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Abstract. We obtain new combinatorial upper and lower bounds for the
potential energy of designs in q-ary Hamming space. Combined with results
on reducing the number of all feasible distance distributions of such designs
this gives reasonable good bounds. We compute and compare our lower
bounds to recently obtained universal lower bounds. Some examples in the
binary case are considered.

1. Introduction. Let Q = {0, 1, . . . , q−1} be an alphabet of q symbols
and H(n, q) be the set of all q-ary vectors x = (x1, x2, . . . , xn) over Q. The Ham-
ming distance d(x, y) between points x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)
from H(n, q) is equal to the number of coordinates in which they differ. The use
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of q suggests that the alphabet is a finite field and most coding theory applica-
tions assume this but we will not make use of a field structure. In particular q is
not necessarily a power of a prime. We refer to a finite set C ⊂ H(n, q) as a code.

We consider H(n, q) as a polynomial metric space (see, for example, [11, 9,

12]). Thus it is convenient to use the inner1 product 〈x, y〉 := 1−
2d(x, y)

n
instead

of the Hamming distance. We denote T = {t0, t1, . . . , tn}, where ti := 1 −
2i

n
,

i = 0, 1, . . . , n, are all possible values of inner products in H(n, q), written in
decreasing order.

Definition 1.1. For any x ∈ C ⊂ H(n, q) the distance distribution of
C with respect to x is the ordered (n+ 1)-tuple P (x) = (p0(x), p1(x), . . . , pn(x)),
where pi(x) = |{y ∈ C : 〈x, y〉 = ti}|, i = 0, 1, . . . , n, is the number of the points
of C at distance i to x.

It is a common approach to use distance distributions of C for investiga-
tion of the structure and properties of the code. In this paper we are interested
in a special class of codes, called designs, which approximate in certain sense the
whole space H(n, q).

Definition 1.2. Let τ and λ be positive integers. A τ -design C ⊂ H(n, q)
of strength τ and index λ is a code such that the M × n matrix obtained from
the codewords of C as rows has the following property: every M × τ submatrix

contains all ordered τ -tuples of H(τ, q), each one exactly λ =
M

qτ
times as rows.

We denote C by (n,M ; τ).

Example 1.3. The code C1 = {0000, 0011, 1010, 0101, 1001, 0110, 1100,
1111} ⊂ H(4, 2) is a 3-design of cardinality 8 and index 1. The distance distribu-
tions of C1 with respect to every point x ∈ C1 is the same P (x) = (1, 0, 6, 0, 1).
The code C2 = {0000, 1011, 0010, 0101, 1001, 1110, 0111, 1100} ⊂ H(4, 2) is an-
other (4, 8; 3) design with distance distributions P (x) = (1, 1, 3, 3, 0) for every
x ∈ C2.

Designs of strength τ in H(n, q) are also called orthogonal arrays of
strength τ (see [8], the book [10] and references therein) or τ -wise independent
sets [1]. Defining designs by codes as in Definition 1.2. underlines that no repeti-
tion of codewords is allowed, which is not usually assumed for orthogonal arrays.

1In fact this is not an inner product but plays for our purposes an analogous role to the
standard inner product on the unit Euclidean sphere Sn−1 and we prefer to call it inner product.
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For any function h(t) : [−1, 1) → (0,+∞) we consider the h-energy (or
potential energy) of C ⊂ H(n, q) defined by

E(n,C;h) =
1

|C|

∑

x,y∈C,x 6=y

h(〈x, y〉).

The function h is called potential function. Now the problems of minimizing
and maximizing the potential energy provided the function h, the length n, the
strength τ and the cardinality |C| = M = λqτ are fixed arise naturally. We wish
to determine or estimate the quantities

(1) L(n,M ; τ ;h) := min{E(n,C;h) : C is an (n,M ; τ) design},

and

(2) U(n,M ; τ ;h) := max{E(n,C;h) : C is an (n,M ; τ) design}.

The quantities U(n,M ; τ ;h) and L(n,M ; τ ;h) depend (more or less) on
the structure of the designs under consideration. Our approach looks inside
the structure using a method for calculation and investigation of all possible
distance distributions of designs in H(n, 2) proposed in [4, 5] and its generalization
to the q-ary case. This allows us to obtain combinatorial-type upper bounds
on U(n,M ; τ ;h) and lower bounds on L(n, τ,M ;h). Our bounds are easy for
calculation once the number of possible distance distributions is reduced. In the
binary case we compare our bounds to recently obtained analytic bounds from
[7, 3] and to the actual energies of known configurations.

2. Distance distributions and their energy. It is straightforward
to connect the energy of C to its distance distributions.

Definition 2.1. If x ∈ C has distance distribution P (x) = (p0(x),

p1(x), . . . , pn(x)) then E(x,C;h) :=
1

|C|

n
∑

i=1

pi(x)h(ti) is called energy of the dis-

tance distribution P (x) or energy of x in C.

Theorem 2.2. Let C = (n,M ; τ) and P1(x1), P2(x2), . . . , Ps(xs) be all
distinct distance distributions of points of C, appearing k1, k2, . . . , ks times, re-

spectively. Then the energy of C is E(n,C;h) =
s

∑

i=1

kiE(xi, C;h). In other words,

we have
E(n,C;h) ∈ E(M) :=

{

∑

k1+k2+···+ks=M

kiE(xi, C;h)
}

.
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P r o o f. It follows from Definition 2.1 that E(n,C;h) =
∑

x∈C

E(x,C;h).

Taking into account the multiplicities we obtain the desired formula. �

Small values of the number of distinct distributions s are particularly
interesting because in this case the set E(M) has relatively small size. Clearly,
the problem of finding all possible distance distributions for fixed n, M and τ
is finite but hard. However, their number can be reasonably small when τ is
relatively close to n (see [4, 5] for the binary case). This is one of key motivations
behind our bounds.

Example 2.3. Continuing Example 1.3 we see that E(4, C1;h) =
8E(x,C;h) where x ∈ C1 and E(4, C2;h) = 8E(x,C;h) where x ∈ C2. We will
see below that these two energy levels give the exact values of L(4, 8; 3;h) and
U(4, 8; 3;h), respectively, in H(4, 2).

3. Computing distance distributions. An equivalent definition of
a τ -design (cf. [12]) is convenient for the so-called polynomial techniques. Let

K
(n,q)
i (d) =

i
∑

j=0

(−1)j(q − 1)i−j

(

d

j

)(

n− d

i− j

)

, i = 0, 1, . . . , n,

be the Krawtchouk polynomials corresponding to H(n, q) and

Q
(n,q)
i (t) =

1

ri
K

(n,q)
i (n(1− t)/2),

be a normalization of the Krawtchouk polynomials ([12, Section 6.2]) and ri =

(q − 1)i
(

n

i

)

.

Every real polynomial f(t) of degree at most n is uniquely expanded in

terms of the polynomials Q
(n,q)
i (t), i.e.,

(3) f(t) =
n
∑

i=0

fiQ
(n,q)
i (t)

for well defined coefficients fi, 0 ≤ i ≤ n.

Definition 3.1. A code C ⊂ H(n, q) is a τ -design if and only if every
real polynomial f(t) of degree at most τ and every point x ∈ H(n, q) satisfy

(4)
∑

y∈C

f(〈x, y〉) = f0|C|,
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where f0 is the first coefficient in the expansion (3).

It is well known (see, for example [12, Sections 3 and 5]) that Definition 3.1
allows calculation of distance distributions with at most τ + 1 non-zero entries.
Indeed, for a fixed x ∈ C, Definition 3.1 easily gives a system of τ + 1 linear
equations for the distance distribution of C with respect to x. We can go further
– it is clear that the problem is finite and for relatively small parameters this
system can be resolved completely (see [4] for the binary case).

Denote tj =

n
∑

i=0

f
(q)
i,j Q

(n,q)
i (t) for j ∈ {0, 1, . . . , n}. In fact, we are inter-

ested below only in the coefficient f
(q)
0,j . We have explicit formula for q = 2,

(5) f
(2)
0,i =











0, if i = 2j + 1

1

2n

n
∑

d=0

(1−
2d

n
)2j

(

n

d

)

, if i = 2j
.

The next assertion is folklore.

Theorem 3.2. Let C ⊂ H(n, q) be an (n, |C|; τ) design. Then the dis-
tance distribution of C with respect to x satisfies the following system of linear
equations

(6)

n
∑

j=1

pj(x)t
i
j = f

(q)
0,i |C| − 1, i = 0, 1, . . . , τ.

P r o o f. Set f(t) = ti, i = 0, 1, . . . , τ , in (4). �

Thus we may consider the system (6) as having τ + 1 equations and n
non-negative integer unknowns. Then we choose n−τ−1 unknowns to be free and
resolve (6) with respect to the remaining n− (n− τ − 1) = τ +1 unknowns. Now
we plug all possible values of the free unknowns and check whether the solution
consists of non-negative integers. For example, in the binary case one has only
two possibilities for pn(x) – it is 1 or 0 (depending on whether the antipodal point
of x belongs to C or not).

The set of feasible distance distributions can be further reduced as shown
in the binary case in [5]. There are many examples when we remain with several
possibilities. This underlines the importance of the description of Theorem 2.2
and the bounds from Theorems 4.1 and 4.2 below.

Example 3.3. (Continuation of Examples 1.3 and 2.3) We obtain by
Theorem 3.2 that every (4, 8; 3) design in H(4, 2) can have only two distance
distributions: (1, 0, 6, 0, 1) and (1, 1, 3, 3, 0).
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4. Combinatorial upper bounds on U(n,M ; τ ;h) and lower
bounds on L(n,M ; τ ;h). In this section we assume that the parame-
ters n, τ and M = |C| are such that all distance distributions of points of
C can be effectively computed. Usually additional investigations allow further
reduction of their number – many examples are given in [4, 5]. Assume that
P1(x1), P2(x2), . . . , Ps(xs) are all possible (but not necessarily realized) distinct
distance distributions of C with respect to its points computed from Theorem
3.2. Note that these distributions depend on n, τ and M = |C| only; in other
words, every τ -design in H(n, q) of M points can have distance distributions only
from the set {Pi(xi)}. Denote

w = min{E(xi, C;h) : i ∈ {1, 2, . . . , s}}

and
W = max{E(xi, C;h) : i ∈ {1, 2, . . . , s}}.

We are already in a position to state the general form of our combinatorial
bounds on the energy of τ -designs of M points in H(n, q).

Theorem 4.1. Let w and W be the minimum and maximum, respectively,
of the possible energies of a distance distribution of τ -designs in H(n, q) of M
points. Then

Mw ≤ L(n,M ; τ ;h) ≤ U(n,M ; τ ;h) ≤ MW.

P r o o f. Let C be a τ -design with distance distributions described as

above. Then we have E(n,C;h) =

s
∑

i=1

kiE(xi, C;h) ≥ Mw for the energy of C.

Since the same inequality holds for every C, we conclude that L(n,M ; τ ;h) ≥ Mw
as required. The estimation U(n,M ; τ ;h) ≤ MW follows similarly. �

Theorem 4.1 defines a strip where the energies of all (n,M, τ) designs in
H(n, q) must belong. Our continued example shows that both limits of this strip
can be achieved for the same minimum distance d, length n, cardinality M and
strength τ but by inequivalent designs.

Example 4.2. (Continuation of Examples 1.3, 2.3 and 3.3) Consider
again the 3-designs C1 and C2 in H(4, 2) and assume that E(4, C1;h) < E(4, C2;h)
for some h. Then

L(4, 8; 3;h) = E(4, C1;h) = 8P1

and
U(4, 8; 3;h) = E(4, C4;h) = 8P2,
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where P1 and P2 are the energies of the distance distributions (1, 0, 6, 0, 1) and
(1, 1, 3, 3, 0), respectively.

We also note that two non-isomorphic (5, 16; 4) designs in H(5, 2) provide
a situation very similar to Example 4.2.

We next underline the special case where the strip becomes a point, i.e.,
the upper and lower bounds coincide and the corresponding designs have optimal
(simultaneously minimum and maximum) energy.

Corollary 4.3. Let the parameters q, n, M and τ be such that every
(n,M ; τ) design in H(n, q) has the same (unique) distance distribution P = P (x),
x ∈ C, with respect to all its points. Then, for every potential function h, these
designs have optimal energy

E(n,C;h) = L(n,M ; τ ;h) = U(n,M ; τ ;h) = ME(x,C;h).

There are several trivial cases where Corollary 4.3 gives optimal designs.
Other, more complicated examples will be discussed elsewhere.

In the end of this section we underline the wide applicability of our combi-
natorial bounds. Most applications (cf. [7, 3]) require a special type of potentials
h (mainly absolute monotonicity of h on [−1, 1); i.e., one has h(k)(t) ≥ 0 for
all k ≥ 0 and all t ∈ [−1, 1)) in contrast to our bounds which are valid for all
potential functions h. On the other hand, we are usually restricted to designs of
good strength in order to obtain substantial reduction of the possible distance
distributions. The evaluation of our combinatorial bounds could also be interest-
ing if the lower bounds are close to the analytic bounds (see the next section and
[7, 3]).

5. Comparison to known bounds and known designs. We
compare our bounds to the actual energies of known designs and to a recently
obtained universal lower bound on energy of codes in H(n, q) [3]. We in fact
inspected the binary case q = 2 for strengths τ = 4 and 5 in the ranges 4 ≤ n ≤ 17
and 1 ≤ λ ≤ 10.

5.1. Comparison to lower bounds for codes in H(n, q). We proceed
with the formulation of the bound from [3]. For fixed alphabet size q, strength τ
and dimension n denote

B(n, τ) = min{|C| : ∃ τ -design C ⊂ H(n, q)}.
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Then a well known bound by Rao [14] states that

B(n, τ) ≥ R(n, τ) =































q
k−1
∑

i=1

(

n− 1

i

)

(q − 1)i, if τ = 2k − 1,

k
∑

i=1

(

n

i

)

(q − 1)i, if τ = 2k.

For every M ∈ (R(n, 2k − 1), R(n, 2k)] we solve the equation

(7) Pk(t)Pk−1(s)− Pk(s)Pk−1(t) = 0,

where

Pi(t) =
K

(n−1,q)
i (−1 + n(1− t)/2)

∑i
j=0

(n
j

)

(q − 1)j
, i = k, k − 1

and s is determined from the equation M = Lτ (n, s), where Lτ (n, s) is the
Levenshtein bounds on the maximal cardinality of codes of prescribed length and
minimum distance, see [11, 12]. In fact, the equation (7) has the same roots as
M = Lτ (n, s).

The equation (7) has simple roots α0, α1, . . . , αk−1 = s such that −1 <
α0 < α1 < · · · < αk−1 = s < 1. Then [3, Theorem 6] gives

(8) L(n,M ; 2k − 1;h) ≥ M

k−1
∑

i=0

ρih(αi),

where the weights ρi, i = 0, 1, . . . , k − 1, are positive. Different formulas for ρi
can be found in [2, 11, 12].

Similarly, for every M ∈ (R(n, 2k), R(n, 2k + 1)] we have the bound

(9) L(n,M ; 2k;h) ≥ M

k
∑

i=0

γih(βi),

where β0 = −1 and β1, . . . , βk = s are (in increasing order) the roots of the
equation

(10) (1 + t)(Pk(t)Pk−1(s)− Pk(s)Pk−1(t)) = 0,

where

Pi(t) =
K

(n−2,q)
i (−1 + n(1− t)/2)
∑i

j=0

(

n−1
j

)

(q − 1)j
, i = k, k − 1.
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We compared the bounds from Theorem 4.1 to the bounds from (8) and
(9) for the following three potentials

h1(t) =
2

n(1− t)
,(11)

hn(t) =

(

2

n(1− t)

)(n−2)/2

,(12)

hn,τ (t) =

(

n− n(1− t)/2

τ + 1

)

,(13)

where

(

x

k

)

:=
x(x− 1) . . . (x− k + 1)

k!
for integer k ≥ 0 and real x.

In all cases the computational results give lower bounds from Theorem 4.1
equal to or better than the corresponding bound from (8) and (9). We illustrate
this with a description of the situation for length n = 9, strength τ = 4 and
cardinalities 96, 112 and 128.

Example 5.1. The existence/nonexistence of (9, 96; 4) designs is still
undecided [10, Table 12.1], [6]. There are 9 possible distance distributions with
different energies. Theorem 4.1 gives the following bounds for h1(t)

(14) 23.289 < L(9, 96; 4;h1) ≤ U(9, 96; 4;h1) < 23.417,

while the bound (9) is L(9, 96; 4;h1) > 23.192. Similarly, we have

(15) 27.394 < L(9, 112; 4;h1) ≤ U(9, 112; 4;h1) < 27.760,

and the bound (9) is L(9, 112; 4;h1) > 27.246.

Our comparison shows that the combinatorial lower bounds are good even
in case of many possible distance distributions. This opens room for discussion
whether and how far the realizations of designs tend to choose minimal energy
levels. We expect that dropping the design property will allow better energies in
many cases.

5.2. Comparison to actual energies. In this subsection we compare
our bounds with the actual energies of designs taken from several known libraries
of good orthogonal arrays (see, for example [13] and the rich connections from
there).

Example 5.2. (continuation of Example 5.1) There exist (9, 128; 4) de-
signs [10, Table 12.1], [13]. The explicit versions C = (9, 128; 4) have energy
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E(9, C;h1) ≈ 31.644 which is close to the lower bound from Theorem 4.1, where
we have

(16) 31.493 < L(9, 128; 4;h1) ≤ U(9, 128; 4;h1) < 32.245.

The bound (9) in this case gives L(9, 128; 4;h1) > 31.303. We note that despite
having many possible distance distributions the lower and upper bounds remain
close.

Further bounds on the h-energy of certain designs for the potential func-
tions (11) are given in the table below. We exhibit together cases where designs
are known to exist and cases where the existence is still undecided (noted by a
question mark in the table).

Table. Energy bounds for some binary (n,M ; τ)-designs.

(8, 12; 2), exists (12, 24; 3), exists
h(t) (8) or (9) Thm 4.1, Thm 4.1, (8) or (9) Thm 4.1, Thm 4.1,

lower existing upper lower existing upper
h1 2.575 2.600 2.605 2.616 3.75 3.75 3.75 3.75
hn 0.1430 0.1594 0.1625 0.1689 0.2833 0.2833 0.2833 0.2833
hn,τ 33.6 37 37.333 38 330 330 330 330

(10, 112; 4), existence undecided (12, 128; 4), exists
h(t) (8) or (9) Thm 4.1, Thm 4.1, (8) or (9) Thm 4.1, Thm 4.1,

lower existing upper lower existing upper
h1 24.153 24.233 ? 24.3965 22.627 22.665 22.695, 22.705 22.727
hn 0.389 0.433 ? 0.5846 0.039 0.043 0.048, 0.050 0.054
hn,τ 620.869 639 ? 650 2381.08 2410 2420, 2424 2429

(11, 224; 5), existence undecided (13, 256; 5), exists
h(t) (8) or (9) Thm 4.1, Thm 4.1, (8) or (9) Thm 4.1, Thm 4.1,

lower existing upper lower existing upper
h1 24.153 44.523 ? 44.632 42.2553 42.29 42.3114 42.3217
hn 0.3215 0.3524 ? 0.4625 0.0293 0.032 0.0358 0.0376
hn,τ 1156.47 1176 ? 1186 5190.55 5236 5244 5248

6. List of programs. All calculations in this paper were performed by
programs in Maple. In particular, we have developed programs for:

(1) calculation of all feasible distance distributions via Theorem 3.2 in all
spaces H(n, q);

(2) reducing the number of the possible distance distributions in the bi-
nary and ternary cases for a large variety of values of n, M and τ using the
algorithms from [5, 6];
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(3) calculation of the universal bounds (8) and (9), the set E(M) from
Theorem 2.2;

(4) calculation of actual energies for given designs and potential functions.
We have also developed some ad hoc programs for smaller concrete prob-

lems.

All programs and numerical results are available upon request.
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