to external environmental changes without human interaction.
Currently, there is a lack of understanding on how microservices can
utilize the notion of self-adaptiveness and in this paper we make an
overview of the current solutions in the feld.

1. Introduction. The constant evolution of software systems, along
with the advance of cloud capabilities, has led to evolution of the existing

 ACM Computing Classifiation Sstem (1998): C.2.4, D.2.11.
KeS words: self-adaptive systems, microservices, software architecture.

*The research presented in this paper was partially supported by the DFNI I02-2/2014
project, funded by the National Science Fund, Ministry of Education and Science in Bulgaria.

116 Krasimir Baylov, Aleksandar Dimov

architectural styles. Companies need to respond quickly to the constantly
changing business requirements and they need to do it in a reliable and
consistent way. In the past, software systems used to be deployed as a single
package or component called monolith. However, this causes many problems
such as slow system evolution, low scalability, dependent component
development, technology homogeneity, etc. This leads to a new way of
designing and deploying software systems. Microservices is an architectural
style that addresses those limitations. Microservices are “small, autonomous
services that work together” [1]. Contrary to the monolith approach,
microservice systems are split into multiple independent and autonomous
services that exchange information over hyper-text transfer protocol (HTTP).
This allows developers to pick the most suitable technology stack and work
independently on each of those services. However, everything comes at a cost.
Despite the many benefts of microservices, they introduce a lot of operational
challenges. The large number of services requires that all procedures for
testing, deployment, monitoring, etc. are automated. This inevitably increases
the complexity of such systems. New methods and tools need to be introduced
in order to reduce the complexity and keep it at manageable levels. Such
methods should exclude humans from the loop and let services adapt and
manage themselves.

Self-adaptive systems provide a solution to this problem. Such systems
can manage themselves following high-level goals provided by administrators
[2]. They are all based on feedback/control loops [3]. Such loops allow
gathering information on the external environment, analyzing it, making
decisions for future actions and executing those decisions. Self-adaptation
provides a huge potential in the microservices architectural style. Although
there are industry tools that provide partial support with self-adaptation
capabilities, they are only focused on a specifc aspect of the problem—for
example load balancing, container orchestration and monitoring, etc.

In this paper we provide a detailed overview of the feld of self-adaptive
microservice architectures. We analyze the key properties of microservice
architectures and the points that need to be improved regarding their self-
adaptation capabilities. We also point out how self-adaptive mechanisms can
complement microservices to keep their complexity at acceptable levels.

An Overview of Self-Adaptive Techniques … 117

The rest of this paper is organized as follows: Section 2 describes the
framework of our research; Section 3 and 4 present the key characteristics of
microservices.

2. Systematic overview. As part of our overview, we have been
following a systematic approach to selecting the papers that are related to the
feld of self-adaptive microservice architectures. To do so, we have searched the
following sources for information:

 ACM (http://dl.acm.org)—a digital library that provides access to
research papers published at ACM (Association of Computing
Machinery);

 Google Scholar (https://scholar.google.com)—Google’s search
engine for scientifc papers, journals, books, etc.

We have searched for papers using a set of key words in their titles.
Once the papers were identifed, we reviewed the abstracts to determine to
what extent they relate to our research. Below, we present the result of the
initial systematic selection of papers. We provide the flters we have searched
with and the number of papers that matched the criteria.

Table 1. Selection of papers

ACM Google Scholar

Self-adaptive AND architecture 594 44800

Self-adaptive AND SOA 10 3720

Self-adaptive AND microservice 1 75

Autonomous AND architecture 2604 2010000

Autonomous AND microservice 4 327

The identifed papers were further fltered by reviewing their full title
and the abstracts. Where the results exceeded 1000 we reviewed the frst 1000
starting from the most recent ones. Once the initial set of papers was selected
we read their entire content and selected more papers based on the references

118 Krasimir Baylov, Aleksandar Dimov

they provided. After reading the full paper we fnally decided whether it is
relevant to our research or not. As a result we reduced the number of papers
that were fully reviewed and analyzed to 19.

3. Key characteristics of microservices.
3.1. Monolith approach. Traditional approaches for building big

and complex systems are based on packaging the entire (or very big parts of
the) system in a single component, called monolith. This is referred to as the
“monolith approach” and it has several limitations [4].

 Hard to understand and modify—as applications grow bigger and
bigger, people fnd it hard to understand their entire design. Large
applications imply that there are multiple dependencies which developers
have to trace and analyze before applying any changes.

 Decreased productivity because of the large code base—
Developers cannot work independently because of application size. Large
applications require signifcant amount of communication when
coordinating any development, test or deployment activities.

 Continuous development/deployment is very difcult—Updating
a single component would require redeploying the entire application.

 Scaling is difcult—Scaling can be achieved by running multiple copies
of the application, but this can only guarantee increased transaction
volume processing. However, scaling in other dimensions like data volume
processing is extremely hard. Another problem with scaling is that in
large applications usually few components need to scale. What’s more,
different components may require different type of scaling—some may be
CPU intensive, other memory intensive, network intensive, etc. With
monolith architectures everything scales at the same time, which results
in loss of efciency and money.

 Tied to a technology stack—Monolith architectures are built around
a technology stack. The larger the systems get, the harder it is to change
the technologies because of the signifcant efforts required in migration
and refactoring.

An Overview of Self-Adaptive Techniques … 119

3.2. Microservices. Microservices is an architectural style that tries
to overcome many of the limitations implied by large monolithic applications.
However the community lacks a common understanding on the concepts of
microservices and microservice architectures. For example, James Lewis and
Martin Fowler propose the following defnition [5]:

The miiroserviie arihiteitural stSle is an approaih to developing a
single appliiation as a suite of small serviies, eaih running in its
own proiess and iommuniiating with lightweight meihanisms, often
an HTTP resourie API. These serviies are built around business
iapabilities and independentlS deploSable bS fullS automated
deploSment maihinerS. There is a bare minimum of ientralized
management of these serviies, whiih maS be written in diferent
programming languages and use diferent data storage teihnologies.

Sam Newman in his book Building Miiroserviies states [1]:

Miiroserviies are small, autonomous serviies that work together.

Adiran Dockroft refers to microservices as:

 erviie-oriented arihiteiture iomposed of looselS ioupled elements
that have bounded iontexts.

Mark Little, however, disagrees with the above defnitions by arguing that
microservices are just another term for SOA [5]. The lack of unifed and
precise defnitions for microservices may be something normal, especially
considering the fact that this is a relatively new pattern that has yet to be
formalized. Therefore, it is more reasonable to think of microservices in terms
of the common characteristics that they have. In the next sections we cover
some of the key characteristics and benefts of using this architectural style.

For the purpose of our research we defne microservices as follows:

The miiroserviie arihiteitural stSle is serviie-oriented arihiteiture
iomposed of a suite of small serviies, that work together and
iommuniiating over lightweight meihanisms like HTTP resourie
API. erviies are built around business iapabilities, independentlS

120 Krasimir Baylov, Aleksandar Dimov

deploSable, and ian be implemented using diferent teihnologS
staiks.

So defned, microservices have both advantages and drawbacks [6]. On
one hand, their small size increases developers’ productivity. Services can be
deployed and scaled independently, which also improves their fault isolation.
Additionally, developers are not tied to a specifc technology stack—they can
pick the most suitable technology for their services. On the other hand,
microservices introduce additional complexity of distributed systems.
Compared to monolithic applications, they are harder to operate and team
coordination becomes more complicated. Transaction management [8] is hard
to achieve in such distributed systems. The large number of services makes
reporting and data aggregation extremely complex [1]. Last but not least,
microservices come with increased initial cost.

4. Microservice characteristics. Microservices is an architectural
style and comes with a set of common characteristics that are identical
regardless of the projects they are applied in. Although not all microservice
architectures will have all of the presented characteristics, it is expected that
all architectures will have most of these characteristics. James Lewis and
Martin Fowler have come up with a list of 9 characteristics they describe in
their article [7]. Below we present some of the key characteristics or
microservices. This is not a complete list and depending on the perspective or
business context some may be removed or altered, or others added.

4.1. Service componentization [5]. Service componentization refers
to the degree to which microservices can be independently replaced and
updated. Components are software units that are both independently
replaceable and independently upgradeable [9]. This means that they can be
deployed independently from other services. For example, suppose that we
have an environment with 10 services. Using service componentization, each of
those services can be replaced or updated without affecting any of the other
services. In addition, all other services should continue to operate while we
update/replace the selected one.

An Overview of Self-Adaptive Techniques … 121

4.2. Organization around business capabilities [5]. Microservices
support business capabilities rather than individual components of the system.
Teams are responsible for working on the individual features of the
applications, regardless of the number of components that are affected. In
other words, if such a team needs to develop a “shopping cart” functionality for
their portal, they would build the code for all layers—starting from user
interface to the database.

Note that Conway’s law [10] is valid in both cases for dividing the
teams:

AnS organization that designs a sSstem (defned broadlS) will
produie a design whose struiture is a iopS of the organization’s
iommuniiation struiture.

4.3. Product development (not project development) [5].
Microservices are best suited for product development. The team that has
developed the system takes responsibility for supporting and evolving it, too.
Unlike project development, which has a defned duration and budget,
development teams are the owners of the systems until they are
decommissioned and not supported anymore.

4.4. Smart endpoints and dumb pipes [5]. Microservices rely on
lightweight protocols for information exchange. They avoid complex
middleware like Enterprise Service Bus (ESB) that make message translation
and routing. This lays a solid foundation for using service choreography. It is
achieved by using lightweight REST protocols. Dumb pipes play a key role in
composing services into more complex structures. Every service is responsible
for receiving requests and producing a response, therefore they can be
combined with pipes (UNIX-style).

4.5. Decentralized governance. Decentralized governance refers to
the ability of using a wide set of processes, methodologies and technology
stacks within the services that comprise an IT system.

IT governance addresses the defnition of implementation of processes,
structures and relational mechanisms in the organization in order to allow
business and IT staff to easily execute their responsibilities to support business

122 Krasimir Baylov, Aleksandar Dimov

and IT alignment. Although the decentralized governance gives a lot of
freedom, teams should be careful with the technologies they select. A big
number of different technologies may negatively impact the support
capabilities of the teams. Therefore, some companies prefer to limit the
technology options into a certain range.

4.6. Decentralized data management [5]. Decentralized data
management refers to the ability of splitting the data so that each service is
responsible for its own data. This allows using different technologies for storing
and processing the data. Multiple services may operate with the same entities
(like customers, billing, shipping, etc.) and therefore special attention should
be given to data modelling. Data modelling refers to the way that entities are
modeled, their relationships and constraints. Another factor for modelling the
data is that different services may have a different view or understanding for
those shared entities. For example, the fnance, sales and support department
may have different views on the customer entity. This brings up the notion of
bounded context used in the Domain-Driven Design (DDD) [11]. DDD focuses
on splitting a domain into a set of bounded contexts that relate to each other.

Another effect of data decentralization is using separate stores for each
service. This means that each service is responsible for its own data. A great
beneft of this separation is that services can also use different technologies to
store their data depending on the specifc operations that they support. For
some services it may be more suitable to use relational databases, for others a
document or graph database. Any communication, however, should be done
only though the services application programming interfaces (API). Database
communication is not allowed except in some cases where explicit design
decisions are taken in this direction.

4.7. Automated infrastructure [5]. Microservices rely on the
DevOps [12] culture by adopting nearly full automation in terms of
deployment, testing and monitoring. Teams that build microservices have vast
experience with Continuous Integration (CI) and Continuous Delivery (CD).
Today many of the cloud infrastructure platforms provide solid support for
CD, which makes them a preferred choice for deployment infrastructure by the
microservice teams.

An Overview of Self-Adaptive Techniques … 123

4.8. Design for failure [5]. Microservices add an additional layer of
complexity compared to monolith deployments because of their distributed
nature. This results in multiple points of potential failures. In fact, every
service is likely to fail at any time. There are also many additional factors that
may cause failures at any point—delay in response, network outages, slow
network infrastructure, undelivered messages, etc. They are something that
goes along with distributed systems and the only way to counteract is to make
designs that incorporate failures.

Inevitably, this brings us to the point of service monitoring. With the
growing number of services it gets more important to detect failures as quickly
as possible and take appropriate actions. Some companies use separate systems
that perform external monitoring and provide instant status of the deployed
services.

4.9. Evolutionary design [5]. Microservices allow rapid development
of new features and obtaining user feedback very quickly. This allows
companies to respond to marked needs quickly and constantly evolve their
products and services. One of the main reasons for distinguishing microservices
as a separate architectural style is the need of systems evolution. Business
requirements are always changing and the reason for this is the dynamic
market. Therefore, the microservices architectural style put evolutionary
design in the core of its principles and characteristics.

4.10. Automated service monitoring. Microservices rely on
automated services monitoring to detect anomalies in the behavior of services
failures. Automated service monitoring can detect any service failures
immediately. Even more, any deviations from the established Service Level
Agreements (SLA) can be detected within reasonable time, allowing developers
to take timely actions before incidents are reported.

Service monitoring can be done as a part of the service implementation
or as a separate external process that collects performance data independently.
Such data can be visualized in dashboards that provide a general overview of
the overall health of the system.

4.11. Summary of the characteristics. The aforementioned charac-
teristics provide a solid foundation for introducing self-adaptation capabilities

124 Krasimir Baylov, Aleksandar Dimov

in microservice architectures. Service componentization allows for such
capabilities to be applied independently per service. This way, each service
would take advantage of the adaptations it needs. Automated infrastructure
and service monitoring can provide a sufcient amount of data and connection
endpoints to interfere with the services once failures are detected.

Other characteristics point to some of the microservices pains that self-
adaptive systems can improve. Designing for failure can be addressed to
determine network and component failures and provide self-healing
mechanisms for the services.

5. Self-adaptive software systems. The concept of services (and
microservices, especially) introduces a new layer of complexity that developers
and administrators have to deal with. They operate in an environment that is
highly distributed and there are multiple points of failure. Service-based
systems need to be constantly monitored and whenever a failure or major
deviation from the agreed SLA is detected, corrective action should be taken.
This introduces the need of design mechanisms that help in reducing system
complexity and support the systems in adapting themselves at runtime. Such
systems are called self-adaptive systems.

Self-adaptive systems are types of systems that can manage themselves
without direct intervention of humans. The concept of self-adaptation,
however, is not, however, a new one. Its origins go back to 2001 when IBM’s
senior vice president of research, Paul Horn, introduced the idea of autonomic
computing—systems that are able to manage themselves given some high level
objectives [2].

In the literature self-adaptive systems can be named in various ways.
Authors usually use the terms self-adaptive, autonomic computing and self-
managing interchangeably.

5.1. Software complexity. Although self-adaptive systems could be
useful in solving multiple problems, they initially emerged as a cure for one
single major issue—complexity. In 2001 complexity was recognized as one of
the main obstacles for further progress in the IT industry [2]. Today software
systems are even more complex. Software engineers need broader and deeper
knowledge to perform basic technology operations. Therefore, reducing

An Overview of Self-Adaptive Techniques … 125

complexity is one of the main driving forces for the development of self-
adaptive software systems [10].

5.2. Self-managing aspects. Self-Adaptive systems can manage
themselves in different directions. We would call them self-managing aspects.
They come in four major favors [2]:

 Self-configuration—components and systems can confgure themselves
following high level policies. Such systems would change their
confguration parameters when starting or while operating, so that they
comply with initially specifed goals.

 Self-optimization—components and systems continuously monitor
themselves and try to identify opportunities for improvement. For
example, such components could constantly check for updates and apply
then once they are released.

 Self-healing—components and systems automatically detect and repair
problems. Once the system has identifed the failure, it would search for
and apply software patches and retest itself.

 Self-protecting—components and systems protect themselves against
software attacks and cascading failures. Self-protecting comes in two
different favors. First, systems could take measures to protect themselves
from external attacks. Second, they could take actions to reduce the
effect of the attack.

5.3. Evolution of autonomic operations. In order to get to
autonomic systems we need to take an evolutionary approach. We need to use
the existing systems and introduce self-managing capabilities without having
to completely replace them. Deprecating an existing system and starting it
from scratch may not be an option for big enterprise software. It may require
too much time until it gets implemented and could hide signifcant risks of
integrating the new systems with the existing ones. Therefore, all manual effort
should gradually be replaced by the system in small steps. To do this, the
authors of [11] discuss a model for evolving autonomic computing operations in
fve levels.

126 Krasimir Baylov, Aleksandar Dimov

 Basic level—Each module is maintained and confgured by highly
skilled IT professionals. They monitor the system and take any corrective
actions in case of misbehavior. In the basic level there are multiple
sources of system generated data which requires signifcant effort from IT
staff to analyze the data.

 Managed level—System generated data is consolidated, so that IT
professionals can use fewer consoles. This reduces the total amount of
time that administrators need in order to synthesize and analyze the
data. This level provides better system awareness and improves the
overall productivity of the IT staff.

 Predictive level—The system is able to recognize patterns and make
predictions for the optimal confguration parameters. The system can
monitor itself and provide recommendations of what course of actions
can be taken. IT professionals need to approve or reject the proposed
changes. This level reduces the need of deep technical skills and makes
decision making faster and more efcient.

 Adaptive level—In addition to the predictive level, the system can take
the prescribed action itself. This level can be reached once the system is
able to provide a solid number of suggestions that are valid (i. e., get
approved by people). The system is guided by the service level
agreements (SLAs) that IT staff need to specify in advance.

 Autonomic level—The system operates on the basis of business policies
and objectives. At this level IT professionals focus on enabling business
needs. Their interaction with the system is mainly limited to monitoring
or changing the business processes or updating the system goals.

Each of the described levels is dependent on the previous ones. Existing
systems are classifed as basic level (level 1). They need to evolve through all
levels sequentially until they get transformed to fully autonomic.

5.4. Autonomic control loop. Engineering self-adaptive systems is
extremely challenging. In other engineering disciplines there is a widespread
notion, which could be applied in software systems, too. This is the notion of
feedback. It is meant to provide feedback to the system, so that it knows what

An Overview of Self-Adaptive Techniques … 127

the effect of the applied change is. In self-adaptive systems it is called control
loop [12]. It provides constant feedback to the system, so that the system
could improve its decision-making process. The autonomic control loop is
illustrated in Fig. 1.

Fig. 1. Autonomic control loop

An autonomic control loop has four main activities. They follow one
after another and this is a never-ending process. The reason is that
components constantly need feedback on the actions they have taken. Once
they collect and analyze the gathered feedback data, they can proceed with
further improvement actions or revert their changes. Below is an overview of
the four activities in the control loop.

 Collect—gather data from environmental sensors or other sources that
refect the overall state of the system.

 Analyze—analyze the collected data and try to map it to existing
models or compare it to the established business rules. For this the raw
data needs to be properly structured. The goal of this process is the
system- or component-wide understanding of the system state, based on
which a change decision can be taken.

 Decide—process the analyzed data and make a decision on what needs
to be changed within the system so that it reaches the desired state.
Usually, there may be many approaches for reaching the desired state of

128 Krasimir Baylov, Aleksandar Dimov

the system and they need to be thoroughly analyzed. The decide activity
would include risk analysis of the possible directions of change as well as
some predictions on what the expected system state would be.

 Act—put the change in place, as once the decision is made is needs to be
applied to the system. A common approach to this is to use some sort of
effectors or actuators that can change the behavior or the state of the
system.

The described control loop can be referred to as Measure-Analyze-Plan-
Execute over a Knowledge base (MAPE-K) [21]. MAPE-K is adds an
additional component in the closed loop—the knowledge base. It may store
information that is needed for any of the steps in the loop.

6. SOA and self-adaptation. There is much work in existence in
the feld of self-adaptation. Many of the concepts that they propose are either
aimed at software systems in general, or they could easily be applied for SOA.
The reason for this is that most of them are based on control feedback loops to
achieve self-adaptation.

6.1. MORPH [13]. MORPH [13] is a reference architecture for
confguration and behavior self-adaptation. It allows adaptation of system
confgurations and behavior in an independent and coordinated way. MORPH
emphasizes on having reconfguration and behavior control as frst-class
architecture entities. It is structured in three main layers: Goal Management,
Strategy Management and Strategy Enactment. They all share a common
Knowledge Repository. All of the presented layers are based on the MAPE-K
loop. However, they have different responsibilities. The Goal Management
layer is responsible for setting and adjusting the overall goals for the entire
system. The Strategy Management layer is responsible for the adaptation
based on a set of predefned strategies. Once the most suitable strategy is
selected, the Strategy Enactment layer executes it.

6.2. SASSY [14]. SASSY (Self-Adaptive Software Systems) is a
model-driven framework for self-architecting distributed systems. The
framework can change its settings in a dynamic way based on the changing

An Overview of Self-Adaptive Techniques … 129

requirements. SASSY can generate a software architecture following several
steps. First, domain experts defne Service Activity Schemas (SASs), which
refect system requirements. This includes Quality of Service goals, too. Then,
SASSY generates a base System Service Architecture (SSA) which is
comprised of views that represent its structure and behavior. Once the base
architecture is defned, SASSY derives a near-optimal architecture. This phase
selects the most suitable service providers and architectural patterns related to
QoS. Finally, SASSY generates a running system. It uses the previously
derived architecture by binding the identifed services and deploys service
coordination layer. A key characteristic for SASSY is that it uses QoS
architectural patterns. Each QoS architectural pattern relates to a software
adaptation pattern that defnes how the system adapts its confguration.

6.3. Rainbow [15, 16, 17]. Rainbow is framework which allows
engineering software systems with self-adaptive capabilities at runtime. It
provides mechanisms for monitoring target systems, detecting opportunities for
adaptation, deciding what actions to take, and implementing those actions.
Rainbow uses external adaptation mechanisms, which allows developers to
specify adaptation strategies for multiple characteristics of the systems.

The framework uses architecture-based self-adaptation [18]. An
architectural model represents the architecture of the entire system as a graph
of components that interact with each other. Rainbow consists of three main
reusable units—system-layer, architecture-layer, and translation.

6.4. Cross-layer self-adaptation of service-oriented architec-
tures. The authors of [19] propose an approach for cross-layer self-adaptation
in SOA systems. They emphasize on the two main layers described by Erl [20]
– service interface and application layers – and argue that current approaches
for self-adaptation in SOA are based mainly on the service interface layer. The
authors present the QUA adaptation framework and provide further details on
how it can be used with SOA systems.

The QUA middleware has been designed to be technology agnostic. It
provides a clear separation between the three main layers—Adaptation
framework, adaptation mechanisms, and adaptation targets.

130 Krasimir Baylov, Aleksandar Dimov

6.5. A comparison of frameworks. All of the identifed self-
adaptation frameworks are based on the MAPE-K loop. They mainly use an
external management component that monitors and adapts the managed one.
However, not all of the discussed works are specifcally designed for SOA
systems. The following table provides a structured comparison of the
frameworks.

Table 2. A comparison of frameworks

MORPH SASSY Rainbow Cross-layer Self-
adaptation of SOA

SOA support Yes Yes Yes Yes

Designed
specifcally
for SOA

No Yes No Yes

Organized
around
MAPE-K

Yes Yes Yes Yes

Based on
adaptation
patterns

Yes Yes Yes Yes

Support for
runtime
adaptation

Yes Yes Yes Yes

Software
architecture
generation

No Yes No No

Adaptation
support

Confguration,

Behavior

Confguration Confguration Confguration,

Partial behavior

Support for
QoS

No Yes No Partial

All of the frameworks support runtime adaptation and can leverage
predefned adaptation patterns. Although not all frameworks were designed to

An Overview of Self-Adaptive Techniques … 131

explicitly support SOA systems, they are architected in a way that can provide
at least partial web services support. However, “SASSY” and “Cross-layer Self-
adaptation of SOA” provide explicit support for SOA systems and they are the
only ones that can handle QoS adaptation.

A key distinction property of the frameworks is the way that they
support their self-adaptation capabilities. Confguration adaptation is
supported by all frameworks but “MORPH” and “Cross-layer Self-adaptation of
SOA” provide support for behavior adaptation. However, only “SASSY” can
generate architecture based on predefned system goals.

7. Microservices and self-adaptation challenges. The feld of
microservices provides a huge feld for introducing self-adaptation capabilities.
As we have already discussed, microservices provide an additional layer of
complexity that makes it difcult for people to handle in a reliable way.
Microservices are characterized by a high level of automation and self-
adaptation techniques and patterns can be built on top of them. Based on an
analysis of microservice and self-adaptive systems, we have identifed the
following major felds where autonomous features can be introduced.

 Service health monitoring and self-healing—The large number of
services makes health monitoring extremely difcult. The complexity can
be additionally increased if services use different technology stacks. In
this case self-healing capabilities should be introduced. They allow
detecting service health problems and bringing back services to a state of
health.

 Container/platform monitoring and self-healing—Microservices
are usually deployed on cloud platforms and containers. Such platforms
do not guarantee 100% up-time. Therefore, they should be actively
monitored and self-healed in case of failures.

 QoS support—Microservices use lightweight protocols based on HTTP
and need to provide QoS support. As all the trafc goes through
networks it is very likely that on some occasions there are delays when
exchanging messages. Services need to track their QoS metrics and take
corrective actions in case of deviations.

132 Krasimir Baylov, Aleksandar Dimov

Besides the major felds for improvements pointed above, there are
many minor ones that are specifc to the microservices domain. Such
adaptation patterns should be identifed based on the domain of the entire
system. For example fnancial systems can take regular backups and
automatically restore from them in case of service failures. They could also
beneft from self-protecting capabilities to detect potential external or internal
attacks and take proper counter measures. Safety-critical systems can
autonomously run multiple copies of the services to avoid downtimes.

8. Conclusions. Microservices is a new architectural style that has
emerged from SOA. It allows fast and reliable software deployment and
support of large distributed systems. However, it introduces a new layer of
complexity and the large number of services makes them extremely difcult to
operate and support manually. Therefore, self-adaptive systems provide
mechanisms that can be integrated in microservice architectures and exclude
humans from making any manual operations for supporting the services at
runtime. In this work we offer an overview of microservice architectures and
self-adaptive systems. We analyze their capabilities and how they can be
combined for optimizing the benefts that they provide. Such results are
important, as in this way we point out how key aspects of microservices, like
QoS support, service health monitoring and self-healing can beneft from self-
adaptation capabilities.

Microservices still have many areas for research in optimization of their
self-adaptation capabilities. The high level of automation lays a solid
foundation for building new adaptation patterns and frameworks. Additionally,
the tight connection between microservices and cloud platforms allows
applying such adaptation mechanisms at various layers like infrastructure,
platform and services.

An Overview of Self-Adaptive Techniques … 133

REFERENCES

[1] NEWMAN S. Building Microservices: Designing Fine-Grained Systems.
O’Reilly Media, Inc., 2015.

[2] KEPHART J. O., D. M. CHESS. The vision of autonomic computing.
Computer, 36 (2003), No 1, 41–50.

[3] BRUN Y., G. D. M. SERUGENDO, C. GACEK, H. GIESE, H. KIENLE,
M. LITOIU, H. MÜLLER, M. PEZZÈ, M. SHAW. Engineering Self-Adaptive
Systems through Feedback Loops. In: Software Engineering for Self-
Adaptive Systems. Leiture Notes in Computer iienie, 5525 (2009), 48–
70.

[4] NAMIOT D., M. SNEPS-SNEPPE. On Micro-services Architecture.
International Journal of Open Information Teihnologies, 2 (2014), No 9,
24–27.

[5] LEWIS J., M. FOWLER. Microservices: A defnition of this new
architectural term. In: MartinFolwer.com, 25 March 2014.
http://martinfowler.com/articles/microservices.html, 18 February 2018.

[6] RICHARDSON C. Microservices: Decomposing Applications for
Deployability and Scalability. In: InfoQueue, 25 May, 2014.
http://www.infoq.com/articles/microservices-intro, 18 February 2018.

[7] ABBOTT M. L., M. T. FISHER. The art of scalability: Scalable web
architecture, processes, and organizations for the modern enterprise.
Pearson Education, 2009.

[8] BERNSTEIN P. A., S. DAS. Rethinking eventual consistency. In:
Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data. New York, USA, 2013, 923–928.

[9] RICHARDS M. Microservices vs. Service-Oriented Architecture. O’Reilly
Media, Inc., 2015.

134 Krasimir Baylov, Aleksandar Dimov

[10] SALEHIE M., L. TAHVILDARI. Self-adaptive software: Landscape and
research challenges. ACM Transaitions on Autonomous and Adaptive
 Sstems (TAA), 4 (2009), No 2, Article No 14.

[11] GANEK A. G., T. A. CORBI. The dawning of the autonomic computing
era. IBM Sstems Journal, 42 (2003), No 1, 5–18.

[12] CHENG B. H. C., R. DE LEMOS, H. GIESE, P. INVERARDI, J. MAGEE,
J. ANDERSSON, B. BECKER, N. BENCOMO, Y. BRUN, B. CUKIC,
G. DI M. SERUGENDO, S. DUSTDAR, A. FINKELSTEIN, C. GACEK,
K. GEIHS, V. GRASSI, G. KARSAI, H. KIENLE, J. KRAMER, M. LITOIU,
S. MALEK, R. MIRANDOLA, H. MÜLLER, S. PARK, M. SHAW, M. TICHY,
M. TIVOLI, D. WEYNS, J. WHITTLE. Software Engineering for Self-
Adaptive Systems: A Research Roadmap. In: Software Engineering for
Self-Adaptive Systems, Springer, Berlin, Heidelberg. Leiture Notes in
Computer iienie, 5525 (2009), 1–26.

[13] BRABERMAN V., N. D’IPPOLITO, J. KRAMER, D. SYKES, S. UCHITEL.
Morph: A reference architecture for confguration and behaviour self-
adaptation. In: Proceedings of the 1st International Workshop on Control
Theory for Software Engineering. Bergamo, Italy, 2015, 9–16.

[14] MENASCE D., H. GOMAA, S. MALEK, J. SOUSA. Sassy: A framework for
self-architecting service-oriented systems. IEEE oftware, 28 (2011),
No 6, 78–85.

[15] GARLAN D., S.-W. CHENG, A.-C. HUANG, B. SCHMERL, P. STEENKISTE.
Rainbow: Architecture-based self-adaptation with reusable infrastructure.
Computer, 37 (2004), No 10, 46–54.

[16] CHENG S.-W., A.-C. HUANG, D. GARLAN, B. SCHMERL, P. STEENKISTE.
Rainbow: Architecture-based self-adaptation with reusable infrastructure.
In: International Conference on Autonomic Computing. Proceedings.
IEEE, 2004, 276–277.

An Overview of Self-Adaptive Techniques … 135

[17] CHENG S.-W., D. GARLAN, B. SCHMERL. Evaluating the effectiveness of

the Rainbow self-adaptive system. In: ICSE Workshop on Software

Engineering for Adaptive and Self-Managing Systems SEAMS’09. IEEE,

2009, 132–141.

[18] OREIZY P., M. M. GORLICK, R. N. TAYLOR, D. HEIMBIGNER,

G. JOHNSON, N. MEDVIDOVIC, A. QUILICI, D. S. ROSENBLUM,

A. L. WOLF. An Architecture-Based Approach to Self-Adaptive Software.

IEEE Intelligent Sstems and Their Appliiations, 14 (1999), No 3, 54–

62.

[19] GJØRVEN E., R. ROUVOY, F. ELIASSEN. Cross-layer self-adaptation of

service-oriented architectures. In: Proceedings of the 3rd workshop on

Middleware for service oriented computing, Leuven, Belgium. ACM,

2008, 37–42.

[20] ERL T. Service-Oriented Architecture: Concepts, Technology, and

Design. Pearson Education, 2005.

[21] DE LEMOS R., H. GIESE, H. A. MÜLLER, M. SHAW, J. ANDERSSON,

M. LITOIU, B. SCHMERL, G. TAMURA, N. M. VILLEGAS, T. VOGEL,

D. WEYNS, L. BARESI, B. BECKER, N. BENCOMO, Y. BRUN, B. CUKIC,

R. DESMARAIS, S. DUSTDAR, G. ENGELS, K. GEIHS, K. M. GÖSCHKA,

A. GORLA, V. GRASSI, P. INVERARDI, G. KARSAI, J. KRAMER, A. LOPES,

J. MAGEE, S. MALEK, S. MANKOVSKII, R. MIRANDOLA, J. MYLOPOULOS,

O. NIERSTRASZ, M. PEZZÈ, C. PREHOFER, W. SCHÄFER, R. SCHLICH-

TING, D. B. SMITH, J. P. SOUSA, L. TAHVILDARI, K. WONG, J. WUTTKE.

Software Engineering for Self-Adaptive Systems: A Second Research

Roadmap. In: Software Engineering for Self-Adaptive Systems II.

Springer, Berlin, Heidelberg. Leiture Notes in Computer iienie,

7475 (2013), 1–32.

136 Krasimir Baylov, Aleksandar Dimov

Krasimir Baylov
Department of Software Engineering
Faculty of Mathematics and Informatics
St. Kliment Ohridski University of Sofa
5, J. Baurchier Blvd
Sofa, Bulgaria
e-mail: krasimirb@uni-sofia.bg

Aleksandar Dimov
Department of Software Engineering
Faculty of Mathematics and Informatics
St. Kliment Ohridski University of Sofa
5, J. Baurchier Blvd
Sofa, Bulgaria
e-mail: aldi@fmi.uni-sofia.bg

Received September 16, 2017
Final Accepted November 15, 2017

mailto:aldi@fmi.uni-sofia.bg

