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Abstract. We classify up to multiplier equivalence maximal (v, 3, 1) optical
orthogonal codes (OOCs) with v ≤ 61 and maximal (v, 3, 2, 1) OOCs with
v ≤ 99.

There is a one-to-one correspondence between maximal (v, 3, 1) OOCs,
maximal cyclic binary constant weight codes of weight 3 and minimum dis-
tance 4, (v, 3; ⌊(v − 1)/6⌋) difference packings, and maximal (v, 3, 1) binary
cyclically permutable constant weight codes. Therefore the classification of
(v, 3, 1) OOCs holds for them too. Some of the classified (v, 3, 1) OOCs are
perfect and they are equivalent to cyclic Steiner triple systems of order v
and (v, 3, 1) cyclic difference families.
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1. Introduction. Optical code-division multiple access (OCDMA) sys-
tems attract much attention as they have several benefits such as asynchronous
transmission, flexibility in network design, accommodation of burst traffic, etc.
A main problem connected with the use of OCDMA systems is the search for
powerful code structures that allow a large number of users to communicate si-
multaneously with a low error probability. Among the most famous codes consid-
ered to date are optical orthogonal codes (OOCs). They also have applications in
mobile radio, frequency-hopping spread-spectrum communications, radar, sonar
signal design, constructing protocol-sequence sets for the M-active-out-of T users
collision channel without feedback, etc.

Since the introductory paper by Chung, Salehi and Wei [8] the optical
orthogonal codes construction problem has been intensively studied in many pa-
pers, e.g., [1, 2, 5, 6, 7, 9, 14, 16]. The maximal size of a (v, 3, 1) OOC is known
for each v [4]. Constructions of (v, 3, 2, 1) OOCs are known for many values of v
[15]. We do not know, however, classification results about OOCs of weight 3. In
our paper we classify maximal (v, 3, 1) and (v, 3, 2, 1) OOCs with small v.

2. Basic definitions and relations to other combinatorial ob-
jects. For the basic concepts and notations concerning the classified in this paper
combinatorial objects we follow [5], [10] and [16]. We denote by Zv the ring of
integers modulo v and by ⊕ and ⊙ addition and multiplication in it.

Definition 1. A (v, k, λa, λc) optical orthogonal code (OOC) C is a col-
lection of {0, 1} sequences of length v and Hamming weight k such that:

v−1
∑

i=0

x(i)x(i ⊕ j) ≤ λa, 1 ≤ j ≤ v − 1(1)

v−1
∑

i=0

x(i)y(i ⊕ j) ≤ λc, 0 ≤ j ≤ v − 1(2)

for all pairs of distinct sequences x, y ∈ C.

A (v, k, λa, λc) OOC can also be defined in the following way:

Definition 2. A (v, k, λa, λc) OOC C is a collection C = {C1, . . . , Cs}
of k-subsets (codeword-sets) of Zv, such that any two distinct translates of a
codeword-set share at most λa elements, and any two translates of two distinct
codeword-sets share at most λc elements:

|Ci ∩ (Ci ⊕ t)| ≤ λa, 1 ≤ i ≤ s, 1 ≤ t ≤ v − 1(3)
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|Ci ∩ (Cj ⊕ t)| ≤ λc, 1 ≤ i < j ≤ s, 0 ≤ t ≤ v − 1(4)

The second definition is more convenient for our construction method.
When we further talk of codewords, we will actually mean codeword-sets.

Condition (1) or (3) is called the auto-correlation property and (2) or (4)
the cross-correlation property.

A (v, k, λa, λc) OOC with λa = λc = λ is also denoted by (v, k, λ) OOC.

The size of C is the number s of its codewords.

Consider a codeword C = {c1, c2, . . . , ck}. Denote by △′C the multiset of
the values of the differences ci − cj , i 6= j, i, j = 1, 2, . . . , k and by △C its
corresponding set. The type of C is the number of elements of △C, i.e., the number
of different values of its differences. The auto-correlation property means that at
most λa differences are the same. In particular all the differences of a codeword
of a (v, k, 1) OOC are different. For λc = 1 the cross-correlation property means

that ∆C1

⋂

∆C2 = ∅ for two codewords C1 and C2.

A (v, k, λa, 1) OOC is perfect if

∣

∣

∣

∣

∣

s
⋃

i=1

∆Ci

∣

∣

∣

∣

∣

= v − 1, that is if all nonzero

differences are covered. If λa = λc = 1 the size of a perfect (v, k, 1) OOC is
exactly (v − 1)/k(k − 1).

Example. Codewords of a perfect (13, 3, 1) OOC

{1100100000000} or {0, 1, 4}

{1010000010000} or {0, 2, 8}

△C1 = {1, 3, 4, 9, 10, 12}
△C2 = {2, 5, 6, 7, 8, 11}

We proceed with the definitions of combinatorial structures which are
closely related to OOCs.

Definition 3. A binary cyclically permutable constant weight (CPCW)
(v, k, λ) code is a code of minimum Hamming distance 2(k − λ) whose codewords
have weight k, length v, are cyclically distinct and of full cyclic order.

A (v, k, λ) OOC is equivalent to a (v, k, λ) cyclically permutable constant
weight (CPCW) code.

Definition 4. An (n,w, d) binary constant weight code (CWC) of length
n, weight w and minimum distance d is a collection of binary vectors of length n
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(codewords), which have exactly w nonzero positions and the Hamming distance
between any two codewords is at least d.

A CWC is cyclic if the cyclic shift of each codeword is a codeword too. A
cyclic CWC corresponds to an (n,w,wd/2) OOC.

Definition 5. Let B be a subset of an additive group G. We denote by
∆B the list of all possible differences b− b′ with (b, b′) an ordered pair of distinct
elements of B. More generally, if F = B1, B2, . . . , Bn is a collection of subsets
of G, then the list of differences from F , denoted by ∆F , is the multiset obtained
by joining ∆B1, . . . ,∆Bn. F is said to be a (v, k, 1) difference family (DF) if G
has order v, every Bi is of size k ≥ 3, and ∆F covers every non-zero element of
G exactly once. If further, G = Zv, then this difference family is said to be cyclic
(CDF).

A (v, k, 1) CDF can be obtained from any perfect (v, k, 1) OOC.

Definition 6. Let V = {Pi}
v
i=1

be a finite set of points, and B = {Bj}
b
j=1

a finite collection of k-element subsets of V , called blocks. D = (V,B) is a design
with parameters t-(v,k,λ) if any t-subset of V is contained in exactly λ blocks of
B. A t-(v,k,λ) design is cyclic if it has an automorphism α permuting its points
in one cycle, and it is strictly cyclic if each block orbit under this automorphism
is of length v (no short orbits).

A 2-(v, 3, 1) design is also called a Steiner triple system and denoted by
STS(v). Steiner triple systems are a particularly interesting class of designs
with many different applications in Coding Theory (see for instance [17] for their
connection with perfect codes or [13] for their connection with conflict-avoiding
codes).

A perfect (v, k, 1) OOC corresponds to a cyclic 2-(v, k, 1) design and to a
cyclic (v, k, 1) difference family. In particular perfect (v, 3, 1) OOCs correspond
to cyclic STS(v).

Among the OOCs with given parameters those which have more code-
words are more interesting from application point of view and research efforts are
directed there.

Let Φ(v, k, λa, λc) be the largest possible size of a (v, k, λa, λc) OOC. OOCs
of size Φ(v, k, λa, λc) are called maximal.

For codes with λa = λc = 1 we know the following upper bound [8]

Φ(v, k, 1) ≤

⌊

v − 1

k(k − 1)

⌋

.

OOCs which reach this bound are called optimal.
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It has been proved in [4] that optimal (v, 3, 1) OOCs exist iff v 6= 6t + 2
for t ≡ 2 or 3 (mod 4). For v ≡ 6t+2 and t ≡ 2 or 3 (mod 4) there exist (v, 3, 1)

OOCs of size

⌊

v − 1

k(k − 1)

⌋

− 1.

Since we want to classify all OOCs with given parameters, we need to
define an equivalence relation on them.

Two (v, k, λa, λc) OOCs C and C ′ are isomorphic if there exists a permu-
tation of Zv, which maps the collection of translates of each codeword of C to the
collection of translates of a codeword of C ′.

The automorphisms of the cyclic group of order v map each circulant ma-
trix of order v to a circulant matrix of order v. That is why multiplier equivalence
is defined for cyclic combinatorial objects.

Two (v, k, λa, λc) OOCs are multiplier equivalent if they can be obtained
from one another by an automorphism of Zv and replacement of codewords by
some of their translates.

There can exist OOCs which are isomorphic, but multiplier inequivalent.

3. Motivation and main results. Classification results about OOCs
can be used in direct practical applications as well as in constructions of OOCs
with other parameters [7, 8, 9]. Sometimes for the construction of new infinite
families, OOCs with certain parameters and some additional properties are needed
and classification results can also be very useful. In this sense classification results
for OOCs of small lengths might contribute to future investigations on codes with
other higher parameters.

We do not know classification results for (v, 3, 1) OOCs, but there are
classification results for cyclic Steiner triple systems of order v with v ≤ 57 [11].
Among them the designs with v = 19, 25, 31, 37, 43, 49, and 55 are strictly cyclic
and equivalent to (v, 3, 1) OOCs, so the number of maximal OOCs for these values
of v is known. The number of maximal perfect (61, 3, 1) OOCs and cyclic STS(61)
is known from the classification of (61, 3, 1) CDFs in [3].

In the present paper we classify up to multiplier equivalence maximal
(v, 3, 1) and (v, 3, 2, 1) OOCs. This way we also repeat the existing classification
results for (61, 3, 1) CDFs and for cyclic STS(v) with v = 19, 25, 31, 37, 43, 49,
and 55.

4. Classification method. Computer search for constructing OOCs
has been used by other authors before ([6, 8]). Our algorithm is essentially dif-
ferent from those considered in [6] and [8] since our aim is not only to find one
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optimal OOC for each v, but to make a classification too. We classify the (v, 3, 1)
and (v, 3, 2, 1) OOCs up to multiplier equivalence applying back-track search with
minimality test on the partial solutions [12, section 7.1.2]. We use a modification
of the algorithm used in [2].

All possibilities for codewords are first arranged with respect to a lexico-
graphic order defined on them. We assume that c1 < c2 < c3 for each codeword
C = {c1, c2, c3}. Let us define a lexicographic order on the codewords implying
that: C ′ = {c′1, c

′

2, c
′

3} is lexicographically smaller than C ′′ = {c′′1 , c
′′

2 , c
′′

3} if the
type of C ′ is smaller than that of C ′′, or if the types of the two codewords are the
same and c′i = c′′i for i < j and c′j < c′′j for some j.

Without loss of generality we assume that each codeword is lexicograph-
ically smaller than the codewords of its translates. This means that c1 = 0 and
when we say that C1 is mapped to C2 by the permutation ϕ, we mean that C2 is
the smallest translate of ϕ(C1).

Classification algorithm

Step 1. We construct an array L - that contains all sets of 3 elements
of Zv which satisfy the auto-correlation property and are smaller than all their
translates. They are found in lexicographic order.

• Let ϕ0, ϕ1, . . . , ϕm−1 be the automorphisms of Zv, where ϕ0 is the iden-
tity. These automorphisms are applied to each constructed set.

• If some of them maps it to a smaller set, the current set is not added.

• If the current set is added to the array, the m − 1 sets to which it is
mapped by ϕ1, ϕ2, . . . , ϕm−1 are added right after it.

Step 2. After the construction of the array, back-track search is applied
to choose the codewords of the OOC among all these possibilities for them.

• At each stage of the back-track search we add a codeword to the current
partial solution choosing it from the array L. In order to make the classification
feasible we speed up the algorithm by performing a minimality test and a type
test.

Minimality test: we check if the current partial solution can be mapped
to a lexicographically smaller one by the automorphisms of Zv. If it can, an
equivalent partial solution has already been considered, and we look for the next
possibility for the current codeword.

The ordering of all the possible codewords described above allows repeated
sets in the array L, but makes the minimality test of the partial solutions very
fast.

Type test: Suppose that r codewords of the code have already been found.
Let T be the type of the r-th codeword, and let d be the number of distinct
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differences covered by the r codewords. We only look for codes with a definite
number s of codewords. The type of the remaining codewords (of the array we
choose them from) is at least as big as that of the r-th chosen one. That is why
d+ (s− r)T ≤ v − 1. If this does not hold, the next possibility for the (r − 1)-st
codeword is considered.

5. Classification Results. We present in Table 1 the results of the
classification up to multiplier equivalence of maximal (v,3,1) OOCs with 13 ≤
v ≤ 61. The value of v is followed by p if the codes are perfect. The number
of codewords of the maximal OOCs is denoted by s. We do not include in the
classifications the codes with only one codeword and v < 13.

Table 1. Multiplier inequivalent maximal (v,3,1) OOCs

v s OOCs

13p 2 1
14 1 3
15 2 5
16 2 3
17 2 5
18 2 12
19p 3 4
20 2 23
21 3 25
22 3 20
23 3 40
24 3 107

v s OOCs

25p 4 12
26 4 36
27 4 128
28 4 164
29 4 400
30 4 1376
31p 5 80
32 5 242
33 5 1212
34 5 1360
35 5 6762
36 5 12784

v s OOCs

37p 6 820
38 5 35120
39 6 15678
40 6 19794
41 6 68784
42 6 185376
43p 7 9508
44 6 621888
45 7 257886
46 7 231616
47 7 1137664
48 7 2712394

v s OOCs

49p 8 157340
50 8 550528
51 8 3642484
52 8 4204688
53 8 21282112
54 8 54243072
55p 9 3027456
56 9 8660480
57 9 68638238
58 9 74974976
59 9 446472448
60 9 1450970880
61p 10 42373196

The classification of maximal (v, 3, 2, 1) OOCs with 10 ≤ v ≤ 99 is
presented in Table 2 where for each v we give the size s of the maximal OOCs,
the number of multiplier inequivalent maximal OOCs, and the number of the
perfect ones among them. As in Table 1 we do not include codes with s = 1.

All computer results are obtained by our own C++ programs. For the
number of perfect OOCs we obtain exactly the number of the related cyclic
STS(v) with v ≤ 57, presented in [11] and of the (61, 3, 1) CDFs obtained in [3].

Files with the OOCs we construct can be downloaded from
http://www.moi.math.bas.bg/~tsonka. The classification presented above shows
that for some lengths there are thousands of nonisomorphic codes. All of them
are available online to everybody who is interested and further investigations of
their properties are possible. The classified codes can be of use both directly in
relevant applications, and as parts of constructions of new infinite families.
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Table 2. Multiplier inequivalent maximal (v,3,2,1) OOCs

v s OOCs perfect

10 2 1 0
11 2 1 0
12 2 5 0
13 3 1 1
14 3 1 0
15 3 2 0
16 3 6 2
17 4 1 1
18 4 2 1
19 4 3 2
20 4 15 8
21 4 14 4
22 5 1 0
23 5 2 1
24 5 8 8
25 6 2 2
26 6 1 0
27 5 90 16
28 6 14 10
29 7 1 1
30 7 2 1
31 7 2 2
32 7 4 4
33 7 21 8
34 8 1 0
35 8 4 2
36 8 8 8
37 9 1 1
38 9 1 0
39 9 2 0

v s OOCs perfect

40 8 3618 1896
41 10 1 1
42 10 2 1
43 10 2 2
44 9 5452 2464
45 10 40 32
46 11 1 0
47 11 2 1
48 10 5136 3416
49 11 70 44
50 12 1 0
51 12 4 0
52 11 7452 4956
53 13 1 1
54 13 2 1
55 13 2 0
56 12 1344 1344
57 13 79 56
58 14 1 0
59 14 3 2
60 13 7168 6176
61 15 1 1
62 15 1 0
63 14 2160 1152
64 13 6666368 3236352
65 16 10 10
66 16 2 1
67 16 5 4
68 15 1600 1600
69 16 102 72

v s OOCs perfect

70 17 1 0
71 17 4 3
72 15 8378752 5930240
73 17 205 160
74 18 1 0
75 18 8 0
76 16 18781060 12069564
77 18 192 156
78 19 2 1
79 19 6 5
80 17 10985704 8577912
81 18 258201 140240
82 20 1 0
83 20 5 4
84 18 17634048 13703296
85 21 16 16
86 21 1 0
87 21 2 0
88 19 1263616 1263616
89 21 305 250
90 22 2 1
91 22 8 4
92 20 7221248 6407168
93 22 86 80
94 23 1 0
95 23 6 4
96 21 245760 245760
97 24 1 1
98 24 1 0
99 23 4930 3930
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