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Abstract. Given the polynomials f, g ∈ Z[x] the main result of our paper,
Theorem 1, establishes a direct one-to-one correspondence between the mod-
ified Euclidean and Euclidean polynomial remainder sequences (prs’s) of f, g
computed in Q[x], on one hand, and the subresultant prs of f, g computed
by determinant evaluations in Z[x], on the other.

An important consequence of our theorem is that the signs of Euclidean
and modified Euclidean prs’s — computed either in Q[x] or in Z[x] — are
uniquely determined by the corresponding signs of the subresultant prs’s. In
this respect, all prs’s are uniquely “signed.”

Our result fills a gap in the theory of subresultant prs’s. In order to place
Theorem 1 into its correct historical perspective we present a brief historical
review of the subject and hint at certain aspects that need — according to
our opinion — to be revised.
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1. Introduction. In this section we briefly examine the historical de-
velopment of the theory of subresultants and set the historical framework for our
main result, Theorem 1. A detailed historical exposition of the subject can be
found elsewhere [13].

We assume that the reader is familiar with the Euclidean algorithm ap-
plied on the polynomials f, g as well as with Sturm’s algorithm, when g = f ′

[20]; in case g 6= f ′, the latter is called modified Euclidean algorithm. Next,
we informally present subresultants since they are formally defined in almost all
texts and articles on the subject [6], [12], [13], [14].

Consider the polynomials f, g ∈ Z [x] of degrees deg(f) = n and deg(g) =
m with n ≥ m. The subresultant prs of f, g is a sequence of polynomials in
Z [x] analogous to the Euclidean prs, the sequence obtained by applying on f, g
Euclid’s algorithm for polynomial greatest common divisors (gcd) in Q [x].

The subresultant prs differs from the Euclidean prs in that the coefficients
of each polynomial in the former sequence are the determinants — also referred
to as subresultants — of appropriately selected sub-matrices of sylvester1(f,
g, x)1, Sylvester’s matrix of 1840 of dimensions (n +m)× (n+m) [21].

Recall that the determinant of sylvester1(f, g, x) itself is called the
resultant of f, g and serves as a criterion of whether the two polynomials have
common roots or not [16], [20].

Likewise, the modified subresultant prs of f, g is a sequence of polynomi-
als in Z [x] analogous to the modified Euclidean prs, the sequence obtained by
applying in Q [x] Sturm’s algorithm on f, g, where g may be different from f ′.

The modified subresultant prs differs from the modified Euclidean prs in
that the coefficients of each polynomial in the former sequence are the determi-
nants — also referred to as the modified subresultants — of appropriately selected
sub-matrices of sylvester2(f, g, x), Sylvester’s matrix of 1853 of dimensions
(2 · n)× (2 · n) [22].

The determinant of sylvester2(f, g, x) is called modified resultant of
f, g and it too can serve as a criterion of whether the two polynomials have
common roots or not.

The use of matrices sylvester1(f, g, x) and sylvester2(f, g, x) is
amply demonstrated elsewhere [4].

The discussion so far is partially summarized in Figure 1 below. The
arrows and their labels are explained in the sequel.

Note on the matrices used in Figure 1. We have repeatedly stressed

1To distinguish it from sylvester2(f, g, x), Sylvester’s matrix of 1853 of dimensions (2 ·

n)× (2 · n) [22].
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Fig. 1. The double-ended arrows indicate one-to-one correspondences that exist between
the coefficients of the polynomials in the respective nodes. The labels indicate those
who first established the correspondences and when. The dashed arrow labeled DG-2004
is due to Diaz–Toca and Gonzalez–Vega [12], whereas the one labeled S-1853 is due to

Sylvester [22], [24].

in our work that sylvester2(f, g, x), Sylvester’s matrix of 1853, has not been
given the attention it deserves. In this case, again, this matrix has been overshad-
owed in the literature by the so called Sylvester-Habicht matrix [6], of smaller
dimensions. But if dimensions were the key factor for picking a matrix, why not
pick the Bezout matrix of even smaller dimensions? The latter, appropriately
rotated, is equivalent to sylvester2(f, g, x) [12].

For our discussion in the sequel we will need the following definitions.

Definition 1. The sign sequence of a polynomial remainder sequence
is the sequence of signs of the leading coefficients of its polynomials.

Definition 2. A polynomial remainder sequence of two polynomials f, g is
called complete if the degree difference between any two consecutive polynomials
is 1; otherwise, it is called incomplete.2

For complete prs’s it is well known that the sign sequence of the subresul-
tant prs and that of the Euclidean prs are identical [1]. For such prs’s it is also
well known that the sign sequence of the modified subresultant prs and that of

2It is understood that f, g are included in the prs.
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the modified Euclidean prs are identical. In either case, one can easily compute
one prs from the other.

However, it is also well known that for incomplete prs’s the sign sequence
of the subresultant prs and that of the Euclidean prs are in general different.
And likewise for the sign sequences of the modified subresultant prs and that of
the modified Euclidean prs. Therefore, in either case, there was a big problem
computing one prs from the other. Neither Sylvester himself nor Van Vleck were
able to solve the problem [3], [24].

The solution to the above problem came from Anna Johnson Pell3 and
R. L. Gordon in 1917 [19]. In the statement of their theorem — which, by the
way, uses the sylvester2(f, g, x) matrix — we have the first algorithm for
the computation of modified subresultant prs’s.

The Pell-Gordon algorithm had been dormant for about a century, but
is now included in the sympy module subresultants qq zz.py4 as function
modified subresultants pg(f, g, x).

Clearly, the Pell-Gordon theorem establishes a one-to-one correspondence
between modified Euclidean prs’s computed in Q [x] and modified subresultant
prs’s computed in Z [x]. See the arrow labelled PG-1917 in Figure 1.

This correspondence is easily extended to modified Euclidean prs’s com-
puted in Z [x] [4]. This is achieved by utilizing the function rem z(f, g, x),
defined by

(1) |LC(g)|δ · f = q · g + h,

where h is the remainder, LC(g) is the leading coefficient of the divisor g, and

(2) δ = degree(f, x)− degree(g, x) + 1.

This one-to-one correspondence between modified Euclidean prs’s and
modified subresultant prs’s (all in Z [x]) was reinvented first by Habicht in 1948,
[15], and, several decades later, by others [6], [18].

It is worth noting that Habicht completely avoided polynomial divisions
in Z [x]. Instead, his results are expressed via — what we now call — mod-

3For her fascinating biography see https://en.wikipedia.org/wiki/Anna_Johnson_Pell_

Wheeler.
4Based on the Pell-Gordon theorem and on Theorem 1 we were able to develop algorithms

for the computation of (modified) Euclidean and (modified) subresultant prs’s, both in Q[x]
and Z[x], utilizing respectively the functions rem(f, g, x) and rem z(f, g, x). The latter is
defined in (1).

Our module is included in sympy 1.0; for earlier versions it can be found in
https://github.com/sympy/sympy/blob/master/sympy/polys/subresultants_qq_zz.py.
Obviously, the module can be load-ed or attach-ed in a sage session.
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ified subresultants. In other words, without explicitly saying it, Habicht used
sylvester2(f, g, x).

Later researchers, [6], [18], followed a different approach. The matrix
sylvester2(f, g, x) was bypassed in favor of the Sylvester-Habicht matrix
and, for polynomial divisions in Z [x], instead of our function rem z(f, g, x),
the so called “signed pseudo-remainder” function was employed ([6], p. 21);
according to the latter, the dividend is pre-multiplied times LC(g)δ1 , where δ1 =
δ + 1 if δmod2 = 1.5

In other words, to exactly compute the signs of Euclidean and modi-
fied Euclidean prs’s one has to completely avoid the pseudo-remainder function
prem(f, g, x), which was introduced by Collins, Brown and Traub [7], [8], [10],
[11] and is defined by

(3) LC(g)δ · f = q · g + h.

Caveat. With the function prem(f, g, x) only the signs of subresultant
prs’s can be exactly computed ([9], pp. 277–283); the exact signs of Euclidean
and modified Euclidean prs’s cannot be computed with the pseudo-remainder
function (3). See the literature [2], [7], [8], [10], [11], [13], [14], [17].

The arrow labelled SAM in Figure 1 indicates a one-to-one correspon-
dence that exists between Euclidean prs’s and modified Euclidean prs’s. This
is based on the observation made by Sylvester in 1853, [23], that the signs of
the two sequences differ according to a certain pattern, a fact which is proved in
Lemma 1, in Section 2.

The vertical and diagonal arrows labelled AMV-2015 in Figure 1 are
proved in Theorem 1.

Finally, the horizontal arrow labelled AMV-2015 in Figure 1 indicates a
one-to-one correspondence between subresultant prs’s and modified subresultant
prs’s. As explained elsewhere [5], this correspondence was proved using a theorem
by Diaz–Toca and Gonzalez–Vega [12].

1.1. Outline of the paper. In Section 2 we provide the necessary math-
ematical background for the proof of our major result which is then presented in
Section 3.

In Section 4, we present an example which demonstrates the use of Theo-
rem 1 in computing the coefficients of a modified Euclidean and a Euclidean prs
with the help of the corresponding coefficients of the subresultant prs.

5Obviously, now the size of the coefficients increases even more than it does with rem z(f,

g, x).
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Finally in Section 5 we present our conclusions.
Our work is based on, and complements, the work by Pell and Gordon,

[19], who showed how to compute the coefficients of incomplete modified Eu-
clidean prs’s using modified subresultants [4].

2. Preliminaries. To prove our main result we need the following
lemmata. The first of these lemmata establishes the relation between Euclidean
and modified Euclidean prs’s.

Lemma 1. Let

rsj−1 = qsjr
s
j + (−1)srsj+1, ‖rsj‖ > ‖rsj+1‖, s = 0, 1, j = 0, 1, 2, . . . .

be sequences of divisions with remainder in a polynomial ring K[x], where K is
a field. If for some number i ≥ 0 the following equalities are true

(4) r0i−1 = r1i−1, r0i = r1i ,

then, for all j > i, the following equalities are also true

(5) q0j = (−1)j−iq1j , r0j = (−1)πi,jr1j , where πi,j = ⌊(j − i+ 1)/2⌋.

P r o o f. By definition, the two sequences are formed as follows:

r0i−1 = q0i r
0
i + r0i+1, r1i−1 = q1i r

1
i − r1i+1,

r0i = q0i+1r
0
i+1 + r0i+2, r1i = q1i+1r

1
i+1 − r1i+2,

r0i+1 = q0i+2r
0
i+2 + r0i+3, r1i+1 = q1i+2r

1
i+2 − r1i+3,

r0i+2 = q0i+3r
0
i+3 + r0i+4, r1i+2 = q1i+3r

1
i+3 − r1i+4.

From the above, taking into consideration condition (4), we obtain the following
equalities:

q0i = q1i , r0i+1 = −r1i+1,

q0i+1 = −q1i+1, r0i+2 = −r1i+2,

q0i+2 = q1i+2, r0i+3 = r1i+3,

q0i+3 = −q1i+3, r0i+4 = r1i+4.

We see that the statement of the lemma is true for the first four remainders. Since
it is true that r0i+3 = r1i+3 and r0i+4 = r1i+4, the statement of the lemma holds
for the next four remainders as well, etc., until the end of the division algorithm
with remainder. ✷

Consequences of Lemma 1. Let K[x] be a polynomial ring over the
fieldK, and a, b ∈ K[x]\0. Then the remainder sequence r0j , obtained by applying

Euclid’s algorithm on a, b, and the remainder sequence r1j , obtained by applying
Sturm’s algorithm on a, b, satisfy the equation

(6) r0j = (−1)πjr1j , where πj = ⌊(j + 1)/2⌋, j = 1, 2, . . . .
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Lemma 2. Consider the list Sk = {p1, p2, . . . , pk} of integer numbers.
Denote by s the number of odd integers in Sk and by s′ the number of odd integers
in Sk \ p1 = {p2, p3, . . . , pk}. Then, the following equalities hold:

(a) ⌊(s + 1)/2⌋ mod 2 = (
k

∑

j=1

p2j +
∑

1≤i<j≤k

pipj) mod 2,

(b) ⌊(s + 1)/2⌋ − ⌊(s′ + 1)/2⌋ mod 2 = p1

k
∑

j=1

pj mod 2.

P r o o f. To prove part (a) of the Lemma consider the following obvious
equalities:

2
∑

1≤i<j≤k

pipj +
k

∑

j=1

p2j =





k
∑

j=1

pj





2

,





k
∑

j=1

pj





2

mod 2 = s2 mod 2;
k

∑

j=1

p2j mod 2 = s mod 2,

∑

1≤i<j≤k

pipj mod 2 = (s2 − s)/2 mod 2 = ⌊s/2⌋ mod 2.

Part (b) follows immediately from part (a). ✷

3. Our main result.

Theorem 1. Let

f = a0x
n + a1x

n−1 + · · · + an,

g = b0x
n + b1x

n−1 + · · · + bn(7)

be two polynomials of degree n and n − p0, respectively, with b0 = b1 = · · · =
bp0−1 = 0, bp0 6= 0, p0 ≥ 0. Moreover, for i = 1, 2, . . ., let

R(i) = r
(i)
0 xmi + r

(i)
1 xmi−1 + · · ·+ r(i)mi

,

RE(i) = r
E(i)
0 xmi + r

E(i)
1 xmi−1 + · · ·+ rE(i)

mi
,(8)

be the i-th modified Euclidean and Euclidean remainders, respectively, of f, g,
with R(i) and RE(i) both of degree mi− pi+1, where (mi+1) is the degree of the
preceding remainder and

r
(i)
0 = r

E(i)
0 = · · · = r

(i)
pi−2 = r

E(i)
pi−2 = 0, ̺i = r

(i)
pi−1 6= 0, σi = r

E(i)
pi−1 6= 0.
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Then for k = 0, 1, . . . ,mi the coefficients r
(i)
k and r

E(i)
k in (8) are given by

r
(i)
k =

(−1)ϕi

̺
pi−1+1
i−1 ̺

pi−2+pi−1

i−2 · · · ̺p0+p10

×
Deti,k (f, g)

ap00
,(9)

r
E(i)
k =

(−1)ψi

σ
pi−1+1
i−1 σ

pi−2+pi−1

i−2 · · · σp0+p10

×
Deti,k (f, g)

ap00
,(10)

where ̺0 = σ0 = bp0,

(11) ϕi = ⌊(si−1 + 1)/2⌋,

(12) si−1 = the number of odd integers in the list {p0, p1, . . . , pi−1},

(13) ψi = i+ ϕi + p1 + p3 + p5 + ..+ p2⌊i/2⌋−1, with p−1 = 0,

(14) Deti,k (f, g) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a0 a1 · · · ap0 · · · avi−1
· · · a2vi−1

a2vi−1+k+1

0 a0 · · · ap0−1 · · · avi−1−1 · · · a2vi−1−1 a2vi−1+k
...

. . . · · ·
. . .

...
0 0 · · · a0 · · · avi−1−p0 · · · a2vi−1−p0 a2vi−1+k+1−p0
...

. . .
. . .

. . .
...

0 0 · · · 0 · · · a0 · · · avi−1
avi−1+k+1

b0 b1 · · · bp0 · · · bvi−1
· · · b2vi−1

b2vi−1+k+1

0 b0 · · · bp0−1 · · · bvi−1−1 · · · b2vi−1−1 b2vi−1+k
...

. . . · · ·
. . .

...
0 0 · · · b0 · · · avi−1−p0 · · · a2vi−1−p0 a2vi−1+k+1−p0
...

. . .
. . .

. . .
...

0 0 · · · 0 · · · b0 · · · bvi−1
bvi−1+k+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

and

(15) vi−1 = p0 + p1 + · · · + pi−1.

P r o o f. By structural induction on the polynomials in the prs.

We first consider the behavior of the modified Euclidean remainders.

Basis step: Setting i = 1 in expression (9) we obtain

r
(1)
k =

(−1)ϕ1

bp0+1
p0

×
Det1,k (f, g)

ap00
, where ϕ1 = p0 mod2, and
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(16) Det1,k (f, g) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a0 a1 · · · ap0 ap0+1 · · · a2p0 a2p0+k+1

0 a0 · · · ap0−1 ap0 · · · a2p0−1 a2p0+k
...

. . .
. . .

...
0 0 · · · a0 a1 · · · ap0 ap0+k+1

b0 b1 · · · bp0 bp0+1 · · · b2p0 b2p0+k+1

0 b0 · · · bp0−1 bp0 · · · b2p0−1 b2p0+k
...

. . .
. . .

...
0 0 · · · b0 b1 · · · bp0 bp0+k+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where the dimensions of the determinant are (2p0 + 2)× (2p0 + 2) and there are
p0 zero elements: b0 = . . . = bp0−1 = 0.

Note that if p0 = 0, we obtain

(17) r
(1)
k =

1

b0
×Det1,k (f, g) , where Det1,k (f, g) =

∣

∣

∣

∣

a0 ak+1

b0 bk+1

∣

∣

∣

∣

.

The above expression is obvious, since if we divide f by g and take the negative
of the remainder (Sturm’s algorithm) we obtain

(18) R(1) = r
(1)
0 xn−1 + r

(1)
1 xn−2 + · · ·+ r

(1)
n−1,

Denote, now, by A0 the upper left block of Det1,k(f, g), of dimensions p0 × p0.
This is an upper triangular block with

(19) Det(A) = ap00 .

Moreover, since b0 = . . . = bp0−1 = 0 the lower left block is zero. Therefore, we
can write determinant (16) in block form as:

(20) Det1,k(f, g) =

∣

∣

∣

∣

A0 B0

0 D0

∣

∣

∣

∣

.

To obtain the first remainder we have to perform p0+1 steps. Denote by a
(j)
i the

coefficients of the partial remainders, where ai = a
(0)
i and a

(p0+1)
k = −r

(1)
k−p0−1,

for k ≥ p0 + 1. We take remainders with inverse sign as in Sturm’s algorithm.
From (19) and (20) we see that to prove the theorem for i = 1, we need

to show that Det(D0) = (−1)ϕ1r
(1)
k bp0+1

p0 , where

(21) D0 =















a0 a1 · · · ap0 ap0+k+1

bp0 bp0+1 · · · b2p0 b2p0+k+1

0 bp0 · · · b2p0−1 b2p0+k
. . .

...
0 0 · · · bp0 bp0+k+1















.
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To prove the desired result, we left-multiply matrix D0 times the matrices Yi,
i = 0, 2, . . . , p0, where each matrix Yi is obtained from the identity matrix of size

p0 + 2 by adding the nonzero element
−a

(i)
i

bp0
in column i + 1 of the first row. In

other words we have:

Y0 =















1
−a

(0)
0

bp0
· · · 0

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1















, Y1 =













1 0
−a

(1)
1

bp0
· · · 0

0 1 0 · · · 0
· · · · · · ·
0 0 0 · · · 1













, . . . ,

Yp0 =















1 0 · · ·
−a

(p0)
p0

bp0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1















.

The matrices Y0 · D0, Y1 · Y0 · D0, . . ., Yp0 · · · Y0 · D0 have in their first row

the elements [0, a
(1)
1 , a

(1)
2 . . .], [0, 0, a

(2)
2 , a

(2)
3 , . . .], . . . , [0, 0, . . . , 0, a

(p0+1)
p0+k+1], respec-

tively. All others rows remain the same. Since Det(Yi) = 1, for all i, we have

Det(D0) = Det(Yp0 · · ·Y0D0) = b
bp0+1
p0 (−1)p0+1(−r

(1)
k ).

Therefore we have proved the theorem for the case i = 1.
In the sequel, since the first coefficients of R(i) in (8) may be zero, we

introduce the following special notation whereby we ignore the zero leading co-
efficients of the polynomial:

R̄(i) = r̄
(i)
0 xmi−pi+1 + r̄

(i)
1 xmi−pi + · · ·+ r̄

(i)
mi−pi+1, (r̄

(i)
0 = r

(i)
pi−1).

In particular, we are interested in the function

(22) R̄(0) = ḡ = b̄0x
n−p0 + b̄1x

n−p0−1 + · · ·+ b̄n−p0 , (b̄0 = bp0).

Recursive step: Assume Theorem 1 is true for any pair of polynomials
in the prs and, hence, for ḡ, R(1) as well. Then, applying the statement of the
theorem to the pair of polynomials ḡ, R(1) we have:

(23) r′
(i)
k = (−1)ϕ

′
i(̺

pi−1+1
i−1 ̺

pi−2+pi−1

i−2 · · · ̺p1+p21 ̺p10 )−1 Deti,k

(

ḡ, R(1)
)

,

ϕ′
i = ⌊(s′i−1 + 1)/2⌋,

s′i−1 = the number of odd integers in the list {p1, . . . , pi−1},
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(24) Deti,k(ḡ, R
(1)) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b̄0 b̄1 b̄2 · · · b̄Vi−1
b̄Vi−1+1 · · · b̄2Vi−1

b̄2Vi−1+k+1

0 b̄0 b̄1 · · · b̄Vi−1−1 b̄Vi−1
· · · b̄2Vi−1−1 b̄2Vi−1+k

...
. . .

. . .
...

0 0 0 · · · b̄0 b̄1 · · · b̄Vi−1
b̄Vi−1+k+1

0 r
(1)
0 r

(1)
1 · · · r

(1)
Vi−1−1 r

(1)
Vi−1

· · · r
(1)
2Vi−1

r
(1)
2Vi−1+k+1

0 0 r
(1)
0 · · · r

(1)
Vi−1−2 r

(1)
Vi−1−1 · · · r

(1)
2Vi−1−1 r

(1)
2Vi−1+k

...
. . .

. . .
...

0 0 0 · · · r
(1)
0 r

(1)
1 · · · r

(1)
Vi−1−1 r

(1)
Vi−1+k+2

0 0 0 · · · 0 r
(1)
0 · · · r

(1)
Vi−1

r
(1)
Vi−1+k+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

of dimensions (2Vi−1 + 2) × (2Vi−1 + 2) and

Vi−1 = p1 + · · ·+ pi−1.

We will express determinant (14) as a function of determinant (24), and
show that equation (23) reduces to equation (9).

In (14), denote by A the upper left block of Deti,k(f, g), of dimensions
p0 × p0. This is an upper triangular block with Det(A) = ap00 . Since b0 = . . . =
bp0−1 = 0 the lower left block is zero. Therefore, we can write determinant (14)
in block form as:

(25) Deti,k(f, g) =

∣

∣

∣

∣

A B
0 D

∣

∣

∣

∣

,

where

(26) D =































a0 · · · avi−1−p0 · · · avi−1
· · · a2vi−1−p0 a2vi−1+k+1−p0

. . .
. . .

...
0 · · · a0 · · · ap0 · · · avi−1

avi−1+k+1

bp0 · · · bvi−1
· · · bvi−1+p0 · · · b2vi−1

b2vi−1+k+1

. . .
. . .

...
0 · · · bp0 · · · b2p0 · · · bvi−1+p0 bvi−1+k+1+p0

. . .
. . .

...
0 · · · 0 · · · bp0 · · · bvi−1

bvi−1+k+1































.

Left-multiplying matrix D times matrices Yi of appropriate dimensions, we obtain
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matrix D′,

D′ =











































0 · · · r
(1)
0 · · · r

(1)
vi−1−1−p0

r
(1)
vi−1−p0

· · · r
(1)
2vi−1−2p0−1 r

(1)
2vi−1+k−2p0

· · ·
. . .

...

0 · · · 0 · · · r
(1)
0 r

(1)
1 · · · r

(1)
vi−1−p0 r

(1)
vi−1+k+1−p0

0 · · · 0 · · · 0 r
(1)
0 · · · r

(1)
vi−1−1−p0

r
(1)
vi−1+k−p0

bp0 · · · b2p0+1 · · · bvi−1+p0 bvi−1+p0+1 · · · b2vi−1
b2vi−1+k+1

0 · · · b2p0 · · · bvi−1+p0−1 bvi−1+p0 · · · b2vi−1−1 b2vi−1+k

· · ·
. . .

...
0 · · · 0 · · · b2p0 b2p0+1 · · · bvi−1+p0 bvi−1+k+1+p0

· · ·
. . .

...
0 · · · 0 · · · bp0 bp0+1 · · · bvi−1

bvi−1+k+1











































,

with Det(D′) = (−1)vi−1+1−p0 · Det(D). The sign (−1)vi−1+1−p0 appears as a
result of the sign inversion in the polynomial coefficients R(1) in the firsts vi−1 +
1− p0 rows.

In matrix D′ interchange the upper group of rows with the lower group
of rows; this will result in Det(D′) = (−1)(vi−1+1)(vi−1+1−p0) · Det(D′).

Decompose now D′ into four blocks, so that the upper left block is of
dimensions p0 × p0 with determinant bp0p0 . This way, the lower left corner is the

zero matrix, whereas in the lower right corner is matrix Deti,k

(

ḡ, R(1)
)

.

It is easy to see that (−1)vi−1+1−p0(−1)(vi−1+1)(vi−1+1−p0) = (−1)vi−1p0 .
Hence, since bp0 = ̺0, we obtain the determinant identity

(27) Deti,k(f, g) = (−1)vi−1p0(a0̺0)
p0 Deti,k(ḡ, R

(1)).

Moreover, due to Lemma 2 we obtain the equality (−1)ϕ−ϕ
′
= (−1)vi−1p0 .

Therefore, r′
(i)
k = r

(i)
k , and we have just proved equation (9) of the theo-

rem.

To prove equation (10) we use Lemma 1, which states that for all j > 0,
we have

σj = (−1)⌊(j+1)/2⌋̺j = (−1)j(j+1)/2̺j,

and, hence,

̺
pk−1+pk
k−1 ̺

pk+pk+1

k = σ
pk−1+pk
k−1 σ

pk+pk+1

k (−1)(pk−1(k−1)k+2pkk
2+pk+1k(k+1))/2.
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Substituting in the first fraction in (9) results in

(28)
(−1)ϕi

(̺
pi−1+1
i−1 ̺

pi−2+pi−1

i−2 · · · ̺p1+p21 ̺p10 )
=

(−1)ϕi(−1)(i−1)i/2+
∑⌊i/2⌋−1

k=0
p2k+1(2k+1)2

(σ
pi−1+1
i−1 σ

pi−2+pi−1

i−2 · · · σp1+p21 σp10 )
,

from which we obtain (10). ✷

4. Example. Consider the storied polynomials f = x8+x6−3x4−3x3+
8x2 + 2x − 5 and g = 3x6 + 5x4 − 4x2 − 9x + 21, whose incomplete polynomial
remainder sequence (prs) has degrees 8, 6, 4, 2, 1, 0.

The subresultant prs of f, g in Z [x] is

(29) x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5, 3x6 + 5x4 − 4x2 − 9x+ 21,

15x4 − 3x2 + 9, 65x2 + 125x − 245, 9326x − 12300, 260708,

where the coefficients of the polynomials in the second row of (29) are all deter-
minants (subresultants) of appropriately selected sub-matrices of sylvester1, of
dimensions 16× 16.

Given (29) we will compute the coefficients of the modified Euclidean and
the Euclidean prs’s with the help of (9) and (10).

First we compute the coefficients of the modified Euclidean prs. These
coefficients are the rational numbers shown in (30) below and were computed
using polynomial divisions in Q [x].

(30) x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5, 3x6 + 5x4 − 4x2 − 9x+ 21,

5x4/9− x2/9 + 1/3, 117x2/25 + 9x− 441/25,

233150x/19773 − 102500/6591,−1288744821/543589225.

To start the process of computing the coefficients of (30) using the subre-
sultants obtained from (29), note that for the polynomials f, g of our example we
have a0 = 1, ̺0 = 3 and p0 = 2, in which case s0 = 0, and ϕ1 = ⌊(s0 +1)/2⌋ = 0.

To compute the first non-zero coefficient of the first remainder, that is
5

9
,

we set i = 1, and from (29) we see that the value of the corresponding determi-

nant, Det1,1 (f, g), is 15 — since Det1,0 (f, g) = 0 and, hence, r
(1)
0 = 0. Then,

from (9) we have that

̺1 = r
(1)
1 =

(−1)ϕ1

̺p0+1
0

×Det1,1 (f, g) =
(−1)0

32+1
× 15 =

15

27
=

5

9
.

The other two coefficients of the first remainder are

r
(1)
3 =

(−1)ϕ1

̺p0+1
0

×Det1,3 (f, g) =
(−1)0

32+1
× (−3) =

−3

27
= −

1

9
,
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and

r
(1)
5 =

(−1)ϕ1

̺p0+1
0

×Det1,5 (f, g) =
(−1)0

32+1
× (9) =

9

27
=

1

3
.

Therefore, after the first remainder has been computed, we have ̺1 =
5

9
,

and p1 = 2, in which case s1 = 0 and ϕ2 = ⌊(s1 + 1)/2⌋ = 0.
To compute the first non-zero coefficient of the second remainder, that

is
117

25
, we set i = 2, and from (29) we see that the value of the corresponding

determinant, Det2,1 (f, g), is 65 — since Det2,0 (f, g) = 0 and, hence, r
(2)
0 = 0.

Then, from (9) we have that

̺2 = r
(2)
1 =

(−1)ϕ2

̺p1+1
1 ̺p0+p10

×Det2,1 (f, g) =
(−1)0

(59 )
2+132+2

× 65 =
117

25
.

The other two coefficients of the second remainder are

r
(2)
2 =

(−1)ϕ2

̺p1+1
1 ̺p0+p10

×Det2,2 (f, g) =
(−1)0

(59)
2+132+2

× 125 = 9,

and

r
(2)
3 =

(−1)ϕ2

̺p1+1
1 ̺p0+p10

×Det2,3 (f, g) =
(−1)0

(59 )
2+132+2

× (−245) = −
441

25
.

Therefore, after the second remainder has been computed, we have ̺2 =
117

25
and p2 = 2, in which case s2 = 0 and ϕ3 = ⌊(s2 + 1)/2⌋ = 0.

To compute the first non-zero coefficient of the third remainder, that is
233150

19773
, we set i = 3, and from (29) we see that the value of the corresponding

determinant, Det3,0 (f, g), is 9326. Then, from (9) we have that

̺3 = r
(3)
0 =

(−1)ϕ3

̺p2+1
2 ̺p1+p21 ̺p0+p10

×Det3,0 (f, g) =

(−1)0

(11725 )
2+1(59 )

2+232+2)
× 9326 =

233150

19773
,

and likewise the last coefficient of the third remainder is

r
(3)
1 =

(−1)ϕ3

̺p2+1
2 ̺p1+p21 ̺p0+p10

×Det3,1 (f, g) =

(−1)0

(11725 )
2+1(59 )

2+232+2)
× (−12300) = −

102500

6591
.
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Therefore, after the third remainder has been computed, we have ̺3 =
233150

19773
and p3 = 1, in which case s3 = 1 and ϕ4 = ⌊(s3 + 1)/2⌋ = 1.

To compute the constant term of the fourth remainder, that is

−
1288744821

543589225
, we set i = 4, and from (29) we see that the value of the cor-

responding determinant, Det4,0 (f, g), is 260708. Then from (9) we have that

̺4 = r
(4)
0 =

(−1)ϕ4

̺p3+1
3 ̺p2+p32 ̺p1+p21 ̺p0+p10

×Det4,0 (f, g) =

(−1)1

(23315019773 )
1+1(11725 )

2+1(59)
2+232+2

× 260708 = −
1288744821

543589225
.

Thus we have computed all the rational coefficients of the modified Eu-
clidean prs (30). Applying Lemma 1 to the modified Euclidean coefficients we
obtain the Euclidean prs

(31) x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5, 3x6 + 5x4 − 4x2 − 9x+ 21,

− 5x4/9 + x2/9− 1/3,−117x2/25− 9x+ 441/25,

233150x/19773 − 102500/6591,−1288744821/543589225.

Once we have computed the modified Euclidean and Euclidean prs’s in
Q [x] with correct signs, we can also compute these sequences in Z [x]6 to obtain,
respectively,

(32) x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5, 3x6 + 5x4 − 4x2 − 9x+ 21,

15x4 − 3x2 + 9, 65x2 + 125x− 245, 9326x − 12300,−260708,

and

(33) x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5, 3x6 + 5x4 − 4x2 − 9x+ 21,

− 15x4 + 3x2 − 9,−65x2 − 125x+ 245, 9326x − 12300,−260708.

Note that in both (32) and (33) the absolute values of the coefficients are
equal to the absolute values of the corresponding coefficients in the subresultant
prs (29) of f, g.

Moreover, the sign sequences of (31) and (33) are identical and so are the
sign sequences of (30) and (32).

6As explained elsewhere, [4], this is achieved by first performing polynomial divisions inQ [x],
in order to compute the correct signs of the remainders. Then, each remainder is computed in
Z [x] by multiplying it times the absolute value of the corresponding denominator of the first
fraction in (9) — or in (10).
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5. Conclusions. Given the polynomials f, g ∈ Z[x] our main result,
Theorem 1, establishes a one-to-one correspondence between the Euclidean and
modified Euclidean prs’s7 of f, g, on one hand, and the subresultant prs8 of
f, g, on the other. Therefore, we can uniquely compute the exact coefficients of
the Euclidean and modified Euclidean prs’s of f, g from the coefficients of the
subresultant prs of f, g, and vice versa.

Our work — which improves our earlier work on the subject [5] — com-
plements and extends the work by Pell and Gordon [19]. The terms “modified”
Euclidean prs as well “modified” subresultant prs were inspired by the title of
their paper.
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