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Abstract. In recent years, rough set approach computing issues con-
cerning reducts of decision tables have attracted the attention of many re-
searchers. In this paper, we present the time complexity of an algorithm
computing reducts of decision tables by relational database approach. Let
DS = (U,C ∪ {d}) be a consistent decision table, we say that A ⊆ C is a
relative reduct of DS if A contains a reduct of DS. Let s = 〈C ∪ {d} , F 〉
be a relation schema on the attribute set C ∪ {d}, we say that A ⊆ C is
a relative minimal set of the attribute d if A contains a minimal set of d.
Let Qd be the family of all relative reducts of DS, and Pd be the family of
all relative minimal sets of the attribute d on s. We prove that the prob-
lem whether Qd ⊆ Pd is co-NP-complete. However, the problem whether
Pd ⊆ Qd is in P .
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1. Introduction. Attribute reduction is an important problem in the

preprocessing of the data mining process. The aim of attribute reduction is to

remove redundant attributes in order to improve the performance of data mining

algorithms. In decision tables, attribute reduction is the process of finding a

reduct which keeps the classification ability of decision tables. For consistent

decision tables, paper [2] shows that the time complexity of the problem to find

all reducts is exponential in the number of attributes in the worst case.

In this paper, we present our research on the time complexity of algo-

rithms concerning reducts of consistent decision tables. Let DS = (U,C ∪ {d})
be a consistent decision table where U is the set of objects and C is the set of

conditional attributes. We say that A ⊆ C is a relative reduct of DS if A contains

a reduct of DS. Let s = 〈C ∪ {d} , F 〉 be a relation schema on the attribute set

C ∪ {d}. We say that A ⊆ C is a relative minimal set of the attribute d if A

contains a minimal set of d. Let Qd be the family of all relative reducts of DS,

and Pd be the family of all relative minimal sets of the attribute d on s. In this

paper, we prove that the problem whether Qd ⊆ Pd is co-NP-complete. However,

the problem whether Pd ⊆ Qd is polynomial time.

Now, we present some basic concepts about information systems, decision

table, reduct in rough set theory [6] and some concepts in relational databases

[1, 2]. Firstly, we summarize some basic concepts in rough set theory [6].

Definition 1.1. An information system is IS = (U,A) in which U is a

finite and non-empty set of objects; A is a finite and non-empty set of attributes.

Each attribute a ∈ A determines a map: a : U → Va where Va is the value range

of attribute a ∈ A.

For any u ∈ U , a ∈ A we will denote the value of attribute a on object u

by a(u). If B = {b1, b2, . . . , bk} ⊆ A is a subset of attributes then the set of bi (u)

is denoted as B(u). Therefore, if u and v are two objects in U then B(u) = B(v)

if and only if bi (u) = bi (v) for any i = 1, . . . , k.

Definition 1.2. A decision table is an information system DS =

(U,C ∪D) where A = C ∪ D, C is the set of condition attributes, D is the

set of decision attributes and C ∩D = ∅.

Without loss of generality, suppose that D consists of the only one de-

cision attribute d. Therefore, we consider the decision table DS = (U,C ∪ d)

where {d} /∈ C. A decision table DS is consistent if and only if the functional

dependency C → {d} is true, which means that for any u, v ∈ U , if C(u) = C(v)

then d(u) = d(v). Conversely, DS is inconsistent.
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Definition 1.3. Let DS = (U,C ∪ d) be a consistent decision table and

an attribute R ⊆ C. R is called a reduct of DS if:

1) For any u, v ∈ U , if R(u) = R(v) then d(u) = d(v).

2) For any E ⊂ R, there exists u, v ∈ U such that E(u) = E(v) and

d (u) 6= d (v).

The above reduct is called Pawlak reduct. Let RED(C) is the set of all

reducts of C.

In what follows, we introduce some basic concepts in relational database

theory.

Let R = {a1, . . . , an} be a finite set of attributes and let D(ai) be the

set of all possible values of attribute ai; a relation r over R is the set of tuples

{h1, . . . , hm} where hj : R → ∪
ai∈R

D (ai) , 1 ≤ j ≤ m is a function that hj (ai) ∈

D (ai).

Let r = {h1, . . . , hm} be a relation over R = {a1, . . . , am}. Any pair of

attribute sets A,B ⊆ R is called the functional dependency (FD for short) over

R, and denoted by A → B, if and only if

(∀hi, hj ∈ r) ((∀a ∈ A) (hi (a) = hj (a)) ⇒ (∀b ∈ B) (hi (b) = hj (b))) .

The set Fr = {(A,B) : A,B ⊆ R,A → B} is called the full family of func-

tional dependencies in r. Let P (R) be the power set of attribute set R. A family

F = P (R) × P (R) is called an f-family over R if and only if for all subsets of

attributes A,B,C,D ⊆ R the following properties hold:

(1) (A,A) ∈ F.

(2) (A,B) ∈ F, (B,C) ∈ F ⇒ (A,C) ∈ F.

(3) (A,B) ∈ F, A ⊆ C,D ⊆ B ⇒ (C,D) ∈ F.

(4) (A,B) ∈ F, (C,D) ∈ F ⇒ (A ∪ C,B ∪D) ∈ F.

Clearly Fr is an f-family over R. It is also known [1] that if F is an f-

family over R then there is a relation r such that Fr = F . Let us denote by F+

the set of all FDs, which can be derived from F by using the rules (1)–(4).

A pair s = (R,F ), whereR is a set of attributes and F is a set of FDs on R,

is called the relation scheme. For any A ⊆ R, the set A+ =
{

a : A → {a} ∈ F+
}

is called the closure of A on s. It is clear that A → B ∈ F+ if and only if B ⊆ A+.

Similarly, A+
r =

{

a : A → {a} ∈ F+
}

is called the closure of A on relation r.

Let s = (R,F ) be a relation scheme over R and a ∈ R. The set

Ks
a = {A ⊆ R : A → {a} , B : (B → {a}) (B ⊂ A)}
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Ks
a is called the family of minimal sets of the attribute a over s. Similarly, the

set

Kr
a = {A ⊆ R : A → {a} , B ⊆ R : (B → {a}) (B ⊂ A)}

Kr
a is called the family of minimal sets of the attribute a over r.

Recall that a family K ⊆ P (R) is a Sperner system on R if for any

A, B ∈ K implies A 6⊂ B. It is clear that Kr
a, K

s
a are Sperner systems over R.

Let K be a Sperner system. We defined the set K−1 as follows:

K−1 = {A ⊂ R : (B ∈ K) ⇒ (B 6⊂ A)} and if (A ⊂ C) ⇒ (∃B ∈ K) (B ⊆ C) .

It is easy to see that K−1 is a Sperner system on R, too. If K is a Sperner

system over R as the set of all minimal keys of relation r (or relation scheme s)

then K−1 is the set of subsets of R which does not contain the elements of K
and which is maximal for this property. K−1 is called antikeys. If K is a Sperner

system over R as the family of minimal sets of the attribute a over r (or s), in

other words K = Kr
a (or K = Ks

a), then K−1 = {Kr
a}

−1 (or K−1 = {Ks
a}

−1) is the

family of maximal subsets of R which are not the family of minimal sets of the

attribute a, defined as [1]:

{Kr
a}

−1 =
{

A ⊆ R : A → {a} /∈ F+
r , A ⊂ B ⇒ B → {a} ∈ F+

r

}

,

{Ks
a}

−1 =
{

A ⊆ R : A → {a} /∈ F+, A ⊂ B ⇒ B → {a} ∈ F+
}

.

2. Results. Firstly, we prove that the problem whether Qd ⊆ Pd is

co-NP-complete where Qd is the family of all relative reducts of the consistent

decision table DS = (U,C ∪ d), Pd is the family of all relative minimal sets of

the attribute d on the relation scheme s = 〈C ∪ {d} , F 〉.

Lemma 2.1 ([2]). Let DS = (U,C ∪ d) be a consistent decision ta-

ble where C = {c1, c2, . . . , cn}, U = {u1, u2, . . . , um}. Let us consider r =

{u1, u2, . . . , um} on the attribute set R = C ∪ {d}. We set

Er = {Eij : 1 ≤ i < j ≤ m} where Eij = {a ∈ R : a (ui) = a (uj)}
Md = {A ∈ Er : d /∈ A,B ∈ Er : d /∈ B,A ⊂ B}
Then Md = (Kr

d)
−1

, where Kr
d is the family of all minimal sets of the

attribute d on relation r.

Lemma 2.2. Let DS = (U,C ∪ d) be a consistent decision table, then

(Kr
d)

−1
is a Sperner system over C. Conversely, if K is a Sperner system over
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C then there exists a consistent decision table DS = (U,C ∪ d) such that K =

(Kr
d)

−1
.

P r o o f. According to the definition,

{Kr
a}

−1 =
{

A ⊆ R : A → {a} /∈ F+
r , A ⊂ B ⇒ B → {a} ∈ F+

r

}

.

It is obvious that (Kr
d)

−1 is a Sperner system. Conversely, If K is a Sperner

system over C, suppose that K = {A1, . . . , Am}, we construct a decision table

DS = (U,C ∪ d) as follows:

We set U = {u0, u1, . . . , um}, R = C ∪ {d}.
1) For all c ∈ C, we set u0 (c) = 0. Set u0 (d) = 0

2) For all i (i = 1, . . . ,m), we set ui (c) = 0 if c ∈ Ai; ui (c) = i otherwise.

Set ui (d) = i for all i (i = 1, . . . ,m).

We set Er = {Eij : 1 ≤ i < j ≤ m} where Eij = {a ∈ R : a (ui) = a (uj)}.
We set Md = {A ∈ Er : d /∈ A,B ∈ Er : d /∈ B,A ⊂ B}.
We can see that Md = {A1, . . . , Am}. According to Lemma 2.1 we have

Md = (Kr
d)

−1. Consequently, K = (Kr
d)

−1. �

Lemma 2.3. Suppose that K = {K1,K2, . . . ,Kt} is a Sperner system

over C. We construct the relation scheme sd = 〈R,F 〉, where R = C ∪ {d},
F = {Ki → {d} , i = 1, . . . , t}. Then K = Ks

d − {d}.

P r o o f. (1) For any K ∈ K we have K → {d} ,K 6= {d} and K is a

Sperner system, so there is no K ′ ⊂ K such that K ′ → {d}. Consequently, K is

a minimal set of the attribute d on sd, meaning that K ∈ Ks
d − {d}.

(2) Conversely, for any K ∈ Ks
d − {d} we have K → {d} ,K 6= {d} and

there is no K ′ ⊂ K such that K ′ → {d}.
It is easy to see that for any Ki ∈ K we have K 6⊂ Ki, because if K ⊂ Ki

then K → {d} is not true according to the definiton of relation schema sd.

Moreover, for any Ki ∈ K we have Ki 6⊂ K, because if Ki ⊂ K then K is not

a minimal set of the attribute d over sd. Consequently, we can conclude that

T = {K1,K2, . . . ,Kt} is a Sperner system over C. According to the definition of

closure of the set K on relation schema sd we have K+ = K. That is K → {d}
is not true. This is in contradiction with the assumption that K is a minimal set

of the attribute d on sd. So K ∈ K where K = {K1,K2, . . . ,Kt}.
From (1) and (2) we have K = Ks

d − {d}. �

It is known that problem A is co-NP-complete if and only if the problem

negative A is NP-complete.
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It is known that the below problem Subset Delimiter Complementarity

(SDC) [4] is co-NP-complete:

Let T be a finite set and there are two families P = {P1, P2, . . . , Pn},
Q = {Q1, Q2, . . . , Qm} of subsets of T . The problem of determining that for

any A ⊆ T there exists Pi such that Pi ⊆ A or Qj such that A ⊆ Qj for any

i = 1, . . . , n, j = 1, . . . ,m is co-NP-complete. The paper [4] shows that if Q is a

Sperner system then the problem SDC is still co-NP-complete.

Now, we present a co-NP-complete problem concerning reducts of decision

tables.

Definition 2.1. Let DS = (U,C ∪ d) be a consistent decision table; we

say that A ⊆ C is a relative reduct of DS if A contains a reduct of DS. Let

s = 〈C ∪ {d} , F 〉 be a relation schema; we say that A ⊆ C is a relative minimal

set of the attribute d if A contains a minimal set B of d, where B ∈ Ks
d − {d}.

Let Qd be the family of all relative reducts of DS, and Pd be the family of all

relative minimal sets of the attribute d on s.

Theorem 2.1. Let DS = (U,C ∪ d) be a consistent decision table and

s = 〈C ∪ {d} , F 〉 be a relation schema. The Qd ⊆ Pd problem is co-NP-complete.

P r o o f. For any A ⊆ C ∪ {d}, we have a polynomial algorithm to check

whether A is a relative reduct of DS or not. Based on the algorithm to find

closure A+ [1] and the definition of relative minimal set of the attribute d on

relation schema s (Definition 2.1), it is easy to construct a polynomial algorithm

to check whether A is a relative minimal set of d on s or not. Then we choose

an arbitrary subset A ⊆ C ∪ {d} such that A is a relative reduct of DS but A is

not a relative minimal set of d on s. Obviously, this algorithm is a polynomial

nondeterministic algorithm. Consequently, our problem is co-NP. Now let us

consider the problem in [4] for the set T and the family P = {P1, P2, . . . , Pn},
Q = {Q1, Q2, . . . , Qm}, where Q is a Sperner system on T .

We denote P 1 = {Pi ∈ P |6 ∃Pj ∈ P : Pi ⊂ Pj , 1 ≤ i ≤ n, 1 ≤ i ≤ n}.

It is clear that P 1 is the set of all maximal elements of P and P 1 is a

Sperner system on T . We can calculate P 1 from P by a polynomial algorithm

with the number of P and T . It is easy to see that
{

T, P 1, Q
}

is an equivalent

instant of {T, P,Q}. So, we can assume that P is a Sperner system on T . We

can prove that the problem SDC is transformed to our problem by a polynomial

algorithm.
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Set R = T ∪ {d}, s = 〈R,F 〉, where F = {P1 → {d} , . . . , Pn → {d}}.

We construct the decision table DS = (U,C ∪ d) as follows: set U =

{u0, u1, . . . , um}.

– For any c ∈ T , set c (u0) = 0 and d (u0) = 0. – For any c ∈ T ,

i = 1, . . . ,m, set c (ui) = 0 if c ∈ Qi, conversely c (ui) = i. Set d (ui) = i

It is clear that s is constructed in polynomial time according to |T | and
|P |, |Q|.

According to Lemma 2.3 we have P = Ks
d − {d}. By the definition of

relative minimal set A of d on the relation schema s, there exists Pi such that

Pi ⊆ A, where 1 ≤ i ≤ n. According to Lemma 2.2 we have Q = (Kr
d)

−1, so A is

a relative reduct of DS if and only if for any i = 1, . . . ,m we have A 6⊂ Qi.

If Qd is the family of all relative reducts of DS and Pd is the family

of all relative minimal sets of the attribute d on s, we have Qd ⊆ Pd if and

only if for any A ⊆ T and i = 1, . . . , n, A 6⊂ Qi there exists Pj such that

Pj ⊆ A. Consequently, we can conclude that the problem SDC is tranformed to

our problem by a polynomial algorithm. Theorem 2.1 is proved. �

Now, we prove that the Pd ⊆ Qd problem is polynomial time.

Definiton 2.2. Let R = {a1, . . . , an}. Set P (R) = {A : A ⊆ R} and

I ⊆ P (R). Then I is called a meet-semilattice if R ∈ I and A,B ∈ I ⇒ A∩B ∈ I.

Suppose that M ∈ P (R). Set M+ =
{

∩M1 : M1 ⊆ M
}

, then we say that

M is generator of I if M+ = I.

Note that R ∈ M+ but R is not a element of M . We denote:

NI =
{

A ∈ I : A 6= ∩
{

A1 ∈ I ∧A ⊂ A1
}}

In [3], J. Demetrovics shows that NI is the only minimal generator of I.

This means that for any generator N1 of I we have NI ⊆ N1).

Lemma 2.4. Let s = 〈R,F 〉 be a relation schema. Set Zs =
{

A+ : A ⊆ R
}

.

Ns is a minimal generator of Zs. Set

Ms = {A : A ∈ Ns, d /∈ A,B ∈ Ns : d /∈ B ∧A ⊂ B} .

Then we have (Kr
d)

−1 = Ms.

P r o o f. According to the method to construct the decision table in

Theorem 2.1 we have E1i = Ai−1 where 2 ≤ i ≤ t + 1 and Eij = A1i ∩ A1j

where 2 ≤ i < j ≤ t + 1, so Eij = E1i ∩ E1j or Eij ⊂ E1i, Eij ⊂ E1j where
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2 ≤ i < j ≤ t+ 1. Therefore, the set M = {E1i : 1 ≤ i ≤ t+ 1} has the property

∀A ∈ M : there is no B ∈ M such that A ⊂ B. According to the definition of

maximal equality system Mr over r, we have Ms = Mr = {E1i : 2 ≤ i ≤ t+ 1}.
Hence, Ms = Md = (Ks

d)
−1 = {A1, A2, . . . , At} (I). In next content, we prove

Ms = (Kr
d)

−1 where Kr
d is the family of all minimal sets of the attribute d over r.

i) For A ∈ Ms we have A+ = A, and A does not contain d so A+ does

not contain d, hence A → {d} /∈ F+. Moreover, if there is a B such that

A ⊂ B, according to the method to calculate the closure of an attribute set

over a relation we have B+ = R and B+ contains d, or B → {d} ∈ F+. So

(Kr
d)

−1 = MAX
(

F+
r , d

)

where

MAX
(

F+
r , d

)

=
{

A ⊆ R : A → {d} /∈ F+, A ⊂ B ⇒ B → {d} ∈ F+
}

so we conclude A ∈ (Kr
d)

−1.

ii) Conversely, if A ∈ (Kr
d)

−1 then obviously A 6= R. If there is a B such

that A ⊂ B and A → B, then by the definition of antikeys we have B → d and

A → d. This is a contradiction. So there does not exist a B such that A ⊂ B

and A → B, that is A+ = A holds. Moreover, also according to the definition

of antikeys, if there exists B1 6= R such that A ⊂ B1, then B1 → d or d ⊂ B1+.

Therefore, A is the maximal set which satisfies A = A+ and A does not contain

d (1). On the other hand, over the relation r constructed, for any B ∈ Ms we

have B 6= R, B = B+ and B does not contain d. If there is a D such that B ⊂ D

then D+ = R or d ⊂ D+. Therefore, Mr is the set of all maximal sets B which

satisfies B = B+ and B does not contain d (2). From (1) and (2) we can conclude

A ∈ Ms.

From i) and ii) we obtain Ms = (Kr
d)

−1. �

Lemma 2.5. Let DS = (U,C ∪ d) be a consistent decision table and let

s = 〈C ∪ {d} , F 〉 be a relation schema. Suppose that Md = {M1, . . . ,Mt}. Then

we have Pd ⊆ Qd if and only if M+
i 6= R for any 1 ≤ i ≤ t.

P r o o f. (1) Suppose that M+
i 6= R for any 1 ≤ i ≤ t. Set (Ks

d)
−1 =

{A1, . . . , Ap}. According to the definition of (Ks
d)

−1, if B ∈ Pd then B 6⊆ Aj

for any 1 ≤ j ≤ p. According to Lemma 2.4 and for any Mi ∈ Md, 1 ≤ i ≤ t

and M+
i 6= R, there exists Aj , 1 ≤ j ≤ p such that Mi ⊆ Aj . Then, B 6⊆ Mi,

1 ≤ i ≤ t. According to Lemma 2.1 Md = (Kr
d)

−1 we have B ∈ Qd.

(2) Conversely, suppose that Pd ⊆ Qd. If i, 1 ≤ i ≤ t and M+
i = R then

Mi ∈ Pd. Then Mi /∈ Qd. This is in contrast with Pd ⊆ Qd. Consequently, we

have M+
i 6= R for any 1 ≤ i ≤ t.
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From (1) and (2), the lemma is proved. �

From Lemma 2.5 we have an algorithm to check whether Pd ⊆ Qd.

Algorithm 2.1. Determine whether Pd ⊆ Qd.

Input: The consistent decision table DS = (U,C ∪ d), the relation schema

s = 〈C ∪ {d} , F 〉.
Output: Determine whether Pd ⊆ Qd or not.

Step 1: From DS calculate Md = {M1, . . . ,Mt};
Step 2: Calculate M+

i where 1 ≤ i ≤ t. If ∀i, M+
i 6= R then Pd ⊆ Qd.

Conversely, Pd 6⊆ Qd.

From Lemma 2.5 and the time to calculate closure, to calculate Md we

have Lemma 2.6:

Lemma 2.6. Let DS = (U,C ∪ d) be a consistent decision table and let

s = 〈C ∪ {d} , F 〉 be a relation schema. The time complexity of Algorithm 2.1 is

polynomial in the size of DS.

4. Conclusions. This paper presented the time complexity of algo-

rithms concerning reducts of consistent decision tables. Let DS = (U,C ∪ d) be

a consistent decision table and s = 〈C ∪ {d} , F 〉 be a relation schema on the

attribute set C ∪ {d}. Let Qd be the family of all relative reducts of DS and Pd

be the family of all relative minimal sets of the attribute d on s. The problem

whether Qd ⊆ Pd is co-NP-complete and the problem whether Pd ⊆ Qd is poly-

nomial time. Besides, this paper also proposes a polynomial time algorithm to

check Pd ⊆ Qd.
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