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Abstract. Sequential pattern mining is an important subject in data min-
ing with broad applications in many different areas. However, previous se-
quential mining algorithms mostly aimed to calculate the number of occur-
rences (the support) without regard to the degree of importance of different
data items. In this paper, we propose to explore the search space of subse-
quences with normalized weights. We are not only interested in the number
of occurrences of the sequences (supports of sequences), but also concerned
about importance of sequences (weights). When generating subsequence
candidates we use both the support and the weight of the candidates while
maintaining the downward closure property of these patterns which allows
to accelerate the process of candidate generation.

1. Introduction. Sequential Pattern Mining is an important data min-

ing subject with broad applications in many different areas. Sequential patterns
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are very popular in real life data, like customer purchase patterns, disease treat-

ment patterns, web access patterns. The main purpose of sequential pattern

mining is finding all the repeated sequence patterns in a database. Many authors

have proposed to mine sequential pattern algorithms. Mining approaches include

AprioriAll [1], GSP [2], PrefixSpan [3], SPADE [4], SPAM [5] that solve different

types of mining problems and at the same time aim at reducing the running time

and computational resources. These algorithms, however, consider only the num-

ber of occurrences of subsequences but do not take into account the important

levels of data items of sequences.

In this paper, we propose to mine sequential patterns in sequence data-

bases. We are not only interested in the number of occurrences of sequences

(the supports), but also concerned about the important levels of data items of

sequences (weight of sequence). However, when considering the weights of data

items, we cannot utilize the downward closure property of subsequences which

allows to quickly check whether a subsequence is frequent or not. To deal with

this problem, we propose a redundancy method of candidate generation in which

the downward closure property is reserved, and checking the support and weight

of the final normalised weighted patterns.

The remainder of this paper is organized as follows. Session 2 provides a

study of related works. Section 3 describes the problem and proposes the mining

method for normalized weighted frequent sequential patterns named WPrefixS-

pan. This method is based on the PrefixSpan algorithm [3] for mining frequent

sequential patterns. Section 4 presents experimental results and a comparison be-

tween WPrefixSpan and PrefixSpan algorithm [3] on the BMS-WebView dataset.

Conclusions and comments are presented in the last section.

2. Related work. In 1995, Agrawal and Srikant introduced the se-

quence pattern mining problem [1] and proposed an algorithm called AprioriAll.

This algorithm is based on the Apriori algorithm for mining sequence patterns.

Like Apriori, AprioriAll scans the database multiple times to generate subse-

quence candidates, This approach requires long running time. In 2001 J. Pei,

J. Han, B.M. Asi, H. Pinto introduced the PrefixSpan [3] algorithm which is

based on the pattern growth method. This method does not require multiple

database scans, so it takes considerably less mining time than AprioriAll.

Other algorithms such as SPADE[4], SPAM[5] were developed to optimize

the sequence pattern mining process. Additionally, the techniques based on the

dynamic bit sequence to explore the closed sequence pattern are also presented

in [13].



An Algorithm to Mine Normalized Weighted Sequential Patterns . . . 107

However all the sequence mining algorithms mentioned above are not

interested in the important degree of each pattern (weight of pattern). Therefore,

other authors have proposed solutions for the problem of mining with sequence

weights, see for example [6, 7, 8, 9, 13, 14, 15]. The algorithms [11, 14] although

mining the sequence pattern on a weighted database, are not interested in the

binding between the weight and the support of patterns.

3. Problem statement of mining normalized weighted fre-

quent sequential patterns using prefix-projected databases.

3.1. Preliminaries. Let I = {i1, i2, . . . , in} be a set of all items. Each

item ij ∈ I is assigned with a weight wj , j = 1, . . . , n.

A sequence Sm is an ordered list of itemsets denoted by {s1, s2, . . . , sm}

here sj ⊆ I is an itemset which is called an element of a sequence. S = {s1, s2, . . . ,

sm} and sj denoted by (i1i2 . . . ik) with it is an item in I. A sequence S is elimi-

nated if it has only one item. An item can occur at most once in an element of a

sequence sj, but can occur multiple times in different elements of a sequence S.

The size |S| of a sequence is the number of elements in the sequence S.

The length l(S) of the sequence S is the number of instances of items in S. A

sequence database S = {S1, S2, . . . , Sn} is a set of tuples (sid, S) where sid is an

identification of a sequence and Sk is a sequence.

Definition 1 (Support of a sequence). The support of a sequence Sa

in a sequence database S is the number of occurrences of records containing the

sequence Sa in S.

Definition 2 (Normalized weight of a sequence). Let I = {i1, i2, . . . , in}

is a set of all items. Each item ij ∈ I is assigned a weight wj , j = 1, . . . , n.

Then normalized weighted of a sequence α =< e1e2 · · · en〉 is calculated

with the formula:

NW (α) =
1

k

∑

ij∈α

wj .

Definition 3 (Normalized weighted support of a sequence). We call

NWsupport(α) of sequence α is the normalized weighted support of sequence α

NWsupport (α) = NW (α) ∗ support (α) =





1

k

∑

ij∈α

wj



 ∗ SC (α) .
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Definition 4. (Normalized weighted frequent sequential pattern). Given

a sequence database S and a support threshold wmin sup. A sequence α is called

normalized weighted frequent sequential pattern if it satisfies:

NWSupport(α) ≥ wmin sup.

Then the problem of mining normalized weighted frequent sequential pat-

terns is stated as follows:

• Given a sequence database S, each item ij ⊆ I is assigned a weight wj and

a support threshold wmin sup. Finding all normalized weighted frequent

sequential pattern in S means finding the set L:

L = {Sa ⊆ S|NWsupport (Sa) ≥ wmin sup}

• If a normalized weighted frequent sequential pattern does not satisfy the

downward closure property then some subsets of normalized weighted fre-

quent sequential pattern are not necessarily normalized weighted frequent

sequential patterns.

3.2. The proposed solution. In this subsection we propose an algo-

rithm to mine normalized weighted frequent sequential patterns (WPrefixSpan).

Definitions 5, 6, 7, 8 and Lemma 1, Lemma 2 given here are based on those pre-

sented in PrefixSpan [3] whose main approach is to push weight constraint and

support threshold in mining frequent sequential pattern and ensure downward

closure property.

To avoid checking every possible combination of a potential candidate

sequence, we first fix the order of items within each element. Since items within

an element of a sequence can be listed in any order, without loss of generality,

one can assume that they are always listed alphabetically.

For example the sequence is presented as 〈a(abc)(ac)d(cf)〉 instead of

〈a(acb)(ac)d(fc)〉. By such a convention, the expression of a sequence is unique.

If we follow the order of the prefix of a sequence and project only the

postfix of a sequence, we can examine in an orderly manner all the possible sub-

sequences and their associated projected database.
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Definition 5 (Prefix). Itemsets in an element of sequence are ordered

alphabetically [3]. Let α = 〈e1e2 · · · en〉 be a sequence, a sequence β = 〈e′1e
′
2 · · · e

′
m〉

with (m ≤ n) is a Prefix of α if:

• e′i = ei with (i ≤ m− 1)

• e′m ⊆ em

• every itemset in (em − e′m) is ordered in e′m

For example: Given a sequence s = 〈a(abc)(ac)d(cf)〉, then prefixes of s

are: 〈a〉, 〈aa〉, 〈a(ab)〉, 〈a(abc)〉, . . . .

Definition 6 (Postfix). Let α = 〈e1e2 · · · en〉 be a sequence and a sequence

β = 〈e′1e
′
2 · · · e

′
m−1e

′
m〉 with (m ≤ n) be the Prefix of α. The sequence µ =

〈e′′mem+1 · · · en〉 is called Postfix of α with regard to Prefix β, denote as µ = α/β

with e′′m = (em − e′m) or α = β.µ. If β is not a subsequence of α then the Postfix

of α with regard to β is null.

For example: Given sequence s = 〈a(abc)(ac)d(cf)〉, sequence

〈(abc)(ac)d(cf)〉 is a Postfix with regard to Prefix 〈a〉; 〈( bc)(ac)d(cf)〉 is Post-

fix with regard to Prefix 〈aa〉, 〈( c)(ac)d(cf)〉 is Postfix with regard to Prefix

〈a(ab)〉 Using the concepts of prefix and postfix, the problem of mining Nor-

malized weighted frequent sequential patterns can be decomposed into a set of

subproblems as shown in the following lemmas:

Lemma 1.

• Let {〈x1〉, 〈x2〉, . . . , 〈xn〉} be the complete set of length-1 sequential patterns

in a sequence database S. The complete set of sequential patterns in S can

be divided into n disjoint subsets. The i-th subset (1 ≤ i ≤ n) is the set of

sequential patterns with prefix {xi}.

• Let α be a length-l sequential pattern and {β1, β2, . . . , βm} be the set of

all length-(l + 1) sequential patterns with prefix α. The complete set of

sequential patterns with prefix α, except for α itself, can be divided into

m disjoint subsets. The j-th subset (1 ≤ j ≤ m) is the set of sequential

patterns prefixed with βj .
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P r o o f. We show the correctness of the second half of the lemma. The

first half is a special case where α = ∅.

For a sequential pattern µ with prefix α, where α is of length l, the length-

(l+1) prefix of µ must be a sequential pattern, according to the a priori heuristic.

Furthermore, the length-(l + 1) prefix of µ is also a prefix of α, according to the

definition of prefix. Therefore, there exists some j (1 ≤ j ≤ m) such that βj is the

length-(l+1) prefix of µ. Thus, µ is in the j-th subset. On the other hand, since

the length-k prefix of a sequence µ is unique, µ belongs to only one determined

subset. That is, the subsets are disjoint. So, we have the lemma. �

Based on Lemma 1, the problem can be partitioned recursively. That

is, each subset of sequential patterns can be further divided when necessary.

This forms a divide-and-conquer framework. To mine the subsets of sequential

patterns, the corresponding projected databases can be constructed.

Definition 7 (Conditions database). Suppose we have a sequence α =

〈e1e2 · · · en〉 belonging to a sequence database S. A α-conditions database is de-

noted as S|α, that is the collection of postfixes of sequences in S with regard to

Prefix α.

Definition 8 (Support count in projected database). Let α be a se-

quential pattern in sequence database S, and β be a sequence with prefix α. The

support count of β in α-projected database S|α, denoted as supportSα
(β), is the

number of sequences µ in S|α such that β ⊑ α.µ.

Lemma 2. Let α and β be two sequential patterns in a sequence database

S such that α is a prefix of β.

• S|β = (S|α)|β

• For any sequence µ with prefix α, supportS(µ) = supportS|α(µ).

• The size of α-conditions database cannot exceed that of S.

Definition 9 (Candidate sequence pattern). Given a support threshold

wmin sup, a sequence α is called candidate weighted sequence pattern if it satisfies:

Support(α) ∗MaxW ≥ wmin sup

where MaxW is the maximum value of weights of items in S. Candidate sequence
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patterns are built for the purpose of pruning the search space and still ensure

the downward closure property in mining normalized weighted frequent sequential

patterns.

Then, the problem of mining normalized weighted frequent sequential

patterns using the prefix condition database is stated as:

• Given a sequence database S, each item ij ⊆ I is assigned a weight wj ,

a support threshold wmin sup. We have to find all normalized weighted

frequent sequence patterns in S, which means finding the set L:

L = {Sa ⊆ S|NWsupport (Sa) ≥ wmin sup

• The normalized weighted frequent sequence pattern doesn’t satisfy the

downward closure property, which mean a subset of a normalized weighted

frequent sequence pattern is not necessarily a normalized weighted frequent

sequence pattern.

3.3. Example of mining normalized weighted frequent sequential

patterns using a prefix condition database. Given a sequence database S

in Table 1, weighted values of items in Table 2, wmin sup = 2, then mining

normalized weighted frequent sequential patterns in sequence database S with

WPrefixSpan method is done according to the following steps:

Table 1. Sequence database S

Data sequences

〈a(abc)(ac)d(cf)〉

〈(ad)c(bc)(ae)bc〉

〈(ef)(ab)(df)cb〉

〈eg(af)cbc〉

〈a(ab)(cd)egh〉

〈a(abd)bc〉

Table 2. Weight of items

Item Weight

a 0.9

b 0.75

c 0.8

d 0.85

e 0.75

f 0.7

g 0.85

h 0.8

Step 1: Find all normalized weighted frequent sequence pattern

candidate of length-1. Scan S for the first time to find all candidates for

normalized weighted frequent sequence patterns whose length is 1, then count

the support of each item.
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A length-1 item may not be a normalized weighted frequent sequence

pattern, but it can be combined with other items with higher support or weighted

values to become a normalized weighted frequent sequence pattern of greater

length.

Then we have support count for each item as follows:

〈a〉 : 6, 〈b〉 : 6, 〈c〉 : 6, 〈d〉 : 5, 〈e〉 : 4, 〈f〉 : 3, 〈g〉 : 2, 〈h〉 : 1

Weighted values: (a : 0.9; b : 0.75; c : 0.8; d : 0.85; e : 0.75; f : 0.7;

g : 0.85, h : 0.8)

MaxW = 0.9

Following Definition 9, we eliminate g and h because support(g)∗MaxW =

2 ∗ 0.9 = 1.8 < wmin sup and support(h) ∗MaxW = 1 ∗ 0.8 = 0.8 < wmin sup.

Then we have length-1 candidates of normalized weighted frequent se-

quence patterns:

C1 = 〈a〉, 〈b〉, 〈c〉, 〈d〉, 〈e〉, 〈f〉

Following Definition 4 with candidates in C1, we obtain length-1 normal-

ized weighted frequent sequence patterns as:
NWsupport(a) = 6 ∗ 0.9 = 5.4 NWsupport(b) = 6 ∗ 0.75 = 4.5
NWsupport(c) = 6 ∗ 0.8 = 4.8 NWsupport(d) = 5 ∗ 0.85 = 4.25
NWsupport(e) = 4 ∗ 0.75 = 3 NWsupport(f) = 3 ∗ 0.7 = 2.1

L = 〈a〉, 〈b〉, 〈c〉, 〈d〉, 〈e〉, 〈f〉

Step 2: Divide search space. All candidates and normalized weighted

frequent sequential patterns are mined in 6 regions corresponding to the following

6 prefixes:

(1) Sequence pattern with prefix 〈a〉

(2) Sequence pattern with prefix 〈b〉

(3) Sequence pattern with prefix 〈c〉

(4) Sequence pattern with prefix 〈d〉

(5) Sequence pattern with prefix 〈e〉

(6) Sequence pattern with prefix 〈f〉

Step 3: Mining subset candidates and normalized weighted se-

quence pattern. All subset candidates and normalized weighted frequent se-

quence patterns are mined by building condition databases corresponding to the

prefix and mining them with recursive method. The steps are as follows:
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A. Finding candidates and normalized weighted frequent sequence patterns

with prefix 〈a〉.

If a sequence contains 〈a〉, only the subsequence prefixed with the first oc-

currence of 〈a〉 should be considered. For example, in sequence 〈a(ac)(abc)d(cf)〉

only the subsequence 〈(abc)(ac)d(cf)〉 should be considered, similarly with

〈(ad)c(bc)(ae)bc〉 only the subsequence 〈(∼d)c(bc)(ae)bc〉 should be considered.

Then condition database with prefix 〈a〉 includes 6 sequences:

Table 3. Condition database with prefix 〈a〉

iSID Sequence data

1 〈(abc)(ac)d(cf)〉

2 〈(∼d)c(bc)(ae)bc〉

3 〈(∼b)(df)cb〉

4 〈(∼f)cbc〉

5 〈(ab)(cd)e〉

6 〈(abd)bc〉

By scanning the condition database with prefix 〈a〉, the support counts

of all items are: a : 4, b : 6, c : 6, d : 4, e : 2, f : 2, (∼b) : 4, (∼d) : 1, (∼e) : 1 and

(∼f) : 1.

Following Definition 9, we find all length-2 candidate patterns with pre-

fix 〈a〉:
support(a) ∗MaxW = 4 ∗ 0.9 = 3.6 support(b) ∗MaxW = 6 ∗ 0.9 = 5.4
support(c) ∗MaxW = 6 ∗ 0.9 = 5.4 support(d) ∗MaxW = 4 ∗ 0.9 = 3.6
support(e) ∗MaxW = 2 ∗ 0.9 = 1.8 support(f) ∗MaxW = 2 ∗ 0.9 = 1.8
support((∼b)) ∗MaxW = 4 ∗ 0.9 = 3.6 support((∼d)) ∗MaxW = 1 ∗ 0.9 = 0.9
support((∼e)) ∗MaxW = 1 ∗ 0.9 = 0.9 support((∼f)) ∗MaxW = 1 ∗ 0.9 = 0.9

Eliminated itemsets are: 〈e〉, 〈f〉, 〈(∼d)〉, 〈(∼e)〉, 〈(∼f)〉.

Length-2 candidate patterns with prefix 〈a〉 which satisfy support counts

with maximum weight are:

C2〈a〉 = 〈aa〉, 〈ab〉, 〈ac〉, 〈ad〉, 〈(ab)〉.

Following Definition 4 with candidates in C2〈a〉, we have length-2 nor-

malized weighted sequential patterns with prefix 〈a〉 are:



114 Janos Demetrovics, Vu Duc Thi, Tran Huy Duong

NWsupport(aa) = 4 ∗ (0.9 + 0.9)/2 = 5.4
NWsupport(ab) = 6 ∗ (0.9 + 0.75)/2 = 4.95
NWsupport(ac) = 6 ∗ (0.9 + 0.8)/2 = 5.1
NWsupport(ad) = 4 ∗ (0.9 + 0.85)/2 = 3.5
NWsupport((ab)) = 4 ∗ (0.9 + 0.9 + 0.75)/3 = 3.4

L = L ∪ {〈aa〉, 〈ab〉, 〈ac〉, 〈ad〉, 〈(ab)〉}

According to the recursive nature, candidates and normalized weighted

frequent sequence patterns with prefix 〈a〉 will be further divided into 5 regions

corresponding to 5 prefixes including:

(1) Sequence pattern with prefix 〈aa〉

(2) Sequence pattern with prefix 〈ab〉

(3) Sequence pattern with prefix 〈ac〉

(4) Sequence pattern with prefix 〈ad〉

(5) Sequence pattern with prefix 〈(ab)〉

A.1. With sequence pattern with prefix 〈aa〉, we build a condition database

with prefix 〈aa〉 with items in candidate set in C2〈a〉. Then

Table 4. Condition database with prefix 〈aa〉

iSID Sequence data

1 〈(∼bc)(ac)dc〉

2 〈bc〉

5 〈(∼b)(cd)〉

6 〈(∼bd)bc〉

By scanning the condition database with prefix 〈aa〉, the support counts

of all items are: a : 1, b : 2, c : 4, d : 2, (∼b) : 3, (∼c) : 1.

Following Definition 9, we find all length-3 candidate patterns with pre-

fix 〈aa〉:
support(a) ∗MaxW = 1 ∗ 0.9 = 0.9 support(b) ∗MaxW = 2 ∗ 0.9 = 1.8
support(c) ∗MaxW = 4 ∗ 0.9 = 3.6 support(d) ∗MaxW = 2 ∗ 0.9 = 1.8
support((∼b)) ∗MaxW = 3 ∗ 0.9 = 2.7 support((∼c)) ∗MaxW = 1 ∗ 0.9 = 0.9

Eliminated items are 〈a〉, 〈b〉, 〈(d)〉, 〈(∼c)〉

Length-3 candidates of normalized weighted sequence pattern with prefix

〈aa〉 are:

C3〈aa〉 = 〈aac〉, 〈a(ab)〉.

Following Definition 4 with candidates in C3〈aa〉, we have length-3 nor-

malized weighted frequent patterns with prefix 〈aa〉:



An Algorithm to Mine Normalized Weighted Sequential Patterns . . . 115

NWsupport(aac) = 4 ∗ (0.9 + 0.9 + 0.8)/3 = 3.46

NWsupport(a(ab)) = 3 ∗ (0.9 + 0.9 + 0.75)/3 = 2.55

L = L ∪ {〈aac〉, 〈a(ab)〉}.

According to the recursive nature, candidates and normalized weighted

frequent sequence patterns with prefix 〈aa〉 will be further divided into 2 regions

corresponding to 2 prefixes including:

(1) Sequence pattern with prefix 〈aac〉

(2) Sequence pattern with prefix 〈a(ab)〉

A.1.1. With sequence pattern with prefix 〈aac〉, we build the condition

database with prefix 〈aac〉 with items in candidate set in C3〈aa〉.

The condition database with prefix 〈aac〉 has one sequence c.

A.1.2. With sequence pattern with prefix 〈a(ab)〉, we build condition

database with prefix 〈a(ab)〉 with items in candidate set in C3〈aa〉.

Then condition database with prefix 〈aac〉 has sequences:

Table 5. Condition database with prefix 〈a(ab)〉

iSID Sequence data

1 〈(∼c)(ac)c〉

5 〈c〉

6 〈(∼d)bc〉

By scanning the condition database with prefix 〈a(ab)〉, support counts

of all items are: a : 1, b : 1, c : 3, (∼d) : 1, (∼c) : 1.

Following Definition 9, we find all length-4 candidate patterns with prefix

〈a(ab)〉:
support(a) ∗MaxW = 1 ∗ 0.9 = 0.9 support(b) ∗MaxW = 1 ∗ 0.9 = 0.9
support(c) ∗MaxW = 3 ∗ 0.9 = 2.7 support((∼d)) ∗MaxW = 1 ∗ 0.9 = 0.9
support((∼c)) ∗MaxW = 1 ∗ 0.9 = 0.9

Eliminated items are 〈a〉, 〈b〉, 〈(∼d)〉, 〈(∼c)〉.

The length-4 candidates of normalized weighted sequence pattern with

prefix 〈a(ab)〉 are:

C4〈a(ab)〉 = 〈a(ab)c〉

Following Definition 4 with candidates in C4〈a(ab)〉, we have length-4 normalized

weighted frequent patterns with prefix 〈a(ab)〉:
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NWsupport(a(ab)c) = 3 ∗ (0.9 + 0.9 + 0.75 + 0.8)/4 = 2.51

L = L ∪ {〈a(ab)c〉}.

According to the recursive nature, candidates and normalized weighted

frequent sequence patterns with prefix 〈a(ab)〉 will be further divided into one

region corresponding to one prefix including:

(1) Sequence pattern with prefix 〈a(ab)c〉

A.1.2.1. With the sequence pattern with prefix 〈a(ab)c〉, we build the

condition database with prefix 〈a(ab)c〉 with items in candidate set in C4〈a(ab)〉.

The condition database with prefix 〈a(ab)c〉 has one sequence 〈(ac)c〉.

A.2. With the sequence pattern with prefix 〈ab〉; 〈ac〉; 〈ad〉and〈(ab)〉, we

build the condition database with prefix corresponding with items in candidate

set in C2〈a〉. Normalized weighted frequent sequence pattern mining correspond-

ing to each prefix is performed similarly to step A.1.

B. Finding candidates and normalized weighted frequent sequence patterns

with prefix 〈b〉, 〈c〉, 〈d〉, 〈e〉, 〈f〉. With the sequence pattern with prefix 〈b〉; 〈c〉;

〈d〉; 〈e〉; 〈f〉, we build the condition database with prefix corresponding with

items in candidate set in C1. Normalized weighted frequent sequence pattern

mining corresponding to each prefix is also performed similarly to step A with

recursive method.

Step 4: The result is the normalized weighted frequent sequence

pattern in the sequence database S. Normalized weighted frequent sequence

patterns are mined in turn in a recursive process for each prefix. In this method,

the number of results will be less than the number sequence patterns without

data item weights.

3.4. Mining sequential pattern with normalized weighted using

a prefix condition database algorithm (WPrefixSpan).

– Input:

(1) Sequence database SDB

(2) Support threshold: wmin sup

(3) Weight of items: wi
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– Output: Normalized weighted frequent sequential patterns L

WPrefixSpan algorithm

Start

1) Scan database S first time, calculate support and find length-1 candidates

satisfying: Itemset P is a candidate itemset if it satisfies condition 1.1, P

will be put into Ck

Condition 1.1. Support(P ) ∗MaxW ≥ wmin sup

2) Check candidate itemsets in Ck, find frequent sequence patterns with nor-

malized weights satisfying support(P ) ∗NW (P ) ≥ wmin sup, put into L

3) Loop with every normalized weighted itemset P , in sequence database S

Execute recursive function WPrefixSpan(〈P 〉, l, S|P )

End loop

End.

Function WPrefixSpan(α, l, S|α)

Parameters:

(1) α is a candidate itemset with normalized weighted which satisfies Condi-

tion 1.1

(2) l is length of α

(3) Sα is condition database with prefix α. S is the situation when α = ⊘

Start:

1) Scan S|α, calculate support of each item and find candidate itemsets with

normalized weighted denoted as β in sequences. A candidate β which sat-

isfies condition 1.1 is put into L

Condition 1.1. support(β) ∗MaxW ≥ wmin sup

– with each β in Ck:

(a) β can be appended to α to create a candidate for a normalized weighted

frequent sequence pattern or

(b) 〈β〉 can be joined to α to create a candidate for a normalized weighted

frequent sequence pattern
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– Check candidates β in Ck to find a normalized weighted frequent sequence

pattern which satisfies support(β) ∗NW (β) ≥ wmin sup, put into L.

2) Loop with each normalized weighted frequent sequence candidate pattern

β

– Join β with α to create a normalized weighted frequent sequence candidate

pattern α′ and the output is α′

3) Loop with each α′.

– Build a condition database with prefix α′ denoted as S|′α

– Execute recursively function WPrefixSpan(α′, l + 1, S|α′)

End.

4. Algorithm complexity and experimental results.

4.1. Complexity of WPrefixSpan algorithm. In the general case,

the complexity of the recursive algorithm is exponential. Specifically: Problem

P (n) has the data size n, the complexity of the problem P is called O(n)

– In first recursive call O(n) = n ∗O(n− 1)

– In second recursive call O(n− 1) = (n− 1) ∗O(n− 2)

– . . .

Thus, the complexity in the general case is O (n) = n ∗ (n− 1) ∗ (n− 2) ∗

. . . ∗ 1 = O (nn)

In the specific case of the WPrefixSpan algorithm:

– First database scans to find length-1 prefix, the complexity is O(n); here n

is the data size (number of sequences and maximum length of the sequences)

– Second scan, calling recursively with prefix length 1, the complexity is n ∗

O(n− 1) (the data size is reduced by 1)

– And as above, the algorithm complexity in the general case is exponential

O (nn) .
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So the WPrefixSpan algorithm just tries to reduce the data space to find

normalized weighted frequent patterns according to set targets, evaluating the

effectiveness based on the experimental results.

4.2. Experimental results. In this section, we present the experi-

mental results and the comparison between WPrefixSpan algorithm and Pre-

fixSpan algorithm on a dataset from UCI Machine Learning. The dataset is

BMS-WebView with 59601 sequence data, 497 data items, average length of one

sequence 2.42 data items, with some long sequences (more than 318 sequences

store more than 20 items) (http://www.philippe-fournier-viger.com/spmf/

datasets/BMS1_spmf). Weighted values of items in WPrefixSpan algorithm are

in the range 0, 2 ≤ wj ≤ 0.9. WPrefixSpan is a mining normalized weighted

frequent sequence pattern algorithm which is interested in the balance between

2 elements: weight and support of sequences. PrefixSpan is only interested in

support of sequences.

All the experiments were performed on an Intel Core2 Dual 2.53GHz PC

with 3 GB main memory, running Microsoft Windows XP SP3. All the programs

(a) Runtime (b) Frequent Sequential pattern

(c) Memory in use (d) Sequence pattern length

Fig. 1. Experimental result
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were written in Java 1.6 using Eclipse IDE.

The experimental results show:

– Figure 1.a: we can see WPrefixSpan algorithm is more effective than Pre-

fixSpan [3] algorithm; when wmin sup is reduced WPrefixSpan’s runtime is

reduced faster than PrefixSpan’s.

– Figure 1.b: the number of frequent sequential pattern found in WPrefix-

Span algorithm is lower than that of PrefixSpan. WPrefixSpan adds con-

straints between weight and support of sequences while PrefixSpan only

cares about support. The number of candidate patterns is less too accord-

ing to definition 9 which prune sequences, then the search space is reduced

in WPrefixSpan algorithm.

– Figure 1.c: WPrefixSpan is more effective than PrefixSpan in memory us-

age, because search space is reduced in WPrefixSpan.

– Figure 1.d: With the same support threshold wmin sup =0.7, length of fre-

quent sequence pattern in WPrefixSpan is shorter than that of PrefixSpan.

5. Conclusions. In this paper, we develop an algorithm called WPre-

fixSpan which detects normalized weighted frequent sequence patterns based on

the candidate pattern growth model. With this approach, our algorithm doesn’t

need to create candidate sequence patterns like other Apriori [1] approaches.

We use a prefix condition database building method which allows to sig-

nificantly reduce the search space when mining the frequent sequence patterns.

By adding weighted values of items in the sequence database, we are

interested in the constraints between support count and weights; besides, in the

process of building the prefix conditions database, we check the condition to

prune items which do not belong to candidate patterns, which in turn reduce

significantly the search space but still ensure the downward closure property of

the algorithm.

With the above comments, we can conclude that WPrefixSpan is an effi-

cient algorithm for mining normalized weighted frequent sequence patterns.
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