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Abstract. We introduce a modification of the familiar cut function by
replacing the linear part in its definition by a polynomial of degree p + 1
obtaining thus a sigmoid function called generalized cut function of degree
p + 1 (GCFP). We then study the uniform approximation of the (GCFP)
by smooth sigmoid functions such as the logistic and the shifted logistic
functions. The limiting case of the interval-valued Heaviside step function
is also discussed which imposes the use of Hausdorff metric. Numerical
examples are presented using CAS MATHEMATICA.

1. Introduction. In this paper we introduce a modification of the
familiar cut function by replacing the linear part in its definition by a polynomial
of degree p + 1 obtaining thus a differentiable sigmoid function called general-
ized cut function of degree p + 1 (GCFP). We then discuss some computational,
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modelling and approximation issues related to several classes of sigmoid func-
tions. Sigmoid functions find numerous applications in various fields related to
life sciences, chemistry, physics, artificial intelligence, etc. In fields such as signal
processes, pattern recognition, machine learning, artificial neural networks, sig-
moid functions are also known as “activation functions”. A practically important
class of sigmoid functions is the class of cut functions including the Heaviside step
function as a limiting case. Cut functions are continuous but they are not differ-
entiable at the two endpoints of the interval where they increase; step functions
are not continuous but they are Hausdorff continuous (H-continuous). Section
2 contains preliminary definitions and motivations. In Section 3 we study the
uniform and Hausdorff approximation [10] of the (GCFP) by logistic functions.
We find an expression for the error of the best uniform approximation. Numerical
examples are presented throughout the paper using the computer algebra system
MATHEMATICA.

2. Preliminaries.
2.1. Sigmoid functions. In this work we consider sigmoid functions of

a single variable defined on the real line, that is functions of the form R −→ R.
Sigmoid functions can be defined as bounded monotone non-decreasing func-
tions on R. One usually makes use of normalized sigmoid functions defined as
monotone non-decreasing functions s(t), t ∈ R, such that lim s(t)t→−∞ = 0 and
lim s(t)t→∞ = 1 (in some applications the left asymptote is assumed to be −1:
lim s(t)t→−∞ = −1).

In the fields of neural networks and machine learning sigmoid-like func-
tions of many variables are used, familiar under the name activation functions.

2.2. The cut and the step functions. The cut function is the simplest
piece-wise linear sigmoid function. Let ∆ = [γ−δ, γ+δ] be an interval on the real
line R with centre γ ∈ R and radius δ ∈ R. A cut function is defined as follows:

Definition. The cut function cγ,δ is defined for t ∈ R by

(1) cγ,δ(t) =



















0, if t < γ − δ,

t− γ + δ

2δ
, if |t− γ| < δ,

1, if t > γ + δ.

Note that the slope of function cγ,δ(t) on the interval ∆ is 1/(2δ) (the slope is
constant in the whole interval ∆).
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Two special cases and a limiting case are of interest for our discussion in
the sequel.

Special case 1. For γ = 0 we obtain the special cut function on the
interval ∆ = [−δ, δ]:

(2) c0,δ(t) =



















0, if t < −δ,

t+ δ

2δ
, if −δ ≤ t ≤ δ,

1, if δ < t.

Special case 2. For γ = δ we obtain the special cut function on the
interval ∆ = [0, 2δ]:

(3) cδ,δ(t) =



















0, if t < 0,

t

2δ
, if 0 ≤ t ≤ 2δ,

1, if 2δ < t.

A limiting case. If δ → 0, then cδ,δ tends (in Hausdorff sense) to the
Heaviside step function

(4) c0 = c0,0(t) =











0, if t < 0,

[0, 1], if t = 0,

1, if t > 0,

which is an interval-valued function [1], [2], [7], [11].

To prove that (3) tends to (4) let h be the H-distance using a square (box)
unit ball between the step function (4) and the cut function (3).

By the definition of H-distance h is the side of the unit square, hence we
have 1− cδ,δ(h) = h, that is 1− h/(2δ) = h, implying

h =
2δ

1 + 2δ
= 2δ +O(δ2).

For the sake of simplicity throughout the paper we shall work with the
special cut function (3) instead of the more general (arbitrary shifted) cut function
(1); this special choice will not lead to any loss of generality concerning the results
obtained.
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2.3. The generalized cut sigmoid function of degree p + 1. The
generalized cut function of degree p + 1 (GCFP) is obtained by substituting the
linear function in the definition of the cut function by a polynomial of degree
p+ 1. Let us define first a special case of the (GCFP). Consider the function

(5) C
∗

0,δ(t) =















−1, if t < −δ,

kt ((p + 1)δp − tp), if −δ ≤ t ≤ δ,

1, if δ < t,

for some k, δ > 0 and p, where p is an even number. From C
∗ ′

0,δ(t) = k(p+1)(δp−

tp) we obtain C
∗ ′

0,δ(t) ≥ 0, for −δ ≤ t ≤ δ, as well as C
∗ ′

0,δ(±δ) = 0.

Let us choose k so that C
∗

0,δ(δ) = 1. We have C
∗

0,δ(δ) = kpδp+1 = 1, hence

k =
1

pδp+1
.

Substituting k in (5) we obtain

(6) C
∗

0,δ(t) =



















−1, if t < −δ,

1

pδp+1
t ((p+ 1)δp − tp), if −δ ≤ t ≤ δ,

1, if δ < t,

noticing that the slope of (6) at t = 0 is κ =
p+ 1

pδ
.

Fig. 1. The (GCFP) function (7) with δ = 0.4 and p = 4
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Fig. 2. The (GCFP) function (7) with δ = 0.25 and p = 2

Fig. 3. The (GCFP) function (8) with δ = 0.2, γ = 0.4 and p = 2

Besides we have C
∗

0,δ(−δ) = −1 and (6) is differentiable at the points ±δ.
From presentation (6) we can pass to the normalized (GCFP) having as

left asymptote 0 instead of −1:

(7) C∗

0,δ(t) =



















0, if t < −δ,

1

2pδp+1
t ((p + 1)δp − tp) +

1

2
, if −δ ≤ t ≤ δ,

1, if δ < t.

Note that the (steepest) slope of (7) at t = 0 is now κ =
p+ 1

2pδ
.

Our last step is to generalize the function (7) up to a function cγ,δ(t)
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shifted by γ.

This can be acheved by substituting t by t− γ in (7) as follows:
(8)

C∗

0,δ(t) =



















0, if t < γ − δ,

1

2pδp+1
(t− γ) ((p + 1)δp − (t− γ)p) +

1

2
, if γ − δ ≤ t ≤ γ + δ,

1, if γ + δ < t.

3. Approximation of the (GCFP) sigmoid function by lo-
gistic functions. Define the logistic (Verhulst) function v on R as [12]

(9) vk(t) =
1

1 + e−4kt
.

Theorem 1. The function vk(t) defined by (9) with k =
p+ 1

2pδ
: i) is

the logistic function of best uniform one-sided approximation to function C∗

0,δ(t)
defined by (7); ii) approximates the (GSFP) function C∗

0,δ(t) in uniform metric
with an error

(10) ρ = ρ(C∗, v) =
1

1 + e
2(p+1)

p

.

P r o o f. Let us choose k so that the slope of (9) at t = 0 is k =
p+ 1

2pδ
.

Then, noticing that the largest uniform distance between the (GCFP) and
logistic functions is achieved at the endpoints of the underlying interval [−δ, δ],
we have:

(11) ρ = vk(−δ)− C∗

0,δ(−δ) =
1

1 + e4kδ
=

1

1 + e
2(p+1)

p

.

This completes the proof of the theorem. �

Theorem 2. The function vk(t) with k =
p+ 1

2pδ
is the logistic function

of best Hausdorff one-sided approximation to function C∗

0,δ(t) defined by (7). The
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Fig. 4. The approximation of the (GCFP) function (7) by logistic function with
δ = 0.25, k = 3 and p = 2

Fig. 5. The approximation of the (GCFP) function (8) by shifted logistic function with

δ = 0.35, γ = 0.8, k =
3

4δ3
(δ2 − γ2)Sign(δ2 − γ2) and p = 2

function vk(t), k =
p+ 1

2pδ
, approximates function C∗

0,δ(t) in H-distance with an

error h = h(C∗, v) that satisfies the relation:

(12) ln
1− h

h
=

2(p+ 1) + 4khp

p
.
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P r o o f. Using δ =
p+ 1

2pk
we can write δ + h =

p+ 1 + 2hpk

2pk
, resp.:

v(−δ − h) =
1

1 + e
2(p+1+2hpk)

p

.

The H-distance h using square unit ball (with a side h) satisfies the relation
v(−δ − h) = h, which implies (12).

This completes the proof of the theorem. �

Theorem 3. For the H-distance h(k) the following holds (for p = 2 and
k ≥ 14; for p = 4 and k ≥ 9: for p = 6, 8 and k ≥ 7; for p = 10, 12, . . . , 44 and
k ≥ 6; for p ≥ 46 and k ≥ 5)

(13)
1

4k + 1
< h(k) <

ln(4k + 1)

4k + 1
.

P r o o f. We need to express h in terms of k, using (12). Let us examine
the function

f(h) =
2(p + 1)

p
+ 4hk − ln(1− h)− ln

1

h
.

From

f ′(h) = 4k +
1

1− h
+

1

h
> 0

we conclude that function f is strictly monotone increasing.
Consider function

g(h) =
2(p+ 1)

p
+ h(1 + 4k)− ln

1

h
.

Then g(h)− f(h) = h+ln(1−h) = O(h2) using the Taylor expansion ln(1−h) =
−h+O(h2).

Hence g(h) approximates f(h) with h → 0 as O(h2).
In addition g′(h) = 1 + 4k + 1/h > 0, hence function g is monotone

increasing. Further

g

(

1

1 + 4k

)

=
2(p + 1)

p
+ 1− ln(1 + 4k) < 0,

g

(

ln(4k + 1)

4k + 1

)

=
2(p + 1)

p
+ ln ln(1 + 4k) > 0.
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This completes the proof of the theorem. �

Remark. We can obtain improved upper and lower bounds for h(k). The
proof follows the ideas given in [9] and will be omitted.

Define the shifted logistic function vγ on R as

(14) vγ(t) =
1

1 + e−k(t−γ)
.

Note that the slope of (8) at t = 0 is κ =
p+ 1

2pδp+1
(δp − γp).

Fig. 5 visualizes the approximation of the (GCFP) function (8) by shifted

logistic function (14) with δ = 0.35, γ = 0.8, k =
3

4δ3
(δ2 − γ2)Sign(δ2 − γ2) for

p = 2.
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Fig. 6. The test provided on our control example
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For other results, see [3], [9], [8], [4], [6], [5].
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