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LOWER BOUNDS ON THE DIRECTED SWEEPWIDTH

OF PLANAR SHAPES∗

Minko Markov, Vladislav Haralampiev, Georgi Georgiev

Abstract. We investigate a recently introduced width measure of planar
shapes called sweepwidth and prove a lower bound theorem on the sweep-
width.

1. Introduction. The computational problem Sweepwidth was pro-
posed recently [4]. The problem is to determine, given a contaminated planar
shape S, a decontamination sweep that slides decontamination barriers along S,
such that the maximum total length of those barriers over time is minimum.
Sweepwidth is a continuous two-dimensional analogue of the classical discrete
graph-search problems Edge Search and Node Search (see [11], [6], and [2]).
Width parameters of planar shapes have been proposed, e. g. elastic ringwidth [3],
the major difference being that Elastic Ringwidth necessitates a single barrier.
One can think of the decontamination procedure as a pursit-evasion game on S
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with invisible omniscient evader that moves arbitrarily fast but cannot jump over
the barriers. Many computational problems about surveillance on planar shapes
are known, for example [1] and [12]. However, they are substantially different
from Sweepwidth.

In [4], Karaivanov et al. prove that to any sweep of a given width there
corresponds a canonical sweep that slides segments, each segments having bound-
ary endpoints; two segments never intersect except possibly at a common end-
point. Furthermore, they prove that even for a relatively simple class of orthog-
onal polygons called flag polygons, Sweepwidth is NP-hard via reduction from
Partition.

In the light of that discouraging result, further research focuses on the
sweepwidth of specific orthogonal polygons, e. g. the sweepwidth of staircase
polygons and pyramid polygons can be computed in linear time [13].

In this work we introduce a generalisation of Sweepwidth that we call
Directed Sweepwidth: the sweep must start on some predefined parts of
the boundary and end on other predefined parts of the boundary. Using the
generalisation we prove a theorem that provides a lower bound for the sweepwidth
of a planar shape given three nonintersecting subshapes in it that are connected
by “corridors” so that the corridor between any two of them avoids the third
subshape.

2. Background. Our definitions use orthogonal polygons as funda-
mental planar shapes but they can be generalised to general planar shapes in an
obvious way. Assume the definitions from [4] hold.

2.1. Fringed polygons and directed sweeps. Let S be an orthogonal
polygon and A be the set of its edges. Let B1 and B2 be sets of straight segments
such that ∀X ∈ Bi ∃Y ∈ A : X ⊆ Y , for i = 1, 2. Furthermore, let the elements
of B1 and B2 be pairwise disjoint except possibly for common endpoints. In this
work, every segment X1 ∈ B1 either coincides with an edge from A, or there is
a segment X2 ∈ B2 such that X1 ∪X2 is a segment from A; and likewise for the
elements of B2. We say S is a fringed polygon with fringe (B1, B2) and denote it
by S(B1,B2). B1 is called the left fringe and B2, the right fringe. When B1 or B2

is a singleton, sometimes we blur the distinction between the set Bi and its sole
element.

Definition 1 (corridor). Let S(B1,B2) be a fringed polygon. If |B1| =
|B2| = 1 and B1 coincides with some edge of the polygon and B2 coincides with
another edge of the polygon, then S(B1,B2) is called a corridor and its sides are
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the two continuous nonintersecting curves (jagged lines) that remain after B1 and
B2 are deleted from the boundary of S.

Note that one but not both of the sides can be a single point.

Definition 2 (fork). Let S(B1,B2) be a fringed polygon, |B1| = 1 and
|B2| = 2. Let each segment in the fringe coincide with a distinct edge from
the boundary of S. We say that S(B1,B2) is a fork. Let s1, s2, and s3 be the
three continuous nonintersecting curves that remain after the fringe segments are
deleted from the boundary of S. Let s1 and s2 be precisely those curves that share
an endpoint with B1. We say that s1 and s2 are the sides of the fork and s3 is
the front of the fork.

Definition 3 (fringe thickness). The fringe thickness of a corridor is
the minimum distance between its two sides. If S(B1,B2) is a corridor, its fringe
thickness is denoted by fth(S(B1,B2)).

A directed decontamination sweep of S with respect to (B1, B2), or simply
a directed sweep of S when the fringe is understood, is any decontamination sweep
of S that starts on B1 and finishes on B2. That is, the edges from B1 are barrier
points at moment 0 and the edges from B2 are barrier points at moment 1. The
bottleneck length of a directed sweep Z with respect to (B1, B2) is the supremum
over time of the sum of the lenghts of all barriers during a directed sweep Z with
respect to (B1, B2). The directed sweepwidth of S with respect to (B1, B2), shortly
the directed sweepwidth of S when the fringe is understood, is the miminum over
all directed sweeps with respect to that fringe. We denote it by dsw(B1,B2)(S) or
simply by dsw(S) when (B1, B2) is understood. Any of the sets in the fringe may
be empty. In both are empty, it is obvious that dsw(S) = sw(W ). Thus, directed
sweepwidth is a generalisation of sweepwidth. Consequently, given that Sweep-

width is NP-hard (see [4], Theorem 9), Directed Sweepwidth is trivially
NP-hard as well.

[4] establishes two crucial results about decontamination sweeps. The first
result, Theorem 2, says that if k is the sweepwidth of a planar shape there exists a
canonical sweep of that shape of width k. A canonical sweep is one whose barriers
are straight segments the whole time, each segment having both its endpoints on
the fringe and any two segments never intersecting except possibly at a common
endpoint. That result allows us to focus our attention without loss of generality
on canonical sweeps only, disregarding the infinite varieties of the possible barrier
shapes. Theorem 2 is immediately applicable to directed sweepwidth. So, we can
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think of directed sweeps as performed by nonintersecting, except at common
endpoint, straight segments with both endpoints on the fringe.

The second crucial result, though stated merely as an observation, says
that sweeps are time-reversible (Observation 1). This is applicable to directed
sweeps as follows: to every directed sweep with respect to the fringe (B1, B2)
there corresponds a directed sweep with respect to the fringe (B2, B1) of the
same width. In other words, the decision which one of B1 and B2 is the left
fringe and which one, the right fringe, is purely arbitrary. Having that in mind,
sometimes we define the fringe as {B1, B2}, thus emphasising that the two sets in
the fringe are not associated with the two directions but we may associate them
as we please later on.

Unfortunately, the authors of [4] were unable to prove that to every de-
contamination sweep there corresponds a decontamination sweep of the same
width that is progressive, i.e., a sweep that cleans every point precisely once.
Informally speaking, progressive sweeps never go backwards. The analogous re-
sult for graph searches (see [7]) is proved by quite an involved proof and is a
cornerstone in establishing the NP-completeness, rather than the NP-hardness,
of the Graph Search problem, and its equivalence to a multitude of other
computational problems such as Vertex Separation (see [5]).

2.2. Linear layouts of decontamination sweeps. With respect to
the flow of time, we assume that barriers keep their identity in the obvious way.
Of course, new barriers may appear at some moments and existing barriers may
disappear at some moments but those moments of appearance-disappearance are
only a finite number, as far as the shape is a polygon. Each barrier, therefore, has
a lifetime that is defined in the obvious way. Clearly, the lifetime of a barrier is a
subinterval of [0, 1]. We emphasise that the barriers have identities that remains
the same throughout their corresponding lifetimes.

Suppose S is a planar shape and Z is a decontamination sweep of it. We
describe a mapping L that maps Z to a planar shape L(Z) that lies in a 2D
coordinate system. For every moment t ∈ [0, 1], for every barrier b that exists
in the shape at moment t, there is a vertical segment L(b) of length |b| in the
coordinate system such that L(b) is in the first quadrant at distance t from the
ordinate axis. Furthermore, all those vertical segments are placed one on top of
the other without gaps or overlaps, except possibly for overlaps at the endpoints.
The segment at the bottom shares an endpoint with the abscissa. If one or
more new barriers appear in S at moment t, their corresponding segments in the
coordinate system are placed, in arbitrary order, on top of the other segments that
correspond to other barriers that have existed at some previous moments. For
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all barriers that have appeared before moment t, their corresponding segments
are in the same relative order as they were before—that ensures continuity in
L(Z) between successive moments in time, provided that no barriers appear
or disappear then. If one or more barriers disappear in S at moment t, their
corresponding segments are removed from the coordinate system. There can be
no gaps between the vertical segments, therefore if some segments are removed
at moment t, some of the other segments may have to “move” downwards and
therefore the region in the coordinate system that corresponds to the part of S
that is swept by a single barrier may not be continuous.

The thus constructed planar shape L(Z) is called the layout of Z. For
every t ∈ [0, 1], the height of the layout above the abscissa equals the sum of all
barriers used at moment t by Z. Therefore, the maximum height of the layout
equals precisely the bottleneck length of Z. For additional clarity, assume that the
endpoints of the vertical segments are distinguished from their interiors and so,
if we consider the flow of time from 0 to 1, the endpoints of the vertical segments
leave “traces” in the layout that outline the movements of the individual barriers
in time.

With respect to S, L(Z) may or may not be area preserving. It is area
preserving if and only if all barriers move all the time by translation without
any rotation. Furthermore, L may even not be a function between S and the

Fig. 1. A decontamination sweep for the unit square that simply slides vertical barrier
without any rotation from left to right. The layout is a bijective mapping between the

original square and its image. Assume ǫ is an arbitrarily small positive real
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Fig. 2. A decontamination sweep for the unit square that rotates the barrier around the
lower left corner. The layout maps one point, namely the lower left corner, of the original
square to the whole lowest horizontal segment of the image, therefore the mapping is not

even a function between the points of the two polygons

layout: if a sweeping barrier rotates around one of its endpoints during some
time interval then it is mapped to a whole horizontal segment in L(Z). For
example, see Figure 2 where the lower left corner of S is mapped to the whole
segment at the bottom of L(Z).

Consider Figure 1. It shows a unit square and a decontamination sweep
for it that simply slides a single unit barrier segment from left to right along it.
We demonstrate four moments of the sweep: t0 + ǫ immediately after the sweep
commences, two intermediate moments t1 and t2, and a moment t3−ǫ just before
the sweep ends. The contaminated part is gray and the clean part is white. The
barrier is dashed. The lower paft of the figure shows the layout of the sweep.
The layout is a square congruent to the original one because of the simplicity of
the polygon and the sweep.

Figure 2 shows another sweep of the same square. There is a single
sweeping barrier again but this time it rotates around the lower left corner. Con-
sequently, the layout looks differently. The shapes of the two slanted sides depend
on the velocity of the barrier but that is unimportant. What is important is that
the maximum width of this sweep is

√
2 and the layout indeed attains maximum

height of
√
2.
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Fig. 3. A decontamination sweep of a relatively complex planar shape and the corre-
sponding layout. The layout is drawn in blue for better clarity. Six distinct moments of

the sweep are pointed out. The layout below shows all of them
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A more complicated example is shown on Figure 3. The shown sweep
is optimal. At some moments it uses two nonitersecting barriers. The barriers
must move in a coordinated fashion in order to accomplish the decontamination.
The figure shows six distinct moments of the sweep, t0, . . . , t5, in that order in
time. At t0 = 0 the sweep commences. Until t1 there is a single barrier that
pushes the contamination up to “the meeting point” of the four subshapes. That
barrier has to stay there for a while lest recontamination occurs in what has just
been swept clean. A second barrier appears in the shape on the top, pushing
the contamination out of the subshape on top until both barriers “meet” at a
common endpoint at t2. From that moment the two barriers merge and they
stay merged into a single barrier until moment t3 when the inner part of the
meeting point is decontaminated. At t3 the single barrier splits into two barriers
that take care of the remaining subshapes. Note that neither the initial two
subshapes (left and up), nor the final two subshapes (bottom and right) can be
swept clean simultaneously because that will increase the width.

The reader may appreciate one advantage of the illustrations that use
layouts. A layout depicts the whole decontamination process while drawing the
sweep on top of the planar shape shows only a limited number of moments. On
the other hand, the layout may distort the shape quite a lot, making it difficult
to follow what is going on.

2.3. Layouts of directed sweeps. Suppose S is a fringed polygon
with fringe (B1, B2). For any directed sweep Z on it, L(Z) is such that L(B1)
is necessarily at the left end (moment 0) and image of L(B2) is necessarily at its
right end (moment 1). We say that L(Z) is directed layout. Informally speaking,
a directed layout is “stretched” between the images of the two fringes. Figure 4
shows a fringed polygon, a directed sweep and directed layout of its.

2.4. Subsweeps. Suppose S is a polygon and S′ ⊆ S is a polygon as
well. Suppose Z is a decontamination sweep of S. Let t0 ∈ [0, 1] be the first
moment a sweeping barrier intersects S′ and t1 ∈ [0, 1] such that t1 > t0 be
the last moment a sweeping barrier intersects S′. The intersection of all moving
barriers of Z with S′ over time from t0 to t1 is called the subsweep of Z restricted
to S′. It is obvious that the said subsweep is a decontamination sweep of S′ with
the insignificant peculiarities that time runs from t0 to t1 rather than from 0 to 1.
The barriers of the subsweep at moment t, for any t ∈ [t0, t1], are the elements of
the set of all barriers of Z at moment t with S′. Given that S′ is path connected,
it is clear that the set of the barriers of the subsweep at moment t is nonempty.
The bottleneck length of the subsweep of Z restricted to S′, denoted by bl(Z|S′),
is the supremum, over time from t0 to t1, of the sum of the lengths of the barriers
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Fig. 4. A directed decontamination sweep of a fringed planar shape and the corresponding
directed layout shown below. The fringe of the polygon is (B1, B2). B1 and B2 are shown
is different shades of gray and different patterns of dashed lines. The layout is stretched
between L(B1) and L(B2) in the obvious way. The planar shape, the sweep, and the
layout are the same as the ones on Figure 3, only now the shape is fringed and the sweep

and the layout is considered directed
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in the subsweep.

The following result is immediately obvious.

Proposition 1. sw(S′) ≤ bl(Z|S′).

2.5. Sublayouts. Assume the names of Subsections 2.2, 2.3, 2.4, and 2.5
hold. The sublayout of S′ with respect to Z is the restriction of L to S′. That
sublayout is a layout for S′, ignoring the insignificant details that its left and
right extremities are at t0 and t1, respectively, rather than at 0 and 1, and that
its bottom is not necessarily on the abscissa. A consequence of the latter is that
bl(Z|S′) equals the maximum length of the intersection of the sublayout with a
vertical line, rather than simply the maximum height of the sublayout.

The following definition is with respect to the names and definitions in
this subsection and the former one.

Definition 4. For any moment t ∈ [t0, t1] such that the length of the
intersection of the sublayout of S′ with a vertical line equals bl(Z|S′), we call that
intersection a bottleneck of the sublayout of S′ within L(Z).

Figure 5 shows the same shape S we saw on Figures 3 and 4, this time
with a subshape S′ inside. The sweep Z is the same as in Figures 3 and 4. At the
bottom of Figure 5 we see the sublayout of S′ with respect to Z. The subshape
S′ is not boundaried and so we ignore the boundaries of S.

3. A lower bound theorem. Recall the definition of “fringed poly-
gon” and note that the same polygon can have different fringes, therefore the
same ordinary (not fringed) polygon may give rise to different fringed polygons.

Theorem 1, our main result, is the continuous analogue of the following
lemma from [8].

Lemma 1 ([8], Lemma 7, pp. 40). Let G be a connected graph of vertex
separation k > 1. Let G1, G2, G3 be connected, pairwise vertex-disjoint subgraphs
of G, each one of them of vertex separation at least k, such that between any two
Gi, Gj there is a path that is vertex-disjoint with the third one Gk. Then the
vertex separation of G is at least k + 1.

Theorem 1. Let S be a planar shape. Let S1, S2, and S3 be three
disjoint, convex polygons inside S.
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Fig. 5. The large shape is S and S′ is the Γ-like subshape inside S. Z is the same sweep
as the sweep in Figure 3 and Figure 4. At the bottom we see the sublayout L(S′) of S′

with respect to Z. Assume that Z proceeds in the most simple and obvious way between
moments t2 and t3. The sublayout of S

′ starts at t′ and ends at t′′ where t′ is the moment
after t1 when the barrier moving downwards in the upper square first touches S′, and t′′

is the moment before t5 when the barrier moving rightwards in the square on the right
“loses contact” with S′. For convenience, the moments 0, t1, . . . , t5 = 1 are shown on

the abscissa
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1. With respect to every choice of one polygon Si, let Sp have fringe {{Ri
p}, ∅}

for p = 1, 2, 3. Let there exist a fork T i
{{Ri

i},{R
i
j ,R

i
k
}} inside S. Furthermore,

T i ∩ Si = Ri
i, T

i ∩ Sj = Ri
j and T i ∩ Sk = Ri

k.

2. With respect to every choice of two polygons Si and Sj, let Si have fringe

{{P i,j
i }, ∅} and Sj have fringe {{P i,j

j }, ∅} such that a corridor Qi,j

{{P i,j
i },{P i,j

j }}

exists inside S. Furthermore, Qi,j ∩Sk = ∅, Qi,j ∩Si = P
i,j
i and Qi,j ∩Sj =

P
i,j
j .

Assume that each one of the said fringes is not longer than the sweepwidth of the
polygon Si it is part of. Then the following lower bound for the sweepwidth of S
holds:

sw(S) ≥ min
{

max{sw(S1) + fth{P 2,3
2

,P
2,3
3

}(Q2,3), dsw{P 2,3
2

,∅}(S2),

dsw{P 2,3
2

,P
2,3
3

}(Q2,3), dsw{P 2,3
3

,∅}(S3)},(1)

max{sw(S2) + fth{P 1,3,
1

P
1,3
3

}(Q1,3), dsw{P 1,3
1

,∅}(S1),

dsw{P 1,3
1

,P
1,3
3

}(Q1,3), dsw{P 1,3
3

,∅}(S3)},(2)

max{sw(S3) + fth{P 1,2
2

,P
1,2
1

}(Q2,1), dsw{P 1,2
2

,∅}(S2),

dsw
{P 1,2

2
,P

1,2
1

}
(Q2,1), dsw{P 1,2

1
,∅}

(S1)},(3)

max{dsw{{R1
1
},∅}(S1),

dsw{{R1
1
},{R1

2
,R1

3
}}(T

1),

dsw{R1
2
,∅}(S2) + dsw{R1

3
,∅}(S3)},(4)

max{dsw{{R2
2
},∅}(S2),

dsw{{R2
2
},{R1

2
,R3

2
}}(T

2),

dsw{R2
1
,∅}(S1) + dsw{R2

3
,∅}(S3)},(5)

max{dsw{{R3
3
},∅}(S3),
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dsw{{R3
1
},{R3

1
,R3

1
}}(T

3),

dsw{R3
1
,∅}(S1) + dsw{R3

2
,∅}(S2)},(6)

sw(S1) + sw(S2) + sw(S3)(7)

}

P r o o f. Consider any decontamination sweep Z of S. Consider the sub-
layouts of S1, S2, and S3 within L(Z). Each of them has at least one bottleneck.
Call the bottlenecks X1, X2, and X3, respectively. The following cases are mu-
tually exclusive and exhaustive.

Case 1: X1, X2, and X3 happen at distinct moments, say t1, t2, and t3, re-
spectively. The possible permutations of t1, t2, and t3 are 6. Having in mind
the reversibility of decontamination sweeps, only 3 distinct possibilities remain.
Each one of them justifies one of (1), (2), and (3). Without loss of generality, we
prove only (1). It corresponds to the subcase in which t2 < t1 < t3. Think of
L(Z). Its bottleneck length at moment t1 is at least the length of X1 plus the
fringe thickness of the corridor Q2,3 that connects S2 and S3 and avoids S1:

(8) sw(S1) + fth{P 2,3
2

,P
2,3
3

}(Q2,3)

To see why that is the case, note that the said bottleneck at that moment cannot
possibly be smaller that sw(S1); if it were smaller than sw(S1)+fth

{P 2,3
2

,P
2,3
3

}
(Q2,3)

that would imply the fringe thickness of the corridor is less than fth
{P 2,3

2
,P

2,3
3

}
(Q2,3).

Of course, we keep in mind the corridor is connected so its image in the layout is
connected, too.

Now think of S2 as a fringed polygon with fringe, the single segment P 2,3
2 .

With respect to L(Z), the fringe is associated with the right direction (under the
assumption that t2 < t3). It follows that within the layout of S with respect to
Z:

• either the sublayout of S2 is such that the image of P 2,3
2 left of X1,

• or at least there is a subpolygon of S2 that contains fully X2 and has a
single-segment fringe not shorter than P

2,3
2 that is associated with the right

direction and the image of this fringe is entirely left of X1.
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It follows that the bottleneck length of L(Z) is at least

(9) dsw{P 2,3
2

,∅}(S2)

We prove that the bottleneck length of L(Z) is at least

(10) dsw
{P 2,3

3
,∅}

(S3)

and at least

(11) dsw{P 3
2
,P 2

3
}(Q2,3)

in a similar fashion. Overall, (8), (9), (10), and (11) imply (1).
Case 2: Precisely two of X1, X2, and X3 happen at the same moment. Assume
that t2 = t3 6= t1. Without loss of generality, assume further that t1 < t2 = t3.
As above, we argue that:

• either the sublayout of S1 is such that the image of R1
1 is left of X2 and X3

(which are on the same vertical line),

• or at least there is a subpolygon of S1 that contains fully X1 and has a
single-segment fringe not shorter than R1

1 that is associated with the right
direction and the image of this fringe is entirely left of at least one bottleneck
of the fork T 1.

It follows that the bottleneck length of L(Z) is at least

(12) dsw{R1
1
,∅}(S1)

We prove that the bottleneck length of L(Z) is at least

(13) dsw{{R1
1
},{R1

2
,R1

3
}}(T

1),

and at least

(14) dsw{R1
2
,∅}(S2) + dsw{R1

3
,∅}(S3)}

in a similar fashion. Overall, (12), (13), and (14) imply (4).
Case 3: All of X1, X2, and X3 happen at the same moment. That corresponds
immediately to (7). �

4. Conclusions. We have investigated a hard novel computational
problem It is the continuous analogue of a well-known hard discrete problem.
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It turns out the continuous problem is considerably harder—even for relatively
easy results in the discrete version like Lemma 1, their analogues are difficult to
formulate precisely, let alone prove rigorously.
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