
Serdica J. Computing 10 (2016), No 3–4, 245–262 Serdica
Journal of Computing

Bulgarian Academy of Sciences
Institute of Mathematics and Informatics

ALGORITHMS FOR COMPUTING THE LINEARITY AND
DEGREE OF VECTORIAL BOOLEAN FUNCTIONS∗

Stefka Bouyuklieva, Iliya Bouyukliev

Abstract. In this article, we study two representations of a Boolean func-
tion which are very important in the context of cryptography. We describe
Möbius and Walsh Transforms for Boolean functions in details and present
effective algorithms for their implementation. We combine these algorithms
with the Gray code to compute the linearity, nonlinearity and algebraic de-
gree of a vectorial Boolean function. Such a detailed consideration will be
very helpful for students studying the design of block ciphers, including PhD
students in the beginning of their research.

1. Introduction. S-boxes are key building blocks in the design of block
ciphers. They have to be chosen carefully to make the cipher resistant against all
kinds of attacks. In particular there are well studied criteria that a good S-box
has to fulfill to make the cipher resistant against differential and linear crypt-
analyses. The mathematical structure of an S-box is closely connected with the

ACM Computing Classification System (1998): F.2.1, F.2.2.
Key words: Boolean function, Walsh transform, S-box, linearity, algorithms.

*Partially supported by grant DN 02/2/13.12.2016 of the Bulgarian National Science Fund.



246 Stefka Bouyuklieva, Iliya Bouyukliev

Boolean functions, furthermore they are also called vectorial Boolean functions.
To compute their parameters we need effective algorithms for the calculation of
different elements and forms of the Boolean functions. The Algebraic Normal
Form and the Walsh spectrum of the Boolean functions are very important in
cryptographic applications. The Walsh spectrum measures the distance to the
linear and affine functions. Some authors calculate the linearity using the Walsh
spectrum, but others obtain the nonlinearity considering Reed-Muller codes. The
relation between the linearity and nonlinearity of a Boolean function is given by
an equality, and the minimum linearity corresponds to maximum nonlinearity. To
understand this connection better, we consider in more details the Truth Tables
of the linear Boolean functions. There are many publications in this direction
but it is difficult to find a detailed description of the effective methods and al-
gorithms for their computation, which gives the essence and the motivation in
the explanation. Such a detailed consideration would be very helpful for students
studying the design of block ciphers, including PhD students in the beginning of
their research. In this paper, we give a summary of the different basic approaches
and the corresponding algorithms for computing the Algebraic Normal Form and
the Walsh spectrum of a Boolean function, and also the linearity and degree of
an S-box.

A Boolean function f is a mapping from Fn
2 into F2. The lexicographic

order in Fn
2 is very important in the representations of the Boolean functions. For

the vectors in Fn
2 it is defined by

(v1, v2, . . . , vn) ≺ (w1, w2, . . . , wn)

⇐⇒ ∃j ∈ {1, 2, . . . , n} : vi = wi for i = 1, . . . , j − 1, and vj < wj .

Example 1. In F3
2 we have

(000) ≺ (001) ≺ (010) ≺ (011) ≺ (100) ≺ (101) ≺ (110) ≺ (111).

This ordering corresponds to the natural ordering of the integers if we
consider the bijection between the set {0, 1, 2, . . . , 2n − 1} of integers and Fn

2 ,
defined by

a ∈ {0, 1, 2, . . . , 2n − 1} 7−→ a = (a1, a2, . . . , an) ∈ Fn
2 ,

where a = a1.2
n−1 + a2.2

n−2 + · · · + an−1.2 + an. This shows that the vector
a ∈ Fn

2 is obtained as a binary representation of the integer a (with added zeros
on the left if necessary). Obviously,

a ≺ b ⇐⇒ a < b, a, b ∈ Z, 0 ≤ a, b ≤ 2n − 1.



Algorithms for Computing the Linearity and Degree . . . 247

By 〈u,w〉 we denote the dot product (or scalar product) of the vectors
v, w ∈ Fn

2 :

〈v, w〉 = v1w1⊕v2w2⊕· · ·⊕vnwn ∈ F2, v = (v1, v2, . . . , vn), w = (w1, w2, . . . , wn).

Any Boolean function f can be uniquely represented by a Truth Table
(TT), which is a vector whose coordinates are the function values of f after the
lexicographic ordering of the inputs. We denote the Truth Table considered as
a vector-column by [f ]. We mean by (Hamming) weight wt(f) and support of a
function f , the (Hamming) weight and the support of the corresponding vector
TT (f). Analogously, the (Hamming) distance between two functions (denoted
by dH) is equal to the (Hamming) distance between the corresponding Truth
Tables. If f and g are two Boolean functions, then (f ⊕ g)(x1, x2, . . . , xn) =
f(x1, x2, . . . , xn)⊕ g(x1, x2, . . . , xn) and therefore

TT (f ⊕ g) = TT (f)⊕ TT (g), [f ⊕ g] = [f ]⊕ [g].

Example 2. Let f : F3
2 → F2 be the Boolean function given by f(x1, x2, x3) =

x1x2x3 ⊕ x2x3 ⊕ x1 ⊕ 1. Since f(000) = 1, f(001) = 1, f(010) = 1, and
f(011) = f(100) = f(101) = f(110) = f(111) = 0, the Truth Table of f
is TT (f) = (11100000).

Another way of uniquely representing a Boolean function f is by means of
a polynomial in n variables from the ring F2[x1, . . . , xn]/(x

2
1⊕x1, . . . , x2n⊕xn) and

is called its algebraic normal form (ANF) [6]. The considered ring consists of all
binary polynomials in n variables whose monomials have the form xi1xi2 · · ·xik ,
1 ≤ i1 < i2 < · · · < ik ≤ n, 0 ≤ k ≤ n. Denote by xu the monomial xu1

1 x
u2
2 . . . xun

n

where u ∈ Z, 0 ≤ u ≤ 2n − 1, u = (u1, u2, . . . , un) ∈ Fn
2 . Then the Algebraic

Normal Form of f is a polynomial

(1) f(x) = f(x1, x2, . . . , xn) =
2n−1⊕
u=0

aux
u.

The ANF of a Boolean function f is also called Zhegalkin’s polynomial
[12]. The degree of ANF(f) is called the algebraic degree deg(f) of f , and it is
equal to the maximum number of variables of the terms xu, or

deg(f) = max{wt(u)|au = 1}, where f(x) =
2n−1⊕
u=0

aux
u.



248 Stefka Bouyuklieva, Iliya Bouyukliev

Example 3. Let f(x1, x2, x3) = x1x2x3 ⊕ x2x3 ⊕ x1 ⊕ 1. Then

f(x) = x0 ⊕ x3 ⊕ x4 ⊕ x7,

where x0 = 1, x3 = x01x
1
2x

1
3, x

4 = x1, and x7 = x1x2x3. The degree of f is 3.

The Boolean functions of algebraic degree at most 1 play a special role in
our investigations, therefore we present the following definition.

Definition 1. [3] A Boolean function in the form f(x) = a0⊕a1x1⊕a2x2⊕· · ·⊕
anxn is called affine. If a0 = 0, namely f(x) = a1x1 ⊕ a2x2 ⊕ · · · ⊕ anxn = 〈a, x〉,
where a = (a1, a2, . . . , an) and x = (x1, x2, . . . , xn), the function is called linear.

Obviously, ANF can be associated with the binary vector (a0, . . . , a2n−1) ∈
F2n

2 whose coordinates are the coefficients in (1) following the lexicographical
order. We will denote this vector considered as a column by [Af ].

In Section 2 we study the connection between TT and ANF and present
fast algorithms for calculating the vector [f ] knowing [Af ] and vice versa. Sec-
tion 3 is devoted to the Walsh transform of a Boolean function and methods for the
calculation of its Walsh spectrum. In Section 4 we introduce vectorial Boolean
functions (called S-boxes in cryptography) and discuss algorithms to calculate
some their parameters.

2. Truth Table and Algebraic Normal Form. In this Section we
present methods for calculating the Truth Table of a Boolean function if we know
its ANF and vice versa. We know that both translations are equivalent to the
Möbius transform [6]. The first method was given in the Introduction and it is
based on the definition of TT (see Example 2).

To obtain a more efficient algorithm, we use the following transformations

TT (f) = TT (
2n−1⊕
u=0

aux
u) =

2n−1⊕
u=0

auTT (x
u)

= a0TT (x
0)⊕ a1TT (x1)⊕ a2n−1TT (x2

n−1) = [Af ]
T


TT (x0)

TT (x1)
...

TT (x2
n−1)

 .

Considering vector-columns, we have

(2) [f ] = TT (f)T = ([x0] [x1] · · · [x2n−1])[Af ] = An[Af ],



Algorithms for Computing the Linearity and Degree . . . 249

where An = ([x0] [x1] · · · [x2n−1]). This proves the following theorem (see [3]):

Theorem 1. If f is a Boolean function in algebraic normal form given by the
vector-column [Af ] then [f ] = An[Af ] (mod 2) where [f ] is the Truth Table of f .

Let us focus on the matrix An. We begin with an example.

Example 4. Compose the matrices An for n ≤ 3. Obviously, A0 = (1).

• For n = 1 we have TT (x0) = (11), TT (x1) = (01),

• If n = 2 then TT (x0) = TT (1) = (1111), TT (x1) = TT (x2) = (0101),
TT (x2) = TT (x1) = (0011), TT (x3) = TT (x1x2) = (0001),

• For n = 3 the Truth Tables are TT (x0) = (11111111), TT (x1) = (01010101),
TT (x2) = (00110011), TT (x3) = (00010001), TT (x4) = (00001111),
TT (x5) = (00000101), TT (x6) = (00000011), TT (x7) = (00000001).

Therefore

A1 =

(
1 0
1 1

)
, A2 =


1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

 , A3 =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


.

Let n ≥ 2 and gu(x) = xu for u = 0, 1, . . . , 2n − 1. It is easy to see
that for u < 2n−1 we have u = (0, u2, . . . , un), hence gu(x) = xu2

2 . . . xun
n and

gu(0, x2, . . . , xn) = gu(1, x2, . . . , xn) = gu(x2, . . . , xn). It follows that TT (xu) =
(TT ′(xu)|TT ′(xu)), where TT ′(xu) is the Truth Table of xu2

2 . . . xun
n , considered as

a function of n−1 variables. In the case u ≥ 2n−1 we have u = (1, u2, . . . , un) and
so gu(x) = x1x

u2
2 . . . xun

n . Therefore gu(0, x2, . . . , xn) = 0 and gu(1, x2, . . . , xn) =
xu2
2 . . . xun

n = gu−2n−1(x2, . . . , xn). It follows that TT (xu) = (0 . . . 0|TT ′(xu−2n−1
)).

This proves that

An =

(
An−1 0
An−1 An−1

)
,

and the matrices An can be defined recursively as

A0 = (1), A1 =

(
1 0
1 1

)
, An =

(
An−1 0
An−1 An−1

)
= A1 ⊗An−1 for n ≥ 2,



250 Stefka Bouyuklieva, Iliya Bouyukliev

where ⊗ denotes the Kronecker product, and 0 is the zero matrix of a suitable
size.

Example 5. Let f(x1, x2, x3) = x1x2x3 ⊕ x2x3 ⊕ x1 ⊕ 1. Then

[f ] =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


·



1
0
0
1
1
0
0
1


=



1
1
1
0
0
0
0
0


.

Hence TT (f) = (11100000).

The matrix An is a binary matrix of size 2n × 2n with determinant 1 and
so An ∈ SL(2n,F2). It is easy to calculate that A2

n = I2n , therefore A−1n = An

and so [Af ] = An[f ]. This equality allows us to find the algebraic normal form of
a Boolean function presented by its Truth Table.

Corollary 2. If f is a Boolean function of n variables then [Af ] = An[f ].

In fact, the vector [Af ] can be considered as a Truth Table of another
Boolean function. The map µ which transforms the Boolean function f into
the Boolean function µ(f) presented by the Truth Table [Af ], is called binary
Möbius transform (some authors use also Zhegalkin transform, Positive polarity
Reed-Muller transform [1]). Obviously, µ is a bijection (permutation) in the set
of all Boolean functions in n variables. The binary Möbius transform can be
considered also as a permutation of the vectors in F2n

2 given by the matrix An.
More theoretical results on Möbius transforms are given in [10].

Studying the matrix An in details, we can see another very fast simple
algorithm of type divide-and-conquer to compute the ANF from the Truth Table
(and vice versa) called the Fast Möbius Transform. The algorithm can be illus-
trated by a butterfly diagram as shown in Example 6. For a Boolean function
of n variables, the algorithm consists of n steps and in any step a vector v(i) =
(v

(i)
0 , v

(i)
1 , . . . , v

(i)
2n−1) ∈ F2n

2 is obtained, i = 0, 1, . . . , n, v(0) = (a0, a1, . . . , a2n−1),
v(n) = TT (f). These vectors can be calculated recursively by the formula

(3) v
(j)

i.2j+s
= v

(j−1)
i.2j+s

, v
(j)

i.2j+s+2j−1 = v
(j−1)
i.2j+s

⊕ v(j−1)
i.2j+2j−1+s

,



Algorithms for Computing the Linearity and Degree . . . 251

where s = 0, 1, . . . , 2j−1 − 1, i = 0, . . . , 2n−j − 1, j = 1, 2, . . . , n. For the first and
the last steps we have

• v(1) = (a0, a0 ⊕ a1, a2, a2 ⊕ a3, . . . , a2n−2, a2n−2 ⊕ a2n−1);

• v(n)i = v
(n−1)
i , v(n)

i+2n−1 = v
(n−1)
i ⊕ v(n−1)

i+2n−1 , i = 0, . . . , 2n−1 − 1.

Example 6.

(x1, x2, x3) ANF Step 1 Step 2 Step 3
000 a0 −→ a0 −→ a0 −→ a0
001 a1 ↘ a0 ⊕ a1 −→ a0 ⊕ a1 −→ a0 ⊕ a1
010 a2 −→ a2 ↘ a0 ⊕ a2 −→ a0 ⊕ a2
011 a3 ↘ a2 ⊕ a3 ↘ a0 ⊕ a1 ⊕ a2 ⊕ a3 −→ a0 ⊕ a1 ⊕ a2 ⊕ a3
100 a4 −→ a4 −→ a4 ↘ a0 ⊕ a4
101 a5 ↘ a4 ⊕ a5 −→ a4 ⊕ a5 ↘ a0 ⊕ a1 ⊕ a4 ⊕ a5
110 a6 −→ a6 ↘ a4 ⊕ a6 ↘ a0 ⊕ a2 ⊕ a4 ⊕ a6
111 a7 ↘ a6 ⊕ a7 ↘ a4 ⊕ a5 ⊕ a6 ⊕ a7 ↘ a0 ⊕ a1 ⊕ · · · ⊕ a7

Instead of n + 1 vectors we can use only one array v. In the beginning
v = v(0). In any following step the array is partitioned into intervals (of length 2i

in the ith step), and the first half in the interval does not change, but the second
half is Xored with the first half. The complexity of this algorithm is O(n2n). A
more precise estimation is given in [1] where the basic time complexity is θ(n2n−1).

Algorithm 1: Fast Möbius Transform
Input: The Truth Table TT of the Boolean function f , with 2n entries
Output: The Algebraic Normal Form ANF of the Boolean function f ,

with 2n entries
size← 1; ANF ← TT ;
while (size < 2n) do

s← size; size← 2 ∗ size;
for pos from s− 1 by size to 2n − 1 do

for j from pos+ 1 to pos+ s do
ANF [j]← (ANF [j]⊕ANF [j − s])

end for
end for

end while.

3. Walsh transform. Associated with the Boolean function f is the
function (−1)f = 1 − 2f whose function values belong to the set {−1; 1}. The



252 Stefka Bouyuklieva, Iliya Bouyukliev

corresponding vector that contains the functions values of (−1)f is called the
Polarity Truth Table (PTT) of the function f [3]. In the following, the 2n × 1
column vector [(−1)f ] represents the transpose of PTT (f). We use PTT to obtain
the Walsh spectrum of a Boolean function.

Definition 2. [3] Walsh (Walsh–Hadamard) transform fW of the Boolean func-
tion f is the integer valued function fW : Fn

2 → Z, defined by

fW (a) =
∑
x∈Fn

2

(−1)f(x)⊕〈a,x〉.

The Walsh transform of a Boolean function f is the Fourier transform of
the signed function (−1)f (see [6]). The values of fW are called Walsh coefficients.
To understand Walsh coefficients, we calculate

f(x)⊕ 〈a, x〉 = f(x1, x2, . . . , xn)⊕ a1x1 ⊕ a2x2 ⊕ · · · ⊕ anxn = f(x)⊕ fa(x),

where fa(x) = a1x1 ⊕ a2x2 ⊕ · · · ⊕ anxn. Hence

fW (a) =
∑
x∈Fn

2

(−1)f(x)⊕〈a,x〉 =
∑

x∈Fn
2 ,f(x)=fa(x)

1 +
∑

x∈Fn
2 ,f(x)6=fa(x)

(−1)

= |{x ∈ Fn
2 , f(x) = fa(x)}| − |{x ∈ Fn

2 , f(x) 6= fa(x)}|
= 2n − 2dH(f, fa).

For any Boolean function f and any vector a ∈ Fn
2 we have −2n ≤

fW (a) ≤ 2n. The functions fa(x) = 〈a, x〉 and fa(x) = 〈a, x〉 ⊕ 1 have the
maximal and minimal Walsh coefficients, namely fWa (a) = 2n and fWa (a) = −2n.
Moreover, if f(x) = f(x)⊕ 1 then

f
W
(a) =

∑
x∈Fn

2

(−1)f(x)⊕〈a,x〉 = −
∑
x∈Fn

2

(−1)f(x)⊕〈a,x〉 = −fW (a).

Consider the vectors of Fn
2 ordered lexicographically. Then we can order

the Walsh coefficients fW (a) and consider them as coordinates of a vector. This
vector is called Walsh spectrum of the Boolean function and denoted by [Wf ]
(considered as a column). So [Wf ]

T = (fW (0), fW (1), . . . , fW (2n − 1)). As in
the previous section, we will present different methods to calculate the Walsh
spectrum of a Boolean function.



Algorithms for Computing the Linearity and Degree . . . 253

Example 7. Let us calculate the Walsh spectrum of f(x1, x2, x3) = 1 ⊕ x1 ⊕
x2x3 ⊕ x1x2x3 in two ways. For the first one we use directly the definition.

a 〈a, x〉 f(x)⊕ 〈a, x〉 TT (f(x)⊕ 〈a, x〉) fW (a)

000 0 1⊕ x1 ⊕ x2x3 ⊕ x1x2x3 (11100000) −3 + 5 = 2
001 x3 1⊕ x1 ⊕ x3 ⊕ x2x3 ⊕ x1x2x3 (10110101) −5 + 3 = −2
010 x2 1⊕ x1 ⊕ x2 ⊕ x2x3 ⊕ x1x2x3 (11010011) −5 + 3 = −2
011 x2 ⊕ x3 1⊕ x1 ⊕ x2 ⊕ x3 ⊕ x2x3 ⊕ x1x2x3 (10000110) −3 + 5 = 2
100 x1 1⊕ x2x3 ⊕ x1x2x3 (11101111) −7 + 1 = −6
101 x1 ⊕ x3 1⊕ x3 ⊕ x2x3 ⊕ x1x2x3 (10111010) −5 + 3 = −2
110 x1 ⊕ x2 1⊕ x2 ⊕ x2x3 ⊕ x1x2x3 (11011100) −5 + 3 = −2
111 x1 ⊕ x2 ⊕ x3 1⊕ x2 ⊕ x3 ⊕ x2x3 ⊕ x1x2x3 (10001001) −3 + 5 = 2

In the second way we calculate the Truth Tables of the functions fa(x)
and the distances to f(x).

a fa(x) = 〈a, x〉 TT (fa(x)) dH(f, fa) fW (a) = 8− 2dH(f, fa)

000 0 (00000000) 3 2
001 x3 (01010101) 5 −2
010 x2 (00110011) 5 −2
011 x2 ⊕ x3 (01100110) 3 2
100 x1 (00001111) 7 −6
101 x1 ⊕ x3 (01011010) 5 −2
110 x1 ⊕ x2 (00111100) 5 −2
111 x1 ⊕ x2 ⊕ x3 (01101001) 3 2

In both ways we obtain [Wf ]
T = (2,−2,−2, 2,−6,−2,−2, 2).

The Walsh spectrum of a Boolean function measures its distance to the
linear and affine functions. To understand this connection better, consider in
more details the Truth Tables of the linear Boolean functions. Let Sn be the
matrix whose columns are the Truth Tables of all linear Boolean functions ordered
lexicographically. Then

Sn = ([〈0, x〉] [〈1, x〉] · · · [〈2n − 1, x〉]) =


0 0 · · · 0
0 〈1, 1〉 · · · 〈2n − 1, 1〉
...

...
. . .

...
0 〈1, 2n − 1〉 · · · 〈2n − 1, 2n − 1〉


Obviously, Sn(i, j) = 〈i, j〉 = 〈j, i〉 = Sn(j, i), 0 ≤ i, j ≤ 2n − 1, which

proves that this matrix is symmetric and therefore its rows are the Truth Tables
of all linear functions. Making a connection with Coding Theory, we see that



254 Stefka Bouyuklieva, Iliya Bouyukliev

actually this matrix consists of all codewords in the [2n, n, 2n−1] binary simplex
code with a zero coordinate added in the beginning of each codeword.

If we take 〈u, x〉 instead of xu for u = 0, 1, . . . , 2n − 1 and replace the
column [xu] by [〈u, x〉], the matrix An goes to Sn. So we can expect that as
in the previous section, after some transformations we can have a more effective
algorithm.

fW (a) =
∑
x∈Fn

2

(−1)f(x)⊕〈a,x〉 =
∑
x∈Fn

2

(−1)〈a,x〉(−1)f(x)

⇒ [Wf ] =


fW (0)

fW (1)
...

fW (2n − 1)

 =



∑
x∈Fn

2

(−1)f(x)∑
x∈Fn

2

(−1)〈1,x〉(−1)f(x)

...∑
x∈Fn

2

(−1)〈2n−1,x〉(−1)f(x)



=


1 1 · · · 1

1 (−1)〈1,1〉 · · · (−1)〈1,2n−1〉
...

...
. . .

...
1 (−1)〈2n−1,1〉 · · · (−1)〈2n−1,2n−1〉




(−1)f(0)

(−1)f(1)
...

(−1)f(2n−1)


= Hn[(−1)f ],

where Hn = ((−1)〈i,j〉)i,j is a 2n × 2n matrix. It is obvious that the matrix Hn

can be obtained from Sn by replacing zeros with 1’s and ones with −1’s.
Taking in mind that the first coordinate of i is 0 if i < 2n−1 and 1 other-

wise, we have

〈i, j〉 =


〈i, j − 2n−1〉, if i < 2n−1, j ≥ 2n−1

〈i− 2n−1, j − 2n−1〉, if i ≥ 2n−1, j < 2n−1

1⊕ 〈i− 2n−1, j − 2n−1〉, if i ≥ 2n−1, j ≥ 2n−1

It follows that

Hn =

(
Hn−1 Hn−1
Hn−1 −Hn−1

)
,

and the matrices Hn can be defined recursively as

H0 = (1), H1 =

(
1 1
1 −1

)
, Hn =

(
Hn−1 Hn−1
Hn−1 −Hn−1

)
= H1⊗Hn−1 for n ≥ 2.



Algorithms for Computing the Linearity and Degree . . . 255

The matrices Hn are Hadamard matrices of Sylvester type called also Sylvester
matrices or Walsh matrices [5]. Using that Hn is symmetric and HnH

T
n = 2nI2n

we obtain that H−1n =
1

2n
Hn.

Example 8. Let TT (f) = (11100000). Then

[Wf ] =



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


·



−1
−1
−1
1
1
1
1
1


=



2
−2
−2
2
−6
−2
−2
2


.

To calculate the Walsh spectrum of a Boolean function, one can use also
the Fast Walsh transform which is similar to Fast Möbius transform and the
corresponding algorithm has the same complexity O(n2n). We use again a vector
of length 2n which we transform in n steps. In the beginning v(0) = [(−1)f ]. In
the i-th step the vector (the table) is partitioned into intervals of length 2i, as
the first half in any interval is the sum of the two halves and the second is their
subtraction. The recurrent relation now is

(4) v
(j)

i2j+s
= v

(j−1)
i2j+s

+ v
(j−1)
i2j+2j−1+s

, v
(j)

i2j+s+2j−1 = v
(j−1)
i2j+s

− v(j−1)
i2j+2j−1+s

,

whereby s = 0, 1, . . . , 2j−1 − 1, i = 0, . . . , 2n−j − 1, j = 1, 2, . . . , n, and v(j) is the
vector obtained in the jth step. A pseudo code of the corresponding algorithm is
given below. A somewhat different version is given in [2].

Example 9.

(x1, x2, x3) [f ] Step 1 Step 2 Step 3
000 t0 ↘ t0 + t1 ↘ t0 + t1 + t2 + t3 ↘ t0 + t1 + t2 + t3 + t4 + t5 + t6 + t7
001 t1 ↗ t0 − t1 ↘ t0 − t1 + t2 − t3 ↘ t0 − t1 + t2 − t3 + t4 − t5 + t6 − t7
010 t2 ↘ t2 + t3 ↗ t0 + t1 − t2 − t3 ↘ t0 + t1 − t2 − t3 + t4 + t5 − t6 − t7
011 t3 ↗ t2 − t3 ↗ t0 − t1 − t2 + t3 ↘ t0 − t1 − t2 + t3 + t4 − t5 − t6 + t7
100 t4 ↘ t4 + t5 ↘ t4 + t5 + t6 + t7 ↗ t0 + t1 + t2 + t3 − t4 − t5 − t6 − t7
101 t5 ↗ t4 − t5 ↘ t4 − t5 + t6 − t7 ↗ t0 − t1 + t2 − t3 − t4 + t5 − t6 + t7
110 t6 ↘ t6 + t7 ↗ t4 + t5 − t6 − t7 ↗ t0 + t1 − t2 − t3 − t4 − t5 + t6 + t7
111 t7 ↗ t6 − t7 ↗ t4 − t5 − t6 + t7 ↗ t0 − t1 − t2 + t3 − t4 + t5 + t6 − t7



256 Stefka Bouyuklieva, Iliya Bouyukliev

Algorithm 2: Fast Walsh Transform
Input: The Polarity Truth Table PTT of the Boolean function f ,

with 2n entries
Output: The Walsh spectrum Wf of the Boolean function f , with 2n entries
size← 1; Wf ← PTT ;
while (size < 2n) do

s← size; size← 2 ∗ size;
for pos from s− 1 by size to 2n − 1 do

for j from pos+ 1 to pos+ s do
temp← −Wf [j] +Wf [j − s];
Wf [j − s]←Wf [j] +Wf [j − s];
Wf [j]← temp;

end for
end for

end while.

4. Linearity and nonlinearity of a Boolean function. The
linearity of a Boolean function is defined via the Walsh transform as

Definition 3. [6] Linearity Lin(f) of the Boolean function f is the maximum
absolute value of an Walsh coefficient of f :

Lin(f) = max{|fW (a)| | a ∈ Fn
2}.

For example, the linearity of the function f given by TT (f) = (11100000)
is 6 (see Example 8). It is very easy to calculate the linearity of a Boolean function
if we have its Walsh spectrum. The maximum possible value of Lin(f) is 2n and
is attained if and only if f is an affine function. Moreover, the Parseval’s Equality∑
a∈Fn

2

(fW (a))2 = 22n gives that Lin(f) ≥ 2n/2 [6]. Functions attaining this lower

bound are called bent functions.
Another important parameter which is closely connected with linearity is

nonlinearity.

Definition 4. [6] Nonlinearity nl(f) of the Boolean function f is the minimum
Hamming distance from f to the nearest affine function:

nl(f) = min{dH(f, g) | g − affine function}.



Algorithms for Computing the Linearity and Degree . . . 257

Example 10. Let f(x1, x2, x3) = x1x2x3 ⊕ x2x3 ⊕ x1 ⊕ 1 ∈ F3. Obviously
nl(f) ≥ 1, since f is not an affine function. On the other hand

dH(f, x1 ⊕ 1) = wt(f ⊕ x1 ⊕ 1) = wt(x1x2x3 ⊕ x2x3) = 1.

Hence nl(f) = 1.

The relation between the linearity and nonlinearity of the Boolean func-
tion f is given by the equality Lin(f) = 2n − 2nl(f) [6]. The minimum linearity
corresponds to maximum nonlinearity.

The nonlinearity and even the Walsh spectrum of a Boolean function can
be calculated using linear codes. Actually, the set of the Truth Tables of all affine
Boolean functions coincides with the set of codewords of the Reed-Muller code
of first order RM(1, n). This is a linear [2n, n + 1, 2n−1] code with a generator
matrix

G(RM(1, n)) =


TT (1)
TT (x1)
TT (x2)

...
TT (xn)

 ,

and the codewords are the linear combinations of the rows of the matrix with
coefficients from F2. The code RM(1, n) is obtained from the simplex code by
adding the all ones vector to its generator matrix. This means that besides all
codewords from the matrix Sn, the Reed-Muller code RM(1, n) contains their
complements.

Example 11. The Reed-Muller code of first order of length 8 has a generator
matrix

G(RM(1, 3)) =


11111111
00001111
00110011
01010101

 .

Let C be a linear code of length n and v ∈ Fn
2 . The Hamming distance

from v to the code is defined by dH(v, C) = min{dH(v, x) | x ∈ C}. This def-
inition and the structure of the Reed-Muller code show that the nonlinearity of
the Boolean function f ∈ Fn is equal to the distance from its Truth Table TT (f)
to RM(1, n), i. e., nl(f) = dH(TT (f), RM(1, n)). This means that we can use
algorithms for calculating the distance from a vector to a code (or for minimum
distance of a linear code) to find the nonlinearity of a Boolean function without



258 Stefka Bouyuklieva, Iliya Bouyukliev

having the Walsh spectrum. Some algorithms for calculation of linearity, nonlin-
earity and other important parameters of a Boolean function are given in [4].

5. Linearity and nonlinearity of vectorial Boolean functions.
The term S-box is most often used in cryptography, but is dedicated to the vec-
torial functions whose role is to introduce confusion into the system.

Definition 5. [7] Let n and m be two positive integers. The functions from
Fn
2 to Fm

2 are called (n;m)-functions. When the numbers m and n are not speci-
fied, (n;m)-functions are called multi-output Boolean functions, vectorial Boolean
functions or S-boxes.

A vectorial Boolean function F : Fn
2 → Fm

2 can be represented by the vec-
tor (f1, f2, . . . , fm), where fi are Boolean functions of n variables, i = 1, 2, . . . ,m.
The functions fi are called the coordinate functions of the S-box. S-boxes play a
fundamental role for the security of nearly all modern block ciphers. They have
to be chosen carefully to make the cipher resistant against all kinds of attacks. In
particular there are well studied criteria that a good S-box has to fulfill to make
the cipher resistant against differential and linear cryptanalyses.

In order to study the cryptographic properties of an S-box related to the
linearity, we need to consider all non-zero linear combinations of the coordinates of
the S-box, denoted by Sb = b·F = b1f1⊕· · ·⊕bmfm, where b = (b1, . . . , bm) ∈ Fm

2 .
These are the component functions of the S-box F . The Walsh spectrum of F is
defined as the collection of all Walsh spectra of the component functions of F .
The linearity and nonlinearity of F are defined as (see [7])

Lin(F ) = max
b∈Fm

2 \{0}
Lin(b · F ), nl(F ) = min

b∈Fm
2 \{0}

nl(b · F ).

Another important parameter related to S-boxes is the algebraic degree of
the (n,m) S-box F . Some authors define it as deg(F ) = max

b∈Fm
2

deg(b · F ) (see for

example [3] and [7]), but others use as deg(F ) the minimum among these degrees
[8]. Therefore we define a maximal and a minimal algebraic degree of the vectorial
Boolean function F as:

degmax(F ) = max
b∈Fm

2

deg(b · F ) = max{deg(f1), . . . ,deg(fm)},

degmin(F ) = min
b∈Fm

2 \{0}
deg(b · F ).



Algorithms for Computing the Linearity and Degree . . . 259

Algorithm 3: Minimal Algebraic Degree of an S-box
Input: The m× 2n array SAlg representing the S-box
Output: The minimal algebraic degree degmin of the S-box
for i from 1 to m do t[i]← i+ 1;
for j from 0 to 2n − 1 do Ac[j]← 0 end for;
i← 1; degmin← n;
while (i 6= m+ 1) do

for j from 0 to 2n − 1 do
Ac[j]← Ac[j]⊕ SAlg[i][j];

end for;
degAc← 0; j ← 0;
for j from 0 to 2n − 1 do

if (Ac[Ord_deg[j]] = 1) then degAc←Weights_deg[j]; break end if;
end for;
if (0 < degAc < degmin) then degmin← degAc end if;
end for;
t[0]← 1; t[i− 1] = t[i]; t[i]← i+ 1;
i = t[0];

end while.

It is easy to calculate the maximal algebraic degree as it is the maximum
among the degrees of the coordinate functions. To calculate the linearity and the
minimal algebraic degree of an S-box, we need a fast algorithm for generating all
non-zero linear combinations of given binary vectors. To do this we use the binary
Gray code (algorithms implementing the binary Gray code are given in [11]).

Algorithm 3 calculates the minimal algebraic degree of an S-box given by
the matrix SAlg of size m × 2n where the rows are the algebraic normal forms
of the coordinate Boolean functions presented by their vectors of coefficients.
The array t shows how the Gray code works. The vector Ac is the algebraic
normal form of the current component function and degAc is its algebraic degree.
We use also two auxiliary arrays Ord_deg and Weights_deg with 2n entries
each. The array Ord_deg consists of the integers 0, 1, . . . , 2n − 1 but ordered so
that wt(Ord_deg[i]) ≥ wt(Ord_deg[i+ 1]), i = 0, 1, . . . , 2n − 2, and the array
Weights_deg consists of the corresponding weights, namely Weights_deg[i] =
wt(Ord_deg[i]), i = 0, 1, . . . , 2n − 1.

In the generation of the auxiliary arrays Ord_deg and Weights_deg we
use a recursive algorithm. Algorithm 4 shows how we could generate these two
arrays.



260 Stefka Bouyuklieva, Iliya Bouyukliev

Algorithm 4: Generation of the auxiliary arrays.
Input: The integer n.
Output: The arrays Ord_deg and Weights_deg with 2n entries.
Function Gen_Ord_deg(lc, level, ind, j);
if level = lc then

count← count+ 1;
Ord_deg[count]← ind;
Weights_deg[count]← n− level;
Return;

end if;
for i from j to n− 1 do

indh← ind⊕ 2i;
if (level < lc) then Gen_Ord_deg(lc, level + 1, indh, i+ 1) end if;

end for;
end Gen_Ord_deg;
Main Function
count← −1; ind← 2n − 1;
for lc from 0 to n− 1 do Gen_Ord_deg(lc, 0, ind, 0) end for;
Ord_deg[count+ 1]← 0;
Weights_deg[count+ 1]← 0.

end Main.

Example 12. For n = 3 we have

Ord_deg = (7, 6, 5, 3, 4, 2, 1, 0), Weights_deg = (3, 2, 2, 2, 1, 1, 1, 0).

Algorithm 5 calculates the linearity of an S-box presented by an m × 2n

matrix whose rows are the Truth Tables of the coordinate Boolean functions. The
vectors TT and PTT in the algorithm are the Truth Table and Polarity Truth
Table of the current component function.

6. Conclusions. We presented five algorithms for calculating some of
the parameters of Boolean functions and vectorial Boolean functions that are
most important in cryptography. The first two algorithms implement the fast
Möbius and fast Walsh transforms for Boolean functions. Algorithms 3 and 5
compute the algebraic degree and linearity of a vectorial Boolean function (S-
box). These algorithms are useful for researchers studying the design of block
ciphers, especially for PhD students.



Algorithms for Computing the Linearity and Degree . . . 261

Algorithm 5: Linearity of an S-box
Input: STT—an m× 2n matrix whose rows are the Truth Tables

of the coordinate functions
Output: The linearity Lin of the S-box
for i from 1 to m do t[i]← i+ 1;
for j from 0 to 2n − 1 do TT [j]← 0 end for;
i← 1; Lin← 0;
while (i 6= m+ 1) do

for j from 0 to 2n − 1 do
TT [j]← TT [j]⊕ STT [i][j];
if (TT [j] = 1) then PTT [j]← −1 else PTT [j]← 1 end if;

end for;
FastWalshTransform(PTT , Wf );
for j from 0 to 2n − 1 do

if (Abs(Wf [j]) > Lin) then Lin← Abs(Wf [j]) end if;
end for;
t[0]← 1; t[i− 1] = t[i]; t[i]← i+ 1;
i = t[0];

end while.

REFERENCES

[1] Bakoev V., K. Manev. Fast computing of the positive polarity Reed-
Muller transform over GF(2) and GF(3). In: Proc. of the XI Intern. Workshop
ACCT, Pamporovo, Bulgaria, 2008, 13–21.

[2] Bouyukliev I., D. Bikov. Applications of the binary representation of
integers in algorithms for boolean functions. In: Mathematics and education
in mathematics, Proceedings of the Forty Fourth Spring Conference of the
Union of Bulgarian Mathematicians, 2015, 161–166.

[3] Braeken A. Cryptographic Properties of Boolean Functions and S-Boxes.
PhD thesis, Katholieke Universiteit Leuven, Belgium, 2006.

[4] Çalik Ç. Computing Cryptographic Properties of Boolean Functions from
the Algebraic Normal Form Representation. PhD thesis, Middle East Tech-
nical University, Ankara, Turkey, 2013.

[5] Cameron P. Encyclopaedia of Design Theory, 2004.
http://designtheory.org/library/encyc/, 23 October 2017.



262 Stefka Bouyuklieva, Iliya Bouyukliev

[6] Carlet C. Boolean Functions for Cryptography and Error Correcting
Codes. In: C. Crama, P. L. Hammer (eds). Boolean Models and Methods
in Mathematics, Computer Science, and Engineering. Cambridge University
Press, 2010, 257–397.

[7] Carlet C. Vectorial Boolean Functions for Cryptography. In: C. Crama,
P. L. Hammer (eds). Boolean Models and Methods in Mathematics, Com-
puter Science, and Engineering. Cambridge University Press, 2010, 398–469.

[8] Fuller J. Analysis of affine equivalent Boolean functions for cryptography.
PhD thesis, Queensland University of Technology, Australia, 2003.

[9] MacWilliams J., N. J. A. Sloane. The Theory of Error-Correcting
Codes. North-Holland, Amsterdam, 1977.

[10] Pieprzyk J., H. Wang, X.-M. Zhang. Möbius transforms, coincident
Boolean functions and non-coincidence property of Boolean functions. Int.
J. Comput. Math., 88 (2011), No 7, 1398–1416.

[11] Reingold E. M., J. Nievergelt, N. Deo. Combinatorial Algorithms:
Theory and Practice. Prentice-Hall, Englewood Cliffs, NJ, 1977.

[12] Zhegalkin I. I. On the Technique of Calculating Propositions in Symbolic
Logic. Matematicheskii Sbornik, 43 (1927), 9–28.

Stefka Bouyuklieva
Faculty of Mathematics and Informatics
Veliko Tarnovo University
Veliko Tarnovo, Bulgaria
e-mail: stefka@uni-vt.bg

Iliya Bouyukliev
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
P. O. Box 323
Veliko Tarnovo, Bulgaria
e-mail: iliyab@math.bas.bg

Received July 17, 2016
Final Accepted February 6, 2017


