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Abstract. In 1917 Pell1 and Gordon used sylvester2, Sylvester’s little
known and hardly ever used matrix of 1853, to compute2 the coefficients of a
Sturmian remainder — obtained in applying in Q [x], Sturm’s algorithm on
two polynomials f, g ∈ Z [x] of degree n — in terms of the determinants3 of
the corresponding submatrices of sylvester2. Thus, they solved a problem
that had eluded both J. J. Sylvester, in 1853, and E. B. Van Vleck, in 1900.4

In this paper we extend the work by Pell and Gordon and show how
to compute2 the coefficients of an Euclidean remainder — obtained in find-
ing in Q [x], the greatest common divisor of f, g ∈ Z [x] of degree n — in
terms of the determinants5 of the corresponding submatrices of sylvester1,
Sylvester’s widely known and used matrix of 1840.
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1. Introduction. We begin by first describing Sylvester’s two matrices.
We believe both are important and deserve to be treated on their own. For that,
consider the polynomials f, g ∈ Z [x] of degrees n,m, respectively, with n > m.

Sylvester’s matrix sylvester1 was discovered in 1840 [8] and its dimen-
sions are (n+m)× (n+m); it consists of two groups of rows, the first one with
m rows and the second one with n. Concatenation of the two groups yields the
matrix sylvester1.

In the first row of the first group (of m rows) are the coefficients of f(x)
with m − 1 trailing zeros. The second row in this group differs from the first
one in that its elements have been rotated to the right by one. A total of m− 1
rotations are needed to construct the first group of rows.

In the first row of the second group (of n rows) are the coefficients of
g(x) with n− 1 trailing zeros. The second row in this group differs from the first
one in that its elements have been rotated to the right by one. A total of n − 1
rotations are needed to construct the second group of rows.

Sylvester’s matrix sylvester2 was discovered in 1853, its dimensions are
2n × 2n and it consists of n pairs of rows [9]. In the first row of the first pair
are the coefficients of f(x) whereas in the second row of the first pair are the
coefficients of g(x); n −m zeros have been prepended to g(x) to also make it of
degree n. Both rows in the first pair have 2n − (n + 1) trailing zeros and both
rows of the last pair have 2n − (n + 1) leading zeros. The second pair of rows
differs from the first one in that the elements of both rows have been rotated
to the right by one. A total of 2n − (n + 1) rotations are needed to construct
sylvester2.

In the freely available computer algebra system Xcas/Giac Sylvester’s ma-
trix sylvester1 is given by the built-in function sylvester, whereas Sylvester’s
matrix sylvester2 is given by our own function sylvester2. In the (also
freely available) computer algebra system Sympy we have written the function
sylvester6 which returns either matrix depending on the last optional argu-
ment; by default matrix sylvester1 is returned.

Example 1. Take f(x) = ax3 + bx2 + cx + d with a > 0 and g(x) =
3ax2 + 2bx+ c. Then, S1(f, g), their sylvester1 matrix, is

6 All Sympy functions mentioned in this paper can be downloaded from the link
http://inf-server.inf.uth.gr/~akritas/publications/subresultants.py.
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whereas S2(f, g), their sylvester2 matrix, is
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.

For the sequences of polynomial remainders examined in this paper the
following definitions are needed:

Definition 1. The sign sequence of a polynomial remainder sequence
(prs) is the sequence of signs of the leading coefficients of its polynomials.

Definition 2. A polynomial remainder sequence (prs) is called complete

if the degree difference between any two consecutive polynomials is 1; otherwise,
it called incomplete.

Given f (x) , g (x) ∈ Z [x] of degrees deg(f) = n and deg(g) = m with
n ≥ m their (proper) subresultant prs is a sequence of polynomials similar to the
Euclidean prs, the sequence obtained by applying in Q [x]7 Euclid’s polynomial
gcd algorithm on f (x) , g (x).8 The two sequences differ in that the coefficients
of each polynomial in the subresultant prs are the determinants, or subresultants,
of specially chosen sub-matrices of sylvester1 [4]. For complete prs’s the two
sign sequences are identical and the coefficients of the Euclidean prs are easily
computed with the help of the corresponding subresultants [1].

The determinant of sylvester1 itself is called the resultant of f (x) , g (x)
and serves as a criterion of whether the two polynomials have common roots or
not.

7Or in Z [x], if we use our Sympy function euclid PG(p, q, x, method = 0); see also foot-
note 6.

8A formal definition of a subresultant prs can be found in almost all references (see for
example the one by Kerber, [6]) and hence it is omitted in this paper.
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For the same polynomials f (x) , g (x) ∈ Z [x] mentioned above, their mod-
ified subresultant prs [4] is a sequence of polynomials similar to the Sturmian prs,
the sequence obtained by applying in Q [x]9 Sturm’s algorithm on f (x) , g (x).
The two sequences differ in that the coefficients of each polynomial in the modi-
fied subresultant prs are the determinants, or modified subresultants, of specially
chosen sub-matrices of sylvester2 [4]. For complete prs’s the two sign sequences
are identical and the coefficients of the Sturmian prs are easily computed with
the help of the corresponding modified subresultants [1].

The determinant of sylvester2 itself is called the modified resultant of
f (x) , g (x) and it also can serve as a criterion of whether the two polynomials
have common roots or not.

As Sylvester pointed out, the coefficients of the polynomial remainders
obtained as (modified) subresultants are the smallest possible without introducing
rationals and without computing (integer) greatest common divisors.

The determinants of the two matrices sylvester1 and sylvester2 — as
well as the corresponding subresultants and modified subresulrtants — generally
differ in sign.10 Indeed, for the polynomials of Example 1 the determinant of
S1(f, g) is

27 · a3 · d2 − 18 · a2 · b · c · d+ 4 · a2 · c3 + 4 · a · b3 · d− a · b2 · c2,

whereas the determinant of S2(f, g) is

det(S2(f, g))

a
= − det(S1(f, g)).

1.1. Incomplete prs’s. If an incomplete prs is obtained from f (x),
g (x) ∈ Z [x], then the following problems are encountered:

(i) the polynomials in the subresultant prs generally differ in sign from those
of the Euclidean prs, and — unlike the case of complete prs’s — it is not at
all obvious how to compute the coefficients of the polynomials in the latter
sequence with the help of the corresponding subresultants;

(ii) the polynomials in the modified subresultant prs generally differ in sign from
those of the Sturmian prs, and — unlike the case of complete prs’s — it is

9Or in Z [x], if we use our Sympy function sturm PG(p, q, x); see also footnote 6.
10That is, the absolute value of any modified subresultant (obtained from sylvester2) divided

by the (positive) leading coefficient of f raised to the power n−m is equal to the absolute value
of the corresponding subresultant (obtained from sylvester1).
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not at all obvious how to compute the coefficients of the polynomials in the
latter sequence with the help of the corresponding modified subresultants.

These problems are best illustrated with the following example:

Example 2. Consider the storied polynomials f = x8+x6−3x4−3x3+
8x2+2x− 5 and g = 3x6+5x4− 4x2− 9x+21 whose incomplete prs has degrees
8, 6, 4, 2, 1, 0. These polynomials — and the computer algebra system Sympy —
will be used throughout this paper.

(i) Using the built-in function subresultants we obtain the polynomial re-
mainder sequence (1) in Z [x], which is the (proper) subresultant prs,

(1) x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5, 3x6 + 5x4 − 4x2 − 9x+ 21,

15x4 − 3x2 + 9, 65x2 + 125x − 245, 9326x − 12300, 260708.

The coefficients of the polynomials in the second row of (1) are all determi-
nants of submatrices of sylvester1.

On the other hand, using the built-in function rem, we obtain the polynomial
remainder sequence (2) in Q [x], which is the Euclidean prs,

(2) x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5, 3x6 + 5x4 − 4x2 − 9x+ 21,

− 5x4/9 + x2/9− 1/3,−117x2/25 − 9x+ 441/25,

233150x/19773 − 102500/6591,−1288744821/543589225.

How can we compute the coefficients of the polynomials in the Euclidean
prs (2) from the corresponding subresultants of the subresultant prs (1) and
vice-versa?

(ii) Using our own function modified subresultants PG we obtain the poly-
nomial remainder sequence (3) in Z [x], which is the modified subresultant
prs,

(3) x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5, 3x6 + 5x4 − 4x2 − 9x+ 21,

− 15x4 + 3x2 − 9, 65x2 + 125x− 245,−9326x + 12300, 260708.

The coefficients of the polynomials in the second row of (3) are all determi-
nants of submatrices of sylvester2.
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On the other hand, using -rem, we obtain the polynomial remainder se-
quence (4) in Q [x], which is the Sturmian prs,

(4) x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5, 3x6 + 5x4 − 4x2 − 9x+ 21,

5x4/9− x2/9 + 1/3, 117x2/25 + 9x− 441/25,

233150x/19773 − 102500/6591,−1288744821/543589225.

How can we compute the coefficients of the polynomials in the Sturmian
prs (4) from the corresponding modified subresultants of the modified sub-
resultant prs (3) and vice-versa?

These problems were extremely difficult to tackle and eluded both Sylvester
(1853) and Van Vleck (1900) [11]. As Sylvester put it ([9], p. 419) “. . . the same
explicit method might be applied to show, that if the first divisor were e degrees
instead of being only one degree lower than the first divident, αe+1 would be
contained in every term of the second residue;11 the difficulty, however, of the
proof by this method augments with the value of e” [1]. For his part, Van Vleck
considered only complete Sturm sequences, and stated ([11], p. 4) “. . . the degree
of each succeeding polynomial, respectively remainder is, in general,12 one less
than that of the preceding.”

It was in 1917 that Pell and Gordon [7] “modified” Van Vleck’s theorem
and, hence, solved the problem of computing the coefficients of a Sturmian re-
mainder via modified subresultants. Their paper went unnoticed for about 100
years, until one of us (P. S. Vigklas) discovered it in the journal archives.

1.2. Outline of the Paper. In this paper we present a solution to the
problem of computing the coefficients of an Euclidean remainder via subresul-
tants. A graphical representation of our solution is given in Figure 1 — follow
the double arrows.

In Section 2 we present the relationship that exists between Sturmian
remainders and modified subresultant prs’s — branch PG in Figure 1. This re-
lationship is described in the remarkable theorem by Pell and Gordon, which is
stated here for completion along with an example on how to compute the coef-
ficients of the polynomials in the Sturmian prs from the corresponding modified
subresultants of the modified subresultant prs.

In Section 3 we present the relationship that exists between Euclidean
remainders and subresultant prs’s — branches AMV, PG and SAM in Figure

11
α is the leading coefficient of the divisor.

12Our emphasis.
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Euclidean PRS Sturmian PRS

(proper) Subresultant PRS modified Subresultant PRS

sylvester1 (1840) sylvester2 (1853)

SAM

AMV

PG

Fig. 1. The indirect way of computing the (Euclidean) remainders — obtained in
finding the greatest common divisor of two polynomials in Q [x] — from the (proper)
subresultant prs. The latter is computed from sylvester1, Sylvester’s matrix of 1840

1. Our main result, Theorem 4 is preceded by two auxiliary theorems: the first
one establishes a relation between the signs of a subresultant prs and those of the
corresponding modified subresultant prs — relation AMV in Figure 1 — whereas
the second theorem establishes a relation between the signs of a Euclidean prs
and those of the corresponding Sturmian prs — relation SAM in Figure 1.

Finally, in Section 4 we present our conclusions.

2. Sturmian remainders and their relationship to modified

subresultant prs’s. The Pell-Gordon Theorem of 1917, [7], helps us compute
the coefficients of a Sturmian remainder, of a complete or incomplete sequence,
with the help of modified subresultants,13 i. e. determinants of submatrices of
Sylvester’s matrix sylvester2. The theorem is stated below but additional de-
tails can be found elsewhere [2], [3], [4].

Theorem 1 (Pell-Gordon, 1917). Let

f = a0x
n + a1x

n−1 + · · ·+ an

and
g = b0x

n + b1x
n−1 + · · · + bn

13That is, without polynomial divisions.
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be two polynomials of the nth degree. Modify the process of finding the highest
common factor of f and g by taking at each stage the negative of the remainder.
Let the ith modified remainder be

R(i) = r
(i)
0 xmi + r

(i)
1 xmi−1 + · · ·+ r(i)mi

where (mi + 1) is the degree of the preceeding remainder, and where the first

(pi−1) coefficients of R(i) are zero, and the pith coefficient ̺i = r
(i)
pi−1 is different

from zero. Then for k = 0, 1, . . . ,mi the coefficients r
(i)
k

are given by14

(5) r
(i)
k

=
(−1)ui−1 (−1)ui−2 · · · (−1)u1 (−1)vi−1

̺
pi−1+1
i−1 ̺

pi−2+pi−1

i−2 · · · ̺p1+p2
1 ̺p10

· Det (i, k) ,

where

ui−1 = 1 + 2 + · · ·+ pi−1, vi−1 = p1 + p2 + · · · + pi−1

and

Det (i, k) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a0 a1 a2 · · · · · · · · a2vi−1 a2vi−1+1+k

b0 b1 b2 · · · · · · · · b2vi−1 b2vi−1+1+k

0 a0 a1 · · · · · · · · a2vi−1−1 a2vi−1+k

0 b0 b1 · · · · · · · · b2vi−1−1 b2vi−1+k

· · · · · · · · · · · · ·
0 0 0 · · · a0 a1 · · · avi−1 avi−1+1+k

0 0 0 · · · b0 b1 · · · bvi−1 bvi−1+1+k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

P r o o f. See [7]. �

As indicated elsewhere [4], we use a modification of formula (5) to compute
the coefficients of a polynomial in the Sturm sequence of two polynomials. In our
general case p0 = deg (f) − deg (g) ≥ 0, since deg(g) ≤ deg(f) and, hence, the
modified formula is shown below with the changes appearing in bold:

(6) r
(i)
k

=
(−1)ui−1 (−1)ui−2 · · · (−1)u1 (−1)u0 (−1)vi−1

̺
pi−1+pi−degDiffer

i−1 ̺
pi−2+pi−1

i−2 · · · ̺p1+p2
1 ̺p0+p1

0

·
Det (i, k)

̺
p0

−1

,

where ̺−1 = a0, the leading coefficient of f and degDiffer is the difference
between the expected degree mi and the actual degree of the remainder. Also,
note that pi − degDiffer = 1 for all i.

14It is understood in (5) that ̺0 = b0, p0 = 0, and that ai = bi = 0 for i > n.
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It should be noted that in our (general) case the division
Det (i, k)

̺p0−1

is

exact. Moreover, if the leading coefficient of f is negative we work with the poly-
nomial negated and at the end we reverse the signs of all polys in the sequence.

Note that the first fraction in formula (6) depends only on i and is inde-
pendent of k. Denote by PG(i) that fraction and call it the PG(i)-factor ; that is,
we have

(7) PG(i) =
(−1)ui−1 (−1)ui−2 · · · (−1)u1 (−1)u0 (−1)vi−1

̺
pi−1+pi−degDiffer

i−1 ̺
pi−2+pi−1

i−2 · · · ̺p1+p2
1 ̺p0+p1

0

,

in which case, the coefficients of the Sturmian remainders are exactly

(8) r
(i)
k

= PG(i) ×
Det (i, k)

̺
p0

−1

.

Example 3. Consider again the polynomials f = x8 + x6 − 3x4 − 3x3 +
8x2+2x−5 and g = 3x6+5x4−4x2−9x+21, seen in Example 2. The modified
subresultant prs of f, g is

(9) x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5, 3x6 + 5x4 − 4x2 − 9x+ 21,

− 15x4 + 3x2 − 9, 65x2 + 125x− 245,−9326x + 12300, 260708,

where the coefficients of the last 4 polynomials in the second line of (9) are all
determinants (the modified subresultants Det (i, k)) of appropriate submatrices
of sylvester2.

To compute the coefficients of the Sturmian polynomials we have to com-
pute the PG(i)-factor, i = 1, 2, 3, 4, for each remainder. Using (7) we find

(10) PG(i) =
{

−
1

27
,

9

125
,−

25

19773
,−

19773

2174356900

}

, i = 1, 2, 3, 4,

and from (8), we obtain the Sturm sequence of f, g in Q [x],

(11) x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5, 3x6 + 5x4 − 4x2 − 9x+ 21,

5x4/9− x2/9 + 1/3, 117x2/25 + 9x− 441/25,

233150x/19773 − 102500/6591,−1288744821/543589225.
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Note that the Sturmian prs (4), which was computed with polynomial divisions,
is identical to the Sturmian prs (11), which was computed via modified subresul-

tants — since, for example, the coefficient
5

9
in (11) is the product (−

1

27
)×(−15),

etc.

Using (6) we have developed our own function sturm PG6, which computes
the Sturmian prs of f, g in Z [x]:

(12) x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5, 3x6 + 5x4 − 4x2 − 9x+ 21,

15x4 − 3x2 + 9, 65x2 + 125x− 245, 9326x − 12300,−260708.

Note that the sign sequences in (11) and (12) are identical.

3. Euclidean remainders and their relationship to subresul-

tant prs’s. In this section we prove that once a subresultant prs has been
computed then the polynomial remainders in the Euclidean prs are uniquely de-
termined in sign and magnitude. The converse is also true.

As indicated in Figure 1, the proof of our result is indirect and uses
the Pell-Gordon theorem (Theorem 1). Additionally, we need the following two
auxiliary theorems.

Theorem 2. Let f, g ∈ Z [x] of degrees n = deg(f) ≥ deg(g) = m and
let f0 be the leading coefficient of f . Consider the ith modified subresultant
polynomial15

S
(i)
2 = s

(i)
0 xmi + s

(i)
1 xmi−1 + · · · + s(i)mi

,

where (mi+1) is the degree of the preceding polynomial, and where the first (pi−1)

coefficients of S
(i)
2 are zero, and the pith coefficient ̺i = r

(i)
pi−1 is different from

zero. If

S̃
(i)
1 = s̃

(i)
0 xmi + s̃

(i)
1 xmi−1 + · · · + s̃(i)mi

,

is the corresponding (proper) subresultant polynomial16 and ji = n−mi, then

(13) fn−m
0 S̃

(i)
1 = (−1)

ji(ji−1)

2 S
(i)
2 .

15That is, its coefficients are determinants (modified subresultants) of submatrices obtained
from sylvester2.

16That is, its coefficients are determinants (proper subresultants) of submatrices obtained
from sylvester1.
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P r o o f. An analogous result has been proven in [5] (Theorem 2.1) re-

garding S̃
(i)
1 and the subresultant polynomial obtained from Bezout’s matrix.

Our theorem follows immediately from the equivalence of Bezout’s matrix to
Sylvester’s matrix sylvester2. �

The factor (−1)
ji(ji−1)

2 in (13) helps us get the signs right along the AMV
branch of Figure 1 and, hence, we call it the AMV (i)-factor.

Example 4. Consider again the polynomials f = x8 + x6 − 3x4 − 3x3 +
8x2 +2x− 5 and g = 3x6 +5x4 − 4x2 − 9x+21, seen in Examples 2 and 3. Note
that f0 = 1. To compute the AMV (i)-factors we first compute the values of the
ji, i = 1, 2, 3, 4, for each remainder. In our example we have

j1 = n−m1 = 8− 5 = 3,

j2 = n−m2 = 8− 3 = 5,

j3 = n−m3 = 8− 1 = 7,

j4 = n−m4 = 8− 0 = 8.

Therefore, the AMV (i)-factors are (−1)
ji(ji−1)

2 , for i = 1, 2, 3, 4 or

(14) AMV (i) = {−,+,−,+}, i = 1, 2, 3, 4.

Indeed, looking at the second row of (1) and (3), we see that the first and third
polynomial remainders differ in sign.

The second auxiliary theorem is an almost unknown statement with se-
rious ramifications as we shall see. It was proven by Akritas and Malaschonok
in April, 2015, during the conference on Polynomial Computer Algebra (PCA-
2015) in St. Petersburg, Russia, but both felt sure that it must have been noticed
earlier. Indeed, Vigklas found out that Sylvester mentioned this as a “Remark”
in ([10], p. 453).17

Theorem 3. Let f, g ∈ Z [x] of degrees n = deg(f) ≥ deg(g) = m.
Modify the process of finding the greatest common divisor of f and g by taking

17We quote Sylvester: “The law evidently being that the quotients change sign alternately,
i. e. in the 2nd, 4th, 6th, etc places, and remain unaltered in the 1st, 3rd, 5th, etc places; whereas
the residues or excesses change their signs in the 1st and 2nd, 5th and 6th, 9th and 10th, etc
and remain unaltered in the 3rd and 4th, 7th and 8th, 11th and 12th etc places.”
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at each stage the negative of the remainder and let the ith Sturmian remainder
be R(i). If R̃(i) is the corresponding Euclidean remainder obtained in finding the
greatest common divisor of f and g, then it holds

(15) R(i) = (−1)⌊
i−1
2

⌋+1 R̃(i).

P r o o f. The proof of this theorem is quite easy and is left as an exercise
for the reader. Hint : Use the fact that for the respective quotients we have
q(i) = (−1)i+1q̃(i). �

Theorem 3 tell us that once a Sturmian prs has been determined then the
signs (and values) of the corresponding Euclidean prs are uniquely defined. The

factor (−1)⌊
i−1
2

⌋+1 helps us get the signs right along the SAM branch of Figure
1 and, hence, we call it the SAM (i)-factor.

Example 5. Consider again the polynomials f = x8 + x6 − 3x4 − 3x3 +
8x2 + 2x − 5 and g = 3x6 + 5x4 − 4x2 − 9x + 21, seen in Examples 2, 3 and 4.

The SAM (i)-factor, i = 1, 2, 3, 4, for each remainder is (−1)⌊
i−1
2

⌋+1, or

(16) SAM (i) = {−,−,+,+}, i = 1, 2, 3, 4.

Indeed, comparing the polynomials in the second row of (2) and (4), we see that
they differ in sign, whereas those in the third row of (2) and (4) are identical.

Our main result follows:

Theorem 4. Let

f = a0x
n + a1x

n−1 + · · ·+ an

and

g = b0x
n + b1x

n−1 + · · · + bn

be two polynomials of degree n. Modify the process of finding the greatest common
divisor of f and g by taking at each stage the negative of the remainder.18 Let the
ith Sturmian remainder be

R(i) = r
(i)
0 xmi + r

(i)
1 xmi−1 + · · ·+ r(i)mi

18That is, apply Sturm’s algorithm on f, g.
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where (mi+1) is the degree of the preceding remainder, and where the first (pi−1)

coefficients of R(i) are zero, and the pith coefficient ̺i = r
(i)
pi−1 is different from

zero. Then for k = 0, 1, . . . ,mi the coefficients r̃
(i)
k of the Euclidean remainder19

R̃(i) = r̃
(i)
0 xmi + r̃

(i)
1 xmi−1 + · · ·+ r̃(i)mi

,

obtained in finding the greatest common divisor of f and g, are given by20

(17)

r̃
(i)
k

= (−1)⌊
i−1
2

⌋+1 ·
(−1)ui−1 (−1)ui−2 · · · (−1)u1 (−1)vi−1

̺
pi−1+1
i−1 ̺

pi−2+pi−1

i−2 · · · ̺p1+p2
1 ̺p10

· (−1)
ji(ji−1)

2 ·Det (i, k) ,

where

ui−1 = 1 + 2 + · · ·+ pi−1, vi−1 = p1 + p2 + · · ·+ pi−1, ji = n−mi,

and

Det (i, k) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a0 a1 a2 · · · · · · · · a2vi−1 a2vi−1+1+k

0 a0 a1 · · · · · · · · a2vi−1−1 a2vi−1+k

...
. . .

. . .
...

0 0 0 · · · a0 a1 · · · avi−1 avi−1+1+k

b0 b1 b2 · · · · · · · · b2vi−1 b2vi−1+1+k

0 b0 b1 · · · · · · · · b2vi−1−1 b2vi−1+k

...
. . .

. . .
...

0 0 0 · · · b0 b1 · · · bvi−1 bvi−1+1+k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

P r o o f. The proof follows from the previous three theorems. �

As in Section 2, we use a modification of formula (17) to compute the
coefficients of an Euclidean sequence. In that case p0 = deg (f) − deg (g) ≥ 0,
since deg(g) ≤ deg(f) and, provided the dimensions of sylvester1 are 2·deg(f)×
2 · deg(f), the modified formula is shown below with the changes appearing in

19That is, R̃(i) is a member of the Euclidean sequence obtained in finding the greatest common
divisor of f , g.

20It is understood in (17) that ̺0 = b0, p0 = 0, and that ai = bi = 0 for i > n.
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bold:21

(18) r̃
(i)
k

= (−1)⌊
i−1
2

⌋+1 ·
(−1)ui−1 (−1)ui−2 · · · (−1)u1 (−1)u0 (−1)vi−1

̺
pi−1+pi−degDiffer

i−1 ̺
pi−2+pi−1

i−2 · · · ̺p1+p2
1 ̺p0+p1

0

× (−1)
ji(ji−1)

2 ·
Det (i, k)

̺
p0

−1

,

where ̺−1 = a0, degDiffer is the difference between the expected degree mi and
the actual degree of the remainder and Det (i, k) is an appropriate submatrix of
sylvester1. Also, note that pi − degDiffer = 1 for all i.

If the leading coefficient of f is negative we work with the polynomial
negated and at the end we reverse the signs of all polynomials in the sequence.

Example 6. Consider again the polynomials f = x8 + x6 − 3x4 − 3x3 +
8x2 + 2x − 5 and g = 3x6 + 5x4 − 4x2 − 9x + 21, seen in Examples 2, 3, 4 and
5. To compute the Euclidean prs (2) of f, g from the subresultant prs (1) of f, g,
we do the following:

• Using the AMV (i)-factors (14) we convert the subresultant prs (1) to the
modified subresultant prs (3) of f, g.

• Subsequently, using (8), the PG(i)-factors (10) and the determinants ob-
tained from the modified subresultant prs (3) we compute the Sturmian prs
(4) of f, g.

• Finally, using the SAM (i)-factors (16) we convert the Sturmian prs (4) to
the Euclidean prs (2) of f, g.

We slightly modified the function sturm PG and developed our own function
euclid PG6, which computes the Euclidean prs of f, g in Z[x],

(19) x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5, 3x6 + 5x4 − 4x2 − 9x+ 21,

− 15x4 + 3x2 − 9,−65x2 − 125x+ 245, 9326x − 12300,−260708.

Note that the sign sequences in (2) and (19) are identical.

4. Conclusions. Consider the polynomials f, g ∈ Z[x]. Our main
result, Theorem 4, relates the Euclidean prs, obtained in finding in Q[x] the

21If the dimensions of sylvester1 are (deg(f)+ deg(g))× (deg(f)+deg(g)), then the denom-
inator ̺p0

−1 is omitted in (18).
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greatest common divisor of f, g, with the subresultant prs of f, g, as shown in
Figure 1.

Together, the four theorems in our paper imply that the polynomial re-
mainder sequence R(i), obtained in Q[x] by applying Sturm’s algorithm on f, g
and the polynomial remainder sequence R̃(i), obtained in Q[x] by applying Eu-
clid’s algorithm on f, g, are both uniquely defined — through equations (6), (13),
(15) and (18) — either by the modified subresultant prs or by the subresultant
prs; and vice-versa.

Once the polynomial remainder sequences R(i) and R̃(i) have been uniquely
defined in Q[x] then — as shown elsewhere [4] — using the same equations (6)
and (18), they can be uniquely defined in Z[x] as well. The signs of the coefficients
in both sequences in Z[x] are the same as those of the corresponding coefficients
in Q[x].22

Note added in proof. A new version of sympy (1.0) came out in March
2016. In this new version the module sumpy.polys.subresultants qq zz.py con-
tains the functions referred to in this paper.
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