
Serdica J. Computing 9 (2015), No 1, 1–26 Serdica
Journal of Computing

Bulgarian Academy of Sciences
Institute of Mathematics and Informatics

THREE NEW METHODS FOR COMPUTING
SUBRESULTANT POLYNOMIAL REMAINDER

SEQUENCES (PRS’S)

Alkiviadis G. Akritas

To the memory of Anna Johnson Pell* and R. L. Gordon,

for their inspiring Theorem of 1917!

Abstract. Given the polynomials f, g ∈ Z [x] of degrees n,m, respectively,
with n > m, three new, and easy to understand methods — along with
the more efficient variants of the last two of them — are presented for the
computation of their subresultant polynomial remainder sequence (prs).

All three methods evaluate a single determinant (subresultant) of an
appropriate sub-matrix of sylvester1, Sylvester’s widely known and used
matrix of 1840 of dimension (m + n) × (m + n), in order to compute the
correct sign of each polynomial in the sequence and — except for the second
method — to force its coefficients to become subresultants.

Of interest is the fact that only the first method uses pseudo remain-
ders. The second method uses regular remainders and performs operations

ACM Computing Classification System (1998): F.2.1, G.1.5, I.1.2.
Key words: Pseudo remainders, subresultant prs’s, Sylvester’s matrices.

*See the link http://en.wikipedia.org/wiki/Anna_Johnson_Pell_Wheeler for her biogra-
phy.

2 Alkiviadis G. Akritas

in Q [x], whereas the third one triangularizes sylvester2, Sylvester’s little
known and hardly ever used matrix of 1853 of dimension 2n× 2n.

All methods mentioned in this paper (along with their supporting func-
tions) have been implemented in Sympy and can be downloaded from the
link http://inf-server.inf.uth.gr/~akritas/publications/

subresultants.py.

1. Introduction. Given the polynomials f, g ∈ Z[x], of degrees n,m
respectively, with n ≥ m, various methods exist to compute their subresultant
polynomial remainder sequence (prs). Some of these methods use only divisions,
while others only evaluate minors of certain matrices and avoid divisions [16], [21].
However, as indicated by all authors, the optimal choice depends dramatically
on the concrete polynomial pair under consideration and typically requires some
experimentation.

Motivated by our work on the Pell-Gordon Theorem of 1917, [7], [8], [24],
we increased by three the number of available methods to compute the subresul-
tant prs. As we will see in the sequel, the new methods that we present use both
polynomial divisions and one determinant evaluation per remainder. Assuming
that a fast (probabilistic) algorithm is available to compute the determinant, these
methods can be quite efficient.

We begin by first describing Sylvester’s two matrices.
Sylvester’s matrix sylvester1 was discovered in 1840 [25] and its dimen-

sions are (n+m)× (n+m); it consists of two groups of rows, the first one with m
rows and the second one with n. Concatenation of the two groups yields matrix
sylvester1.

In the first row of the first group (of m rows) are the coefficients of f(x)
with m − 1 trailing zeros. The second row in this group differs from the first
one in that its elements have been rotated to the right by one. A total of m− 1
rotations are needed to construct the first group of rows.

In the first row of the second group (of n rows) are the coefficients of g(x)
with n−1 trailing zeros. The second row in this group differs from the first one in
that its elements have been rotated to the right by one. A total of n−1 rotations
are needed to construct the second group of rows.

Sylvester’s matrix, sylvester2 was discovered in 1853, its dimensions are
2n × 2n and it consists of n pairs of rows [26]. In the first row of the first pair
are the coefficients of f(x) whereas in the second row of the first pair are the
coefficients of g(x); n −m zeros have been prepended to g(x) to also make it of
degree n. Both rows in the first pair have 2n−(n+1) trailing zeros and both rows

Three New Methods for Computing Subresultant PRS’s 3

of the last pair have 2n − (n + 1) leading zeros. The second pair of rows differs
from the first one in that the elements of both rows have been rotated to the
right by one. A total of 2n− (n+1) rotations are needed to construct Sylvester’s
matrix.

In Xcas/Giac Sylvester’s sylvester1 matrix is given by the built-in func-
tion sylvester, whereas Sylvester’s sylvester2 matrix is given by our own func-
tion sylvester2. In Sympy we have written the function sylvester1 which re-
turns either matrix depending on the last optional argument; by default matrix
sylvester1 is returned.

Example 1. Take f(x) = ax3 + bx2 + cx+ d and g(x) = 3ax2 + 2bx+ c.
Then, S1, their sylvester1 matrix, is2

Python] from sympy import *

Python] a, b, c, d, x = var(’a b c d x’)

Python] S1 = sylvester(a*x**3 + b*x**2 + c*x + d, 3*a*x**2 + 2*b*x

+ c, x, 1)

Python] S1

a b c d 0
0 a b c d

3a 2b c 0 0
0 3a 2b c 0
0 0 3a 2b c

,

whereas S2, their sylvester2 matrix, is

Python] S2 = sylvester(a*x**3 + b*x**2 + c*x + d, 3*a*x**2 + 2*b*x

+ c, x, 2)

Python] S2

a b c d 0 0
0 3a 2b c 0 0
0 a b c d 0
0 0 3a 2b c 0
0 0 a b c d

0 0 0 3a 2b c

.

1 All Sympy functions mentioned in this paper can be downloaded from the link
http://inf-server.inf.uth.gr/~akritas/publications/subresultants.py.

2
TeXmacs has been used as interface. The Sympy matrix output has been slightly modified to

conform to mathematical notation.

4 Alkiviadis G. Akritas

For the sequences of polynomial remainders examined in this paper the
following definition is needed:

Definition 1. The sign sequence of a polynomial remainder sequence
(prs) is the sequence of signs of the leading coefficients of its polynomials.

Given f (x) , g (x) ∈ Z [x] of degrees deg(f) = n and deg(g) = m with
n ≥ m their (proper) subresultant prs is a sequence of polynomials similar to the
Euclidean prs, the sequence obtained by applying in Q [x]3 Euclid’s polynomial
gcd algorithm on f (x) , g (x).4,5 The two sequences differ in that the coefficients
of each polynomial in the subresultant prs are the determinants, subresultants, of
sub-matrices of sylvester1; moreover, the two sign sequences may differ. The
determinant of sylvester1 itself is called the resultant of f (x) , g (x) and serves
as a criterion of whether the two polynomials have common roots or not.

By contrast, the determinant of matrix sylvester2 defines the modified
resultant of the two polynomials f, g and, therefore, the determinant of any sub-
matrix of sylvester2 is called a modified subresultant . Modified supresultant
prs’s are related to Sturm sequences and have been studied elsewhere [7].

The determinants of the two matrices sylvester1 and sylvester2 may
differ in sign. Indeed, for the polynomials of Example 1 the determinant of S1 is

Python] S1.det()

27 · a3 · d2 − 18 · a2 · b · c · d+ 4 · a2 · c3 + 4 · a · b3 · d− a · b2 · c2,

whereas the determinant of S2 is

Python] S2.det()

−27 · a3 · d2 + 18 · a2 · b · c · d− 4 · a2 · c3 − 4 · a · b3 · d+ a · b2 · c2.

It has been shown in the literature that, using sylvester1, the polyno-
mials in the subresultant prs are proportional to those obtained by the Euclidean
algorithm. Moreover, for complete sequences, the subresultant prs is identical to
the Euclidean prs (computed in Z [x]), where the polynomial remainder pi+2 in

3Or in Z [x], if we use our Sympy function euclid_PG(p, q, x, method = 0), mentioned in
Example 2, Section 2.

4A formal definition of a subresultant prs can be found in almost all references (see for
example the one by Kerber, [21]) and, hence, it is omitted in this paper in order to save space.

5If there are no gaps in the degree sequence, the prs is called complete else it is called
incomplete. For complete prs’s the sign sequences of the subresultant and Euclidean prs’s are
identical.

Three New Methods for Computing Subresultant PRS’s 5

the latter sequence has been divided by the square of the leading coefficient of
the polynomial pi [2].

As Sylvester pointed out, the coefficients of the polynomial remainders
obtained as subresultants are the smallest possible without introducing rationals
and without computing (integer) greatest common divisors. However, since it
is time consuming — and tiring — to evaluate a large number of determinants,
the subresultant prs algorithm using the function prem was developed [10], [11],
[15], [22], and is described for completion in Section 2.1; see also [19]. This well
known algorithm is the only one in the paper that does not use the fundamental
procedure with sylvester1 described below and, instead, uses the quantities βi
in formula (7).

1.1. The fundamental procedure with sylvester1. The purpose of
this procedure is to evaluate the determinant of the submatrix of sylvester1

corresponding to the leading coefficient of a remainder we have computed. This
way, we obtain the exact sign and value of the subresultant and we can adjust
the remainder accordingly.

It turns out that the objective stated above can be achieved with other
matrices as well, as for example with the matrix Bezout — computed with the
function bezout — or with the matrix Hybrid Bezout — computed with the func-
tion hybrid_bezout — to name a couple [16]. Moreover, additional approaches
to compute just the sign of the determinant of an integer matrix exist in the
literature [20], and can be used in Section 3.1.

We hope to implement these various approaches in the future, and to
compare our results with others existing in the literature [1], but for the purposes
of this paper we will restrict ourselves to sylvester1.

Sylvester’s matrix sylvester1 is used by all new methods in this paper to
evaluate the correct sign of a polynomial remainder and to make its coefficients
subresultants. It works as follows:6

Suppose that we have computed — with any one of the new methods —
the i-th polynomial remainder of expected7 degree (expDeg) mi

(1) s(i) = s
(i)
0 xmi + s

(i)
1 xmi−1 + · · ·+ s(i)mi

,

6This is a variation of the fundamental procedure with sylvester2 of the Van Vleck-Pell-
Gordon triangularization method for computing the correct sign and coefficient values of a
Sturmian remainder [7], [8].

7The expected degree, expDeg, of a remainder is deg(divisor) − 1 and may differ from its
actual degree, actDeg.

6 Alkiviadis G. Akritas

where all the coefficients s
(i)
k , 0 ≤ k ≤ mi are either integers or rationals, de-

pending on the method used. Some of the leading coefficients will be zero, if
the expected degree is greater than the actual degree (actDeg). The difference
expDeg−actDeg is the variable degDiffer in Equation (9), which was first defined
in relation to the Pell-Gordon theorem [7], [8], [24].

To compute the correct sign of the polynomial s(i) and to make its coef-
ficients subresultants we use our own Sympy function correctSign(degF, degG,

S1, expDeg, degDiffer) to evaluate the single subresultant corresponding to
its leading (first nonzero) coefficient. In this function degF, degG are the degrees
of the original polynomials that define S1, Sylvester’s matrix sylvester1, and
expDeg, degDiffer define the number of rows8 and columns, respectively, to be
deleted from S1 in order to obtain the appropriate subresultant.

In other words, we evaluate the determinant Det (i, j) 6= 0 of the sub-

matrix of sylvester1 corresponding to the actual leading coefficient s
(i)
j of s(i).

Then by forming the product

s(i)

s
(i)
j

·Det (i, j)

we obtain the i-th polynomial of the subresultant prs. This is so, because of the
existing ratio equality

∣

∣

∣

∣

∣

Det (i, j)

s
(i)
j

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

Det (i, k)

s
(i)
k

∣

∣

∣

∣

∣

that holds for j < k ≤ mi; recall that s
(i)
j is the actual leading coefficient of the

polynomial remainder s(i), in equation (1).

1.2. Outline of the paper. In Section 2 we compute the subresultant
prs of two polynomials using pseudo remainders. For completion we first describe
the well known “old” method, which uses the function prem. Following that, the
new subresultant prs method is presented, which uses the function prem2 along
with the fundamental procedure with sylvester1 stated in Section 1.1.

In Section 3 we compute the subresultant prs of two polynomials by per-
forming divisions in Q[x] and by applying the Pell-Gordon theorem of 1917, [24],
to force the remainders into Z[x]. The absolute values of the coefficients of the
remainders thus computed are equal to the absolute values of the corresponding
subresultants. To obtain the correct signs we evaluate for each remainder the

8To be deleted from both groups of rows in S1.

Three New Methods for Computing Subresultant PRS’s 7

(single) subresultant — the determinant of an appropriately chosen sub-matrix of
sylvester1 — corresponding to its leading coefficient and, if needed, adjust the
sign of the remainder accordingly.9 Its more efficient version, performs operations
in Q [x] but does not use the Pell-Gordon Theorem.

In Section 4 we compute the subresultant prs of two polynomials by tri-
angularizing Sylvester’s matrix sylvester2. This is a variation of the Van Vleck-
Pell-Gordon triangularization method for computing Sturm sequences [8]. We
also take advantage of the special nature of sylvester2 and triangularize matri-
ces with just three rows when the sequence is complete. When pivoting, we use
the Dodgson10-Bareiss integer preserving transformation [9], [17], which means
that the remainders will all be in Z[x]. However, as we see in Example 2, of
Section 2, the signs of the remainders in an incomplete prs do not always agree
with the signs of the subresultants. Therefore, here again, to obtain the correct
signs and values of the coefficients of each remainder we apply the fundamental
procedure with sylvester1 mentioned in Section 1.1. Its more efficient version,
triangularizes all the smaller matrices encountered above but does not update the
matrix sylvester2.

Finally, in Section 5 we present our conclusions.

2. Subresultant PRS’s Using Pseudo Remainders and Op-
erations in Z[x]. We describe two methods for computing subresultant prs’s
with pseudo remainders.

In Section 2.1 we present the well known method that uses prem along with
the quantities βi, in equation (7). We do this both for completion and comparison
with the new method of Section 2.2.

In Section 2.2 we present a new method, that uses prem2 along with the
fundamental procedure with sylvester1, stated in Section 1.1, and altogether
avoids the quantities βi in equation (7).

The “old” and well known subresultant prs algorithm uses the pseudo-
remainder function prem(f, g, x), which initially was the only way to keep
the remainders Ri in Z[x]. To exactly divide by the leading coefficient of the
divisor, prem(f, g, x) applies the remainder function rem(f, g, x) after pre-
multiplying the dividend times the leading coefficient of the divisor according to

9In other words, we use just the first half of the fundamental procedure with sylvester1

stated in Section 1.1.
10Charles Ludwidge Dodgson (1832-1898) is the same person widely known for his writing

Alice in Wonderland under the pseudonym Lewis Carroll.

8 Alkiviadis G. Akritas

the formula

(2) LC(Ri−1)
δ ·Ri−2 = qi−2 · Ri−1 +Ri,

where LC(Ri−1) is the leading coefficient of the divisor Ri−1, and
δ = degree(Ri−2, x)− degree(Ri−1, x) + 1.11

This way, however, there is an increase in the size of coefficients, and a
certain factor, βi, is divided out to reduce the coefficients to subresultants. The
whole procedure is described below in Section 2.1.

When a prs is complete, Equation (2) can be safely used because the
sign sequence of the Euclidean prs coincides with the corresponding one of the
Euclidean pseudo remainder prs obtained using prem(f, g, x); see also Footnote
5. That is, the sequences of signs of the leading coefficients of the polynomials in
the two prs’s are identical.

However, for incomplete sequences the sign sequences are not necessarily
identical and this can be really confusing as illustrated in the following example.12

Example 2. Consider the polynomials f = x8 + x6 − 3x4 − 3x3 + 8x2 +
2x − 5 and g = 3x6 + 5x4 − 4x2 − 9x + 21. These are the same polynomials
used in the wikipedia article on polynomial gcd https://en.wikipedia.org/

wiki/Polynomial_greatest_common_divisor. The “correct” sign sequence of
the Euclidean prs of these two polynomials is

(3) −1,−1, 1,−1

as can be easily verified by the following script:

Python] i = 1

while degree(g, x) > 0:

r = rem(f, g, x)

print "r[",i,"] = ", sign(LC(r, x))

i = i + 1

f = g

g = r

r[1] = -1

11In Sympy there exist the built-in function prem(f, g, x) that computes the pseudo remain-
der R according to Equation (2).

12 On July 14, 2014 the author of this paper had to change the sign of the first polynomial in the
subresultant pseudo-remainder sequence in wikipedia’s article on polynomial greatest common
divisor; see https://en.wikipedia.org/wiki/Polynomial_greatest_common_divisor.

Three New Methods for Computing Subresultant PRS’s 9

r[2] = -1

r[3] = 1

r[4] = -1

In the script above we use the Sympy functions rem(f, g, x), to compute
the Euclidean prs in Q[x] and LC(f, x) to compute the leading coefficient of a
polynomial.

If we now use the same script above with rem(f, g, x) replaced by
prem(f, g, x), the Euclidean pseudo remainder prs is computed in Z[x] with
very big coefficients and the sign sequence changes to

(4) −1, 1, 1, 1.

This inconsistency regarding the sign sequence is due to Equation (2),
which does not use the absolute value of the leading coefficient of the divisor.13

Equation (2) is used by the built-in function prem(f, g, x), which, in Section
2.1, has been incorporated in our own procedure subresultants_prem(f, g, x).

We can get the correct sign sequence (3) if instead of equation (2) we use
the equation

(5) |LC(Ri−1)|
δ ·Ri−2 = qi−2 ·Ri−1 +Ri,

where we take the absolute value of the leading coefficient of the divisor. Equation
(5) is implemented by our own function prem2,

Python] def prem2(p, q, x):

delta = (degree(p, x) - degree(q, x) + 1)

return rem(Abs(LC(q, x))**delta * p, q, x)

However, this new function prem2(f, g, x) cannot replace prem(f, g,

x) in the procedure subresultants_prem(f, g, x), since in some cases we com-
pute the wrong signs.14 Therefore, in Section 2.2 we describe a new method,
implemented as subresultants_prem2(f, g, x), which performs all operations
in Z [x], does not use the quantities βi, and gives the “correct” sign sequence (3).

Therefore, we now have a choice and do not have to always use the “wrong”
sign sequence (4), in which case, the reader is invariably asked to ignore the signs
[12].

13Maybe this inconsistency is the reason why computer algebra systems such as Xcas, maple
and Mathematica do not have a function to perform pseudo divisions.

14For example, replace prem(f, g, x) by prem2(f, g, x) in subresultants_prem(f, g, x)

and try it on the polynomials 2x4 + 5x3 + 5x2
− 2x − 1 and 3x3 + 3x2 + 3x − 4; compare the

answer with that of the built-in function subresultants(f, g, x).

10 Alkiviadis G. Akritas

Moreover, we now have our own Sympy function euclid_PG(f, g, x,

method = 0), which computes the Euclidean prs in Z [x] without pseudo remain-
ders; that is, each remainder is computed in Q [x] and then it is multiplied times
a factor — derived from the Pell-Gordon theorem of 1917, which is Theorem 1 in
this paper — to force it into Z [x]. Calling this function with method set to 1, i.e.
as euclid_PG(f, g, x, method = 1), we can compute just the first remainder
in Z [x], without pseudo division!15 This way we again obtain the “correct” sign
sequence (3).

Python] i = 1

while degree(g, x) > 0:

r = euclid_PG(f, g, x, 1)

print "r[",i,"] = ", sign(LC(r, x))

i = i + 1

f = g

g = r

r[1] = -1

r[2] = -1

r[3] = 1

r[4] = -1

An additional nice feature of euclid_PG(f, g, x, method = 0) is that
the absolute values of the coefficients of the polynomials in the sequence equal
the absolute values of the corresponding subresultants.

In view of the recent discovery of the Pell-Gordon theorem of 1917, and
despite established practice ([22], p. 407), it is our belief that any attempt to force
the polynomials of a prs from Q[x] into Z[x] should preserve the sign sequence
computed in Q [x], otherwise confusion arises.

Caveat: Only subresultant prs’s can have different sign sequences from
Euclidean prs’s computed in Q [x].

2.1. Subresultant prs’s using the function prem. The algorithm for
computing (in Z[x]) the subresultant prs of f (x) , g (x) with pseudo remainders
using the function prem — which is based on equation (2) — has been extensively
studied in the literature [10], [11], [12], [14], [15], [22]. It involves the remainder

15The output of euclid_PG(f, g, x, method = 1) is the same as that of prem2(f, g, x);
they differ in that the first does the division in Q [x] whereas the second in Z [x].

Three New Methods for Computing Subresultant PRS’s 11

sequence

R−1 = pp(f),

R0 = pp(g),

R1 =
prem(R−1, R0, x)

β1
,

...

Ri =
prem(Ri−2, Ri−1, x)

βi
,(6)

...

which reduces the coefficient explosion by dividing the pseudo remainders by the
expression βi given by the recurrence relations16 [13]

ψ1 = −1, β1 = (−1)δ1 ,

ψi =
(−LC(Ri−2, x))

δi−1−1

ψ
δi−1−2
i−1

, i > 1,(7)

βi = −LC(Ri−2, x) · ψ
δi−1
i , i > 1,

where

δi = degree(Ri−2, x)− degree(Ri−1, x) + 1, i > 1.

We have implemented this method in Sympy as the function
subresultants_prem(f, g, x). Testing it on the functions of Example 2 we
obtain:17

Python] f = x**8 + x** 6 - 3*x** 4 - 3*x** 3 + 8*x **2 + 2*x - 5

Python] g = 3*x** 6 + 5*x** 4 - 4*x** 2 - 9*x + 21

Python] subresultants_prem(f, g, x)

[x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5, 3*x**6 + 5*x**4 -

4*x**2 - 9*x + 21, 15*x**4 - 3*x**2 + 9, 65*x**2 + 125*x - 245,

9326*x - 12300, 260708]

16An explanation of the derivation of the formula for the factor βi can be found elsewhere
[22].

17This pair of polynomials is a typical example of an incomplete subresultant prs whose
signs are completely different from the signs of the Euclidean prs, computed in Q[x]; see also
Example 2.

12 Alkiviadis G. Akritas

which agrees with the output of the built-in function subresultants:

Python] subresultants(f, g, x)

[x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5, 3*x**6 + 5*x**4 -

4*x**2 - 9*x + 21, 15*x**4 - 3*x**2 + 9, 65*x**2 + 125*x - 245,

9326*x - 12300, 260708]

The weak point of this “old” method is that the function prem distorts
the sign sequence of the Euclidean prs — see Example 2 above. Consequently,
to the best of our knowledge, prem has been implemented only in the computer
algebra system Sympy, which, however, computes the subresultant prs without
divisions [21].

2.2. Subresultant prs’s using the function prem2. The new method
for computing in Z[x] the subresultant prs of f (x) , g (x) premultiplies the divi-
dend times the absolute value of the leading coefficient of the divisor — that is, it
is based on equation (5) — and uses the fundamental procedure with sylvester1

described in Section 1.1.
In other words, the new method uses Sylvester’s matrix sylvester1 to

evaluate one subresultant per remainder, in order to obtain the correct sign of
the remainder and to force its coefficients to become subresultants without the
quantities βi.

We have implemented the new subresultant prs method in the function
subresultants_prem2(f, g, x), and for the same two polynomials as in Section
2.1 we obtain the same result.

Python] subresultants_prem2(f, g, x)

[x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5, 3*x**6 + 5*x**4 -

4*x**2 - 9*x + 21, 15*x**4 - 3*x**2 + 9, 65*x**2 + 125*x - 245,

9326*x - 12300, 260708]

The strong and most important point of this new method is that the func-
tion prem2 does not distort the sign sequence of the Euclidean prs — see Example
2 above! Therefore, prem2 along with the function subresultants_prem2(f, g,

x) can be safely implemented in all computer algebra systems.

3. Subresultant PRS’s Using Regular Remainders and Op-
erations in Q[x]. In this Section we describe two methods for computing
subresultant prs’s with operations performed in Q[x].

In Section 3.1 we present a method that uses the Pell-Gordon theorem —
to force the coefficients of the polynomials in the sequence into Z[x] — along with

Three New Methods for Computing Subresultant PRS’s 13

the fundamental procedure with sylvester1, stated in Section 1.1, to obtain the
correct signs of their coefficients.

In Section 3.2 we present a method that only uses the fundamental pro-
cedure with sylvester1 to accomplish both objectives stated above.

3.1. Subresultant prs’s using the Pell-Gordon Theorem of 1917.

The Pell-Gordon Theorem of 1917, [24], helps us compute the correct sign of a
Sturmian remainder, of a complete or incomplete sequence, by using Sylvester’s
matrix sylvester2; details can be found elsewhere [7].

Here we use the Pell-Gordon Theorem of 1917 to force into Z[x] the coef-
ficients of the remainders computed in Q[x]. The correct sign of each remainder
is obtained by applying the fundamental procedure with sylvester1, that is, by
evaluating the sign of the subresultant corresponding to its leading coefficient.18

Theorem 1 (Pell-Gordon, 1917). Let

A = a0x
n + a1x

n−1 + · · ·+ an

and

B = b0x
n + b1x

n−1 + · · ·+ bn

be two polynomials of the n-th degree. Modify the process of finding the highest
common factor of A and B by taking at each stage the negative of the remainder.
Let the i-th modified remainder be

R(i) = r
(i)
0 xmi + r

(i)
1 xmi−1 + · · ·+ r(i)mi

where (mi+1) is the degree of the preceeding remainder, and where the first (pi−1)

coefficients of R(i) are zero, and the pi-th coefficient ̺i = r
(i)
pi−1 is different from

zero. Then for k = 0, 1, . . . ,mi the coefficients r
(i)
k are given by19

(8) r
(i)
k =

(−1)ui−1 (−1)ui−2 · · · (−1)u1 (−1)vi−1

̺
pi−1+1
i−1 ̺

pi−2+pi−1

i−2 · · · ̺p1+p2
1 ̺

p1
0

· Det (i, k) ,

18Recall that the absolute value of any modified subresultant (sylvester2) equals the absolute
value of the corresponding subresultant (sylvester1).

19It is understood in (8) that ̺0 = b0, p0 = 0, and that ai = bi = 0 for i > n.

14 Alkiviadis G. Akritas

where ui−1 = 1 + 2 + · · ·+ pi−1, vi−1 = p1 + p2 + · · ·+ pi−1 and

Det (i, k) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a0 a1 a2 · · · · · · · · a2vi−1
a2vi−1+1+k

b0 b1 b2 · · · · · · · · b2vi−1
b2vi−1+1+k

0 a0 a1 · · · · · · · · a2vi−1−1 a2vi−1+k

0 b0 b1 · · · · · · · · b2vi−1−1 b2vi−1+k

· · · · · · · · · · · · ·
0 0 0 · · · a0 a1 · · · avi−1

avi−1+1+k

0 0 0 · · · b0 b1 · · · bvi−1
bvi−1+1+k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

P r o o f. The proof by induction of this theorem depends on two Lemmas
and can be found in the original paper of Pell and Gordon.

As indicated elsewhere [7], we use a modification of formula (8) to compute
the coefficients of the Sturm sequence. In that case p0 = deg (A) − deg (B) = 1,
since B is the derivative of A and, hence, the modified formula is shown below
with the changes appearing in bold:

(9) r
(i)
k =

(−1)ui−1 (−1)ui−2 · · · (−1)u1 (−1)u0 (−1)vi−1

̺
pi−1+pi−degDiffer

i−1 ̺
pi−2+pi−1

i−2 · · · ̺p1+p2
1 ̺

p0+p1
0

·
Det (i, k)

̺
−1

,

where ̺−1 = a0, the leading coefficient of A and degDiffer is the difference
between the expected degree mi and the actual degree of the remainder.

It should be noted that in our (general) case p0 = deg (A) − deg (B) and

that the division
Det (i, k)

̺−1
is possible if the leading coefficient of A is the only

element in the first column of sylvester2. Moreover, if the leading coefficient of
A is negative we work with the polynomial negated and at the end we reverse the
signs of all polys in the sequence. �

In our case we are given two polynomials A,B in Z [x] and we want to
compute in Z [x] the subresultant prs of A,B using Theorem 1 — that is, per-
forming divisions in Q [x]. Our goal is achieved by: (a) multiplying, at each step,
the remainder R(i) ∈ Q [x] times the absolute value of the denominator of the
first fraction in (9), and, (b) picking the correct sign of the leading coefficient.

To wit, if we take the absolute value of the first fraction in (9) and multiply
both sides of the equation times the denominator we obtain the following equation:

(10)
∣

∣

∣̺
pi−1+pi−degDiffer

i−1 ̺
pi−2+pi−1

i−2 · · · ̺p1+p2
1 ̺

p0+p1
0

∣

∣

∣ · r
(i)
k =

Det (i, k)

̺
−1

.

Three New Methods for Computing Subresultant PRS’s 15

In equation (10) recall that r
(i)
k is the k-th coefficient of the remainder

R(i) ∈ Q [x]; in addition, notice that the expression
Det (i, k)

̺
−1

is an integer because

the division is exact.20

Therefore, we conclude that

(11)
∣

∣

∣
̺
pi−1+pi−degDiffer

i−1 ̺
pi−2+pi−1

i−2 · · · ̺p1+p2
1 ̺

p0+p1
0

∣

∣

∣
·R(i) ∈ Z [x] ,

that is, after we multiply the i-th remainder R(i) times the absolute value of the
denominator of the first fraction in (9), the result will be in Z [x].

Having computed in Z [x] the correct absolute values of the coefficients
of the remainder we use the fundamental procedure with sylvester1, stated in
Section 1.1, to evaluate the sign of the single subresultant, corresponding to its
leading coefficient; with that sign available we adjust, if needed, the sign of the
polynomial. After that, the remainder becomes part of the subresultant prs.

The above procedure is easily programmed. The only critical point is to
effectively compute the absolute value in (11). This value is not computed anew
for each remainder R(i); instead, a multiplication factor, mulFac, is being updated
as new leading coefficients are included in (11). So, if the current multiplication
factor is

mulFaci =
∣

∣

∣
̺
pi−1+pi−degDifferi
i−1 ̺

pi−2+pi−1

i−2 · · · ̺p1+p2
1 ̺

p0+p1
0

∣

∣

∣
,

then the updated factor for the next remainder R(i+1) is

mulFaci+1 =
∣

∣

∣
̺
pi+pi+1−degDifferi+1

i ̺
degDifferi
i−1 ·mulFaci

∣

∣

∣
,

which means that

mulFaci+1 =
∣

∣

∣
̺
pi+pi+1−degDifferi+1

i ̺
pi−1+pi
i−1 · · · ̺p1+p2

1 ̺
p0+p1
0

∣

∣

∣
.

We have implemented this method as the Sympy procedure
subresultants_PG(f, g, x)21 and testing it on the same polynomials as in Ex-
ample 2 we obtain the same sequence:

Python] f = x**8 + x** 6 - 3*x** 4 - 3*x** 3 + 8*x **2 + 2*x - 5

20If deg (B) < deg (A) the leading coefficient of A is the only element in the first column of
the sylvester2 matrix of A,B.

21See Footnote 1.

16 Alkiviadis G. Akritas

Python] g = 3*x** 6 + 5*x** 4 - 4*x** 2 - 9*x + 21

Python] subresultants_PG(f, g, x)

[x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5, 3*x**6 + 5*x**4 -

4*x**2 - 9*x + 21, 15*x**4 - 3*x**2 + 9, 65*x**2 + 125*x - 245,

9326*x - 12300, 260708]

3.2. A more efficient version. Notice that in subresultants_PG(f,

g, x) we first use the Pell-Gordon Theorem in order to convert the rational
coefficients of each remainder to absolute values of subresultants and then our
own function correctSign(degF, degG, S1, expDeg, degDiffer) to compute
the correct sign of its leading coefficient.

In fact we can do better. To wit, we can use only the fundamental proce-
dure with sylvester1 to both convert the rational coefficients of each remainder
to absolute values of subresultants and to compute the correct sign of its leading
coefficient, as described in Section 1.1.

We have implemented this method in the function subresultants_PG2(f,

g, x), which for the same polynomials as above yields the same sequence:

Python] subresultants_PG2(f, g, x)

[x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5, 3*x**6 + 5*x**4 -

4*x**2 - 9*x + 21, 15*x**4 - 3*x**2 + 9, 65*x**2 + 125*x - 245,

9326*x - 12300, 260708]

4. Subresultant PRS’s Using Matrix Triangularizations and
Operations in Z[x]. In this Section we describe two methods for computing
subresultant prs’s with matrix triangularizations and with operations in Z[x],
since we use the Dodgson-Bareiss integer preserving transformation [9], [17].

In Section 4.1 we present a method that triangularizes Sylvester’s ma-
trix sylvester2 and at the same time uses the fundamental procedure with
sylvester1, stated in Section 1.1, to adjust the sign and value of the coefficients
of each remainder.

In Section 4.2 we present a method that differs from the previous one in
that it does not triangularize sylvester2.

4.1. Subresultant prs’s using Sylvester’s matrix sylvester2. Given
the polynomials f, g, only Sylvester’s matrices sylvester1 and sylvester2 are
considered in this paper as the two possible candidates for triangularization in

Three New Methods for Computing Subresultant PRS’s 17

order to obtain the subresultant prs of the given polynomials. As stated in Section
1.1, other matrices will be considered in a future paper.

Of those two matrices, sylvester1 is excluded because — as it was shown
by Laidacker [23] — it provides information only about a greatest common divisor
of f, g.

Theorem 2 (Laidacker, 1969). Let f and g be two polynomials and let S1
be their Sylvester matrix sylvester1(f, g). If, using row transformations only,
we bring S1 into its upper triangular form, T (S1), thenthe last nonzero row of
T (S1) gives us the coefficients of a greatest common divisor of f, g.

On the other hand, it was realized that triangularizing sylvester2 can
give us additional information — initially, about the polynomials of a (complete)
Sturm sequence [7], [8] and, now, in this paper, about the polynomials in a sub-
resultant prs.

Regarding complete Sturn sequences, Van Vleck, [27], realized that one
does not have to compute modified subresultants [7] of Sylvester’s matrix
sylvester2 in order to find the coefficients of the polynomial remainders. Instead,
it suffices to simply triangularize sylvester2 using integer preserving transfor-
mations, in which case the modified subresultants (the coefficients) can be read
off the triangularized matrix. We have the following ([27], p. 8):

Theorem 3 (Van Vleck, 1899). Let f and g = f ′ be two polynomials of
degree n and n−1 respectively and let S2 be their Sylvester matrix sylvester2(f,

g). If, using integer preserving transformations, we bring S2 into its upper tri-
angular form, T (S2), then the even rows of T (S2) furnish the coefficients of the
successive polynomial remainders of the Sturm sequence. The coefficients taken
from a given row are multiplied times (−1)k, where k is the number of negative
elements on the principle diagonal above the row under consideration.

Van Vleck takes advantage of the special form of sylvester2 and com-
putes T (S2) by updating only two rows at a time; to update these two rows
he triangularizes a matrix of only three rows, a fact that makes his procedure
extremely efficient. To keep the coefficients small he removes at each step the
greatest common divisor (content) of the elements in both updated rows, and
uses those reduced coefficients in the next three-row matrix.22

Van Vleck’s computation is justified by the fact that in sylvester2 the
elements (entries) of any two consecutive rows are the same as those of the two
preceding rows.

22It turns out that computationally this is the fastest way to proceed [18].

18 Alkiviadis G. Akritas

Therefore, if in any row the values of the elements are changed by adding
a multiple of the preceding row, exactly the same change can be made in the
elements of each alternate row thereafter, without altering the value of any modied
subresultant that appears as a coefficient in one of the polynomials of the Sturm
sequence.

In conclusion, Van Vleck presented a very efficient procedure for com-
puting complete Sturm sequences in Z [x]. With the help of the Pell-Gordon
Theorem of 1917, [24], Van Vleck’s method was extended to handle both com-
plete and incomplete Sturm sequences; a description of its extension, the Van
Vleck-Pell-Gordon method, can be found elsewhere [8].

Our purpose is to compute subresultant prs’s using a slight variation of the
Van Vleck-Pell-Gordon method [8]. Namely, we triangularize Sylvester’s matrix
sylvester2 to compute polynomials – candidates for the subresultant prs and,
then, we apply the fundamental procedure with sylvester1, stated in Section
1.1, to make the candidates members of the prs.23

An example will make everything clear.

Example 3. Using our subresultant matrix triangularization method we
will compute the incomplete subresultant prs of the polynomials f = 2x5−3x4−3
and g = 10x4 − 12x3. We choose this example because the dimensions of the
Sylvester matrices sylvester1 and sylvester2 can fit in a page.

After we construct S1 and S2 we form matrix M from the first two rows
of S2.

Python] M = Matrix([S2[1, :], rotateR(S2[1, :], 1),

rotateR(S2[0, :],1)])

Python] M

0 10 −12 0 0 0 0 0 0 0
0 0 10 −12 0 0 0 0 0 0
0 2 −3 0 0 0 −3 0 0 0

Notice that our matrix M computes the remainder and not the Sturmian
remainder as in Van Vleck’s paper [27].24 We pivot twice and obtain the matrices
M1 and M2:

Python] M1 = pivot(M, 0, 1)

23By contrast, Van Vleck’s extended method uses Sylvester’s matrix sylvester2 to accomplish
both objectives.

24Matrix M in Van Vleck’s paper is like ours, but with rows 2 and 3 swapped, to obtain the
remainder negated.

Three New Methods for Computing Subresultant PRS’s 19

Python] M2 = pivot(M1, 1, 2)

Python] M2

0 10 −12 0 0 0 0 0 0 0
0 0 10 −12 0 0 0 0 0 0
0 0 0 −72 0 0 −300 0 0 0

So, the first polynomial candidate for the subresultant prs is the last row of
M2; its degree, 3, is determined with the help of our Sympy function findDegree,
which counts the number of leading zeros in the last row. Moreover, to determine
if the coefficients of −72x3−300 are subresultants we use matrix S1 to compute the
subresultant corresponding to the leading coefficient. Since the expected degree
equals the actual one we call our Sympy function correctSign(5, 4, S1, 3, 0)

and the result is −72. So this indeed is a member of the subresultant prs.
We now use the last two rows of M2 to replace the third and fourth rows

of S2, respectively, and we have

Python] S2

2 −3 0 0 0 −3 0 0 0 0
0 10 −12 0 0 0 0 0 0 0
0 0 10 −12 0 0 0 0 0 0
0 0 0 −72 0 0 −300 0 0 0
0 0 2 −3 0 0 0 −3 0 0
0 0 0 10 −12 0 0 0 0 0
0 0 0 2 −3 0 0 0 −3 0
0 0 0 0 10 −12 0 0 0 0
0 0 0 0 2 −3 0 0 0 −3
0 0 0 0 0 10 −12 0 0 0

To compute the second polynomial of the subresultant prs we use rows 3
and 4 of S2 to form the 3-rows matrix M .

Python] M = Matrix([S2[3, :], rotateR(S2[3, :],1),

rotateR(S2[2, :], 1)])

Python] M

0 0 0 −72 0 0 −300 0 0 0
0 0 0 0 −72 0 0 −300 0 0
0 0 0 10 −12 0 0 0 0 0

20 Alkiviadis G. Akritas

We pivot twice and obtain the matrices M1 and M2:

Python] M1 = pivot(M, 0, 3)

Python] M2 = pivot(M1, 1, 4)

Python] M2

0 0 0 −72 0 0 −300 0 0 0
0 0 0 0 −72 0 0 −300 0 0
0 0 0 0 0 0 −216000 259200 0 0

The second polynomial candidate for the subresultant prs is the last row of
M2; its degree, 1, is determined with the help of our Sympy function findDegree.
Moreover, to determine if the coefficients of −216000x+259200 are subresultants
we use matrix S1 to compute the subresultant corresponding to the leading co-
efficient. Since, now, the expected degree (2) minus the actual degree (1) equals
one we call our Sympy function correctSign(5, 4, S1, 2, 1) and the result is
−2160. So the second member of the subresultant prs is

(12)
−216000x + 259200

−216000
· (−2160) = −2160x+ 2592.

Updating S2 is a bit tricky. Obviously, the second row of M2 will replace
the 5-th row of S2 but the — updated in Equation (12) — 3-rd row of M2 will
now replace the 7-th row of S2!

25 Row 6 in S2 is a redundant row and so it can
be replaced again by the second row of M2 rotated by one.

Python] S2

2 −3 0 0 0 −3 0 0 0 0
0 10 −12 0 0 0 0 0 0 0
0 0 10 −12 0 0 0 0 0 0
0 0 0 −72 0 0 −300 0 0 0
0 0 0 0 −72 0 0 −300 0 0
0 0 0 0 0 −72 0 0 −300 0
0 0 0 0 0 0 −2160 2592 0 0
0 0 0 0 10 −12 0 0 0 0
0 0 0 0 2 −3 0 0 0 −3
0 0 0 0 0 10 −12 0 0 0

25If we start enumeration with 0, the number of the row in S2 that will be replaced is indicated
by the number of leading zeros in the 3-rd row of M2.

Three New Methods for Computing Subresultant PRS’s 21

To compute the third, and final, constant polynomial in the subresultant
prs we form matrix M , which now has 4 rows!

Python] M = Matrix([S2[6,:], rotateR(S2[6,:],1), rotateR(S2[6,:],2),

rotateR(S2[5, :], 1)])

Python] M

0 0 0 0 0 0 −2160 2592 0 0
0 0 0 0 0 0 0 −2160 2592 0
0 0 0 0 0 0 0 0 −2160 2592
0 0 0 0 0 0 −72 0 0 −300

We pivot three times and obtain the matrices M1, M2 and M3:

Python] M1 = pivot(M, 0, 6)

Python] M2 = pivot(M1, 1, 7)

Python] M3 = pivot(M2, 2, 8)

Python] M3

0 0 0 0 0 0 −2160 2592 0 0
0 0 0 0 0 0 0 −2160 2592 0
0 0 0 0 0 0 0 0 −2160 2592
0 0 0 0 0 0 0 0 0 4277135425536

The third and last (constant) polynomial candidate for the subresultant
prs is the last row of M3; its degree, 0, is determined from its position in M3

with the help of our Sympy function findDegree. Moreover, to determine if
4277135425536 is the resultant we take the determinant os matrix S1. Since,
now, the expected degree minus the actual one equals 0 we call our Sympy function
correctSign(5, 4, S1, 0, 0) and the result is 11459232. So the last member
of the subresultant prs is

4277135425536

4277135425536
· 11459232 = 11459232.

To update S2 we copy the last three rows of M3 — with the last row
updated — into the last three rows of S2.

Python] S2

22 Alkiviadis G. Akritas

2 −3 0 0 0 −3 0 0 0 0
0 10 −12 0 0 0 0 0 0 0
0 0 10 −12 0 0 0 0 0 0
0 0 0 −72 0 0 −300 0 0 0
0 0 0 0 −72 0 0 −300 0 0
0 0 0 0 0 −72 0 0 −300 0
0 0 0 0 0 0 −2160 2592 0 0
0 0 0 0 0 0 0 −2160 2592 0
0 0 0 0 0 0 0 0 −2160 2592
0 0 0 0 0 0 0 0 0 11459232

Therefore, as can seen from the triangularized form of S2, the subresultant
prs of the polynomials f = 2x5 − 3x4 − 3 and g = 10x4 − 12x3 is

[

2x5 − 3x4 − 3, 10x4 − 12x3, −72x3 − 300, −2160x + 2592, 11459232
]

,

which agrees with the result obtained with the function subresultants

of Sympy.

Python] subresultants(2*x**5 - 3*x**4 - 3, 10*x**4 - 12*x**3, x)

[2*x**5 - 3*x**4 - 3, 10*x**4 - 12*x**3, -72*x**3 - 300, -2160*x +

2592, 11459232]

We have implemented this method into the Sympy procedure
subresultants_triang(f, g, x, method = 0); see Footnote 1. Since the di-
mensions of a matrix can be very big, the default value of the optional fourth
argument is 0, which does not print out the triangularized matrix S2. Set method
= 1 if you want to see S2. We test subresultants_triang(f, g, x, method =

0) on the same polynomials used in Example 2 and obtain the same subresultant
prs:

Python] f = x**8 + x** 6 - 3*x** 4 - 3*x** 3 + 8*x **2 + 2*x - 5

Python] g = 3*x** 6 + 5*x** 4 - 4*x** 2 - 9*x + 21

Python] subresultants_triang(f, g, x)

[x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5, 3*x**6 + 5*x**4 -

4*x**2 - 9*x + 21, 15*x**4 - 3*x**2 + 9, 65*x**2 + 125*x - 245,

9326*x - 12300, 260708]

Three New Methods for Computing Subresultant PRS’s 23

4.2. A more efficient version. While working on the choice of mak-
ing S2 visible or not, it occurred to us that matrix S2 does not have to be
updated at all. We have implemented this version into the Sympy procedure
subresultants_triang2(f, g, x).

Testing subresultants_triang2(f, g, x) on the same polynomials as
above we obtain the same subresultant prs:

Python] subresultants_triang2(f, g, x)

[x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5, 3*x**6 + 5*x**4 -

4*x**2 - 9*x + 21, 15*x**4 - 3*x**2 + 9, 65*x**2 + 125*x - 245,

9326*x - 12300, 260708]

5. Conclusions. The Pell-Gordon Theorem of 1917, [24], was instru-
mental in helping us generalize Van Vleck’s method for computing Sturm se-
quences — complete or incomplete — by triangularizing Sylvester’s matrix
sylvester2. It showed us that the main idea of that method is the following: in
order to obtain the correct coefficients — in value and / or sign — of each Stur-
mian remainder we have to evaluate a single modified subresultant corresponding
to its leading coefficient [7], [8].

A variation of the main procedure of Van Vleck’s generalized method, [8],
is used by all three methods described in this paper in order to compute the
subresultant prs of two polynomials. This variation is called the “fundamental
procedure with sylvester1” and is stated in Section 1.1.

In the first method, subresultants_prem2(f, g, x), we incorporate the
new pseudo remainder, prem2(f, g, x), which uses the absolute value of the
leading coefficient of the divisor. This way, we preserve the “correct” sign sequence
of the Euclidean prs, as discussed in Example 2.

The second method, subresultants_PG(f, g, x), does divisions over
the rationals and uses the Pell-Gordon theorem to convert the coefficients of the
polynomial remainders to integers. Here we have an implicit interplay between the
two Sylvester matrices, sylvester1 and sylvester2. Its more efficient method
does not use the Pell-Gordon theorem.

Finally, in the third method, subresultants_triang(f, g, x), we see —
for the first time in the literature — an explicit interplay between the two Sylvester
matrices, sylvester1 and sylvester2. While we triangularize the latter to ob-
tain polynomials - candidates for the subresultant prs, we evaluate determinants
of sub-matrices of the former in order to make the candidates actual members of

24 Alkiviadis G. Akritas

the prs by adjusting their coefficients accordingly! Its more efficient method does
not triangularize sylvester2.

Note added in proof: In (9) and (10), the denominator ̺−1, should be
raised to the power p0.

R EFER EN CES

[1] Abdeljaoued J., G. M. Diaz–Toca, L. Gonzalez–Vega. Bezout Ma-
trices, Subresultant Polynomials and Parameters. Applied Mathematics and
Computation, 214 (2009), 588–594.

[2] Akritas A. G. A Simple Proof of the Validity of the Reduced PRS Algo-
rithm. Computing, 38 (1987), 369–372.

[3] Akritas A. G. A New Method for Computing Polynomial Greatest Com-
mon Divisors and Polynomial Remainder Sequences. Numerische Mathe-
matik, 52 (1988), 119–127.

[4] Akritas A. G. Exact algorithms for the matrix-triangularization subresul-
tant prs method. In: Proceedings of the Conference on Computers and Math-
ematics (Eds Erich Kaltofen and Stephen M. Watt), Boston, Massachusetts,
June, 1989, 145–155.

[5] Akritas A. G. Elements of Computer Algebra with Applications. John
Wiley Interscience, New York, 1989.

[6] Akritas A. G. Sylvester’s Forgotten Form of the Resultant. Fibonacci Quar-
terly, 31 (1993), 325–332.

[7] Akritas A. G., G. I. Malaschonok, P. S. Vigklas. Sturm Sequences
and Modified Subresultant Polynomial Remainder Sequences. Serdica Jour-
nal of Computing, 8 (2014), No 1, 29–46.

[8] Akritas A. G., G. I. Malaschonok, P. S. Vigklas. On a Theorem by
Van Vleck Regarding Sturm Sequences. To appear, 2014.

[9] Bareiss E. H. Sylvester’s Identity and Multistep Integer-Preserving Gaus-
sian Elimination. Mathematics of Computation, 22 (1968), 565–578.

[10] Brown W. S. The subresultant PRS Algorithm. ACM Transactions on
Mathematical Software, 4 (1978), No 3, 237–249.

Three New Methods for Computing Subresultant PRS’s 25

[11] Brown W. S., J. F. Traub. On Euclid’s Algorithm and the Theory of sub-
resultants. Journal of the Association for Computing Machinery, 18 (1971),
505–514.

[12] Chen R. The subresultant Polynomial Remainder Sequence Algorithm.
www.math.ubc.ca/~reichst/423-project-subresultant.pdf. March 23,
2013

[13] Cohen J. E. Computer Algebra and Symbolic Computation – Mathematical
Methods. A. K. Peters, Massachusetts, 2003.

[14] Collins G. E. Polynomial Remainder Sequences and Determinants. Amer-
ican Mathematical Monthly, 73 (1966), No 7, 708–712.

[15] Collins G. E. Subresultants and Reduced Polynomial Remainder Se-
quences. Journal of the Association for Computing Machinery, 14 (1967),
128–142.

[16] Diaz–Toca G. M., L. Gonzalez–Vega. Various New Expressions for
Subresultants and Their Applications. Applicable Algebra in Engineering,
Communication and Computing, 15 (2004), 233–266.

[17] Dodgson C. L. Condensation of Determinants. Proceedings of the Royal
Society of London, 15 (1866), 150–155.

[18] von zur Gathen J., T. Lücking. Subresultants Revisited. Theoretical
Computer Science, 297, (2003), 199–239.

[19] Habicht W. Eine Verallgemeinerung des Sturmschen Wurzelzählverfahrens.
Commentarii Mathematici Helvetici, 21 (1948), 99–116.

[20] Kaltofen E., G. Villard. Computing the sign or the value of the deter-
minant of an integer matrix, a complexity survey. Journal of Computational
and Applied Mathematics, 162 (2004), No 1,133–146.

[21] Kerber M. Division-Free computation of subresultants using Bezout ma-
trices. Tech. Report MPI-I-2006-1-006, Saarbrucken, 2006.

[22] Knuth D. E. The Art of Computer Programming. Vol 2 (Second Edition),
Addison-Wesley, Massachusetts, 1981.

[23] Laidacker M. A. Another theorem relating Sylvester’s matrix and the
greatest common divisor. Mathematics Magazine, 42 (1969), 126-128.

26 Alkiviadis G. Akritas

[24] Pell A. J., R. L. Gordon. The Modified Remainders Obtained in Finding
the Highest Common Factor of Two Polynomials. Annals of Mathematics
(Second Series), 18 (1917), No 4, 188–193.

[25] Sylvester J. J. A method of determining by mere inspection the derivatives
from two equations of any degree. Philosophical Magazine, 16 (1840), 132–
135.

[26] Sylvester J. J. On the Theory of Syzygetic Relations of Two Rational In-
tegral Functions, Comprising an Application to the Theory of Sturm’s Func-
tions, and that of the Greatest Algebraical Common Measure. Philosophical
Transactions, 143 (1853), 407–548.

[27] Van Vleck E. B. On the Determination of a Series of Sturm’s Functions
by the Calculation of a Single Determinant. Annals of Mathematics (Second
Series), 1 (1899–1900), No 1/4, 1–13.

Alkiviadis G. Akritas

University of Thessaly

Department of Electrical

and Computer Engineering

GR-38221, Volos Greece

e-mail: akritas@uth.gr

Received August 21, 2014

Final Accepted December 16, 2014

