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Abstract. The real purpose of collecting big data is to identify causality

in the hope that this will facilitate credible predictivity. But the search

for causality can trap one into infinite regress, and thus one takes refuge in

seeking associations between variables in data sets. Regrettably, the mere

knowledge of associations does not enable predictivity. Associations need to

be embedded within the framework of probability calculus to make coherent

predictions. This is so because associations are a feature of probability

models, and hence they do not exist outside the framework of a model.

Measures of association, like correlation, regression, and mutual information

merely refute a preconceived model. Estimated measures of associations do

not lead to a probability model; a model is the product of pure thought. This

paper discusses these and other fundamentals that are germane to seeking

associations in particular, and machine learning in general.

0. Preamble: motivation and viewpoint. The impetus for writing
this paper is an article in Science by Reshef et al. [14], and the strong reaction
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that it has spawned by Kinney and Atawal in The Proceedings of the National

Academy of Sciences [7]. Given the high visibility that these outlets are en-
dowed with, some discussion clarifying the foundational issues that underlie the
said writings seems germane. Both articles pertain to the quantification of the
strength of “association” between variables in large data sets. Whereas the term
association has a precise mathematical meaning in the context of probability
theory (cf. [4]), its use here is colloquial and alludes to dependence. The focus of
both articles is a heuristic notion, called equitability. The former uses Pearson’s
correlation as its core; the latter Shannon’s mutual information. Whereas the
need for pursuing equitability needs to be made more convincing, at least to this
author, a closer reading of these articles underscores the importance of fundamen-
tals when discussing associations. The purpose of this paper is to articulate on the
philosophical and the mathematical underpinnings of the notion of dependence;
what does it mean to assess it, how best to assess it, and how best to exploit it?
The hope is that doing so will make the debates and discussions about seeking
relationships in data sets less volatile.

With the above in mind, it is best to present at the outset, the seven
bullets given below; these outline the position/viewpoint of this author. This
viewpoint is a consequence of a personalistic interpretation of probability in the
sense of de Finetti [3] and Savage [15].

1. All probability models are subjectively specified, and they reflect one’s dis-
position to uncertainty, as exemplified by one’s attitude to a 2-sided bet.

2. Dependence and association are properties of a probability model, and since
probability models are subjectively specified, dependence and associations
are judgements.

3. Observed data can only refute a model; they can never endorse it for per-
petuity.

In practice one behaves as if the model at hand is the best one to use,
until new evidence falsifies it. To quote George Box [2], “all models are
wrong but some are useful”. Thus any model is waiting to be falsified, and
observed data is the main falsifier (cf. [13]).

4. Assertions 2 and 3 imply that since dependence and association do not exist
outside the framework of a model, seeking for associations in the absence
of any preconceived notion by merely looking at data is philosophically not
tenable.

This means that when one looks for correlations in data-sets, one has
at the back of one’s mind a linear relationship. As with regression, either
a linear or nonlinear relationship lurks in the mind. This viewpoint car-
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ries forward when one asseses mutual information, because to do so one
needs to estimate a joint density with the histogram as a starting point,
and the preconceived notion underlying a histogram is a bivariate uniform
distribution.

5. Like dependence, independence is also a judgment; it implies an absence
of learning or the failure of memory. Its mathematical construction entails
a hierarchy of assumptions, and these can result in the form of an infinite
regress.

6. Unlike correlation and regression which encapsulate specific forms of linear
and non-linear relationships, the notion of mutual information is an omnibus
measure which can only assert the presence or the absence of an association.

7. The mere act of seeking relationships in data sets is a limited exercise.
In actuality what is needed is predictivity. But prediction needs to be
probabilistic, and to do so one needs to embed all associations within the
framework of probability calculus. This is discussed in Section 4.

Finally, in the context of the topic of this paper on seeking associations,
there is one other caveat; it is also discussed in Section 4. Specifically, when
assessing dependence using regression based methods, it matters whether
the values of the dependent variables are preselected, or they are retrospec-
tively observed.

1. Dependence: feature of joint distributions. The notions of
causality, correlation, information, and regression, play a prominent role in statis-
tics. Their precise definitions are cast in the language of probability. With the
advent of big data and machine learning, these notions have gained additional
prominence. Seeking patterns within variables, and relationships between vari-
ables, has now become a full time occupation for some. Whereas pinpointing
causality is the holy grail which drives the collection of big data, many have
taken heed of the dictum that “correlation is not causation”. Indeed, causation is
an elusive notion that has proven to be a challenge, not only to statisticians, but
also to philosophers of science. Yet when one speaks of gaining knowledge from
big data sets, one has at the back of one’s mind the identification of a genuine

cause (see [19]) which spawns the data. But since the search for a genuine cause
can also trigger the problem of an infinite regress, one tends to take refuge in the
next best thing, namely, an empirical assessment of measures of dependence, like
correlation. Because all measures of dependence are properties of a joint proba-
bility model, it behooves one to ask: what is a probability model, and where does
it come from? This is the topic of the next section.
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2. The genesis of a probability model. At some reference time
τ ≥ 0, consider an analyst ♀ who assesses his(her) uncertainty about an unknown
quantity X, in the light of all the historical information H that ♀ has at τ , via
probability. That is, ♀ needs to specify

P τ

♀
(X ≥ x;H ).

Since the dimension of H is large, conceptually infinite, ♀ seeks simpli-
fication by introducing a quantity θ (whose interpretation is given later), and
invoking the law of total probability to write

P τ

♀
(X ≥ x;H ) =

∫

θ

P τ

♀
(X ≥ x|θ;H )P τ

♀
(θ;H )dθ,

where P τ

♀
(θ;H ) encapsulates ♀’s uncertainty about θ in the light of H , at time

τ . It is called a prior for θ. Were ♀ to assume that given θ, the event (X ≥ x) is
independent of H , then P τ

♀
(X ≥ x|θ;H ) = P τ

♀
(X ≥ x|θ) , and now

P τ

♀
(X ≥ x;H ) =

∫

θ

P τ

♀
(X ≥ x|θ)P τ

♀
(θ;H )dθ.

The quantity P τ

♀
(X ≥ x|θ) is called a probability model for the event (X ≥ x), and

θ is called the parameter of the probability model. The quantity P τ

♀
(X ≥ x;H )

is called the predictive distribution of X, and one endeavours to provide predictive
distributions that are trustworthy. To do so, one’s choice for a probability model
and the prior need to be judicious and meaningful. The notion of independence is
articulated above. Note that independence has been defined in the framework of
probability. More often than not, independence is conditional; in the above case,
(X ≥ x) is independent of H , conditional on θ (i.e, were θ to be known).

The parameter θ can be a scalar or a vector whose dimension needs to
be much smaller than that of H ; otherwise the parameter does not serve a
useful purpose. This is because the role of the parameter has been to com-
press the information about (X ≥ x) contained in H . Indeed H can comprise
both qualitative and quantitative information, like previously observed data on
(X ≥ x).

Thus parameters in probability models can be seen as devices which com-
press the high dimensional H to a lower dimensional θ. de Finetti referred to
θ merely as a Greek symbol; i.e. an abstract entity which need not have an ob-
servable reality. Its role is to impart independence between H and the event
(X ≥ x), and also as a device which facilitates the prediction of observables, like
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X. There are other interpretations of θ, but for now it suffices to say that a
statistician’s approach to data compression is through the introduction of Greek
symbols called parameters.

Some of the well known examples of probability models are the exponen-
tial, wherein P τ

♀
(X ≥ x|λ) = λ exp(−λx), for λ > 0 and x ≥ 0, and the Weibull,

wherein
P τ

♀
(X ≥ x|λ, β) = exp(−λxβ), λ, β > 0 and x ≥ 0. In the first case θ = λ,

is a scalar, and in the second case θ = (λ, β) is a vector. The best known and
the most commonly used example of a probability model is the normal (or the
Gaussian) wherein for θ = (µ, σ2), with −∞ < µ < +∞, and σ > 0

P τ

♀
(X ≥ x|µ, σ) =

∫ x

−∞

1√
2πσ

e−
1

2
(x−µ

σ
)2dx,

for −∞ < x < +∞.
In the context of large data sets interest is focussed on two or more

unknown quantities and the relationships between them. For purposes of dis-
cussion consider two unknowns, say X and Y , and their predictive distribution
P τ

♀
(X ≥ x, Y ≥ y;H ). As before, H is the historical (or background) informa-

tion about X and Y possessed by ♀ at time τ ≥ 0. Here again ♀ may choose to
introduce a parameter θ, invoke the law of total probability, assume independence
of the event (X ≥ x, Y ≥ y) and H , given θ, and write:

P τ

♀
(X ≥ x, Y ≥ y|H ) =

∫

θ

P τ

♀
(X ≥ x, Y ≥ y|θ)P τ

♀
(θ;H )dθ,(2.0)

The quantity P τ

♀
(X ≥ x, Y ≥ y|θ) is the joint (bivariate) probability

model for the compound event (X ≥ x, Y ≥ y). Note that whereas the event
(X ≥ x, Y ≥ y) has been judged independent of H conditional on θ, nothing
has yet been said about the dependence or independence of the events (X ≥ x)
and (Y ≥ y). Clearly, whenever (X ≥ x) and (Y ≥ y) share a θ (or a sub-set of
θ), and θ is unknown, they will be unconditionally (of θ) dependent. This form
of dependence is called dependence by mixture. However, conditional on θ, the
events (X ≥ x) and (Y ≥ y) could be dependent or independent depending on ♀’s
judgment. For example, if ♀ judges the events (X ≥ x) and (Y ≥ y) conditionally
(given θ), independent, then the bivariate probability model is

P τ

♀
(X ≥ x, Y ≥ y|θ) = P τ

♀
(X ≥ x|θ)P τ

♀
(Y ≥ y|θ),

where each term on the right is a univariate probability model. If the above
judgment of conditional independence is not tenable, then ♀ is faced with the task
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of specifying a probability model for X and Y which encapsulates dependence.
An example is the bivariate exponential distribution of Gumbel, wherein for some
θ = σ, σ ∈ [0, 1], and x, y ≥ 0,

P τ

♀
(X ≥ x, Y ≥ y|θ = σ) = e−(x+y+σx·y)(2.1)

Here the marginals are P τ

♀
(X ≥ x|σ) = e(−x), and P τ

♀
(Y ≥ y|σ) = e(−y), implying

that the dependency parameter σ has no role to play with respect to the marginals.
Note that when σ is assumed known, and is zero, then the events (X ≥ x) and
(Y ≥ y) are independent; with σ unspecified, they are dependent.

The best known and the most discussed example of a bivariate probability
model is the bivariate normal, with θ = (µ1, µ2, σ1, σ2, ρ). Here

P τ

♀
(X ≥ x, Y ≥ y|θ) =

∫ x

−∞

∫ y

−∞

f(x, y|θ)dxdy,

where

(2.2) f(x, y|θ) = 1

2πσ1σ2
√

1− ρ2
exp

{

− 1

2(1− ρ2)

[

(

x− µ1

σ1

)2

+

(

y − µ2

σ2

)2

− 2ρ(x− µ1)(y − µ2)

σ1σ2

]}

.

3. Measures of association. As mentioned, dependence is a feature
of a joint probability distribution, and for purposes of discussion we will center
discussion on the bivariate normal, and the bivariate Gumbel distributions. For
the former, its f(x, y|θ) is given by Equation (2.2). For the latter, an analogue of
f(x, y|θ) is the probability density generated by Equation (2.1).

There are several attractive features of the model of Equation (2.2), two
of which are, closure under marginalization and under conditionalization. That
is, the marginal of X is also a normal with the parameters µ1, and σ1. Or,

f(x|θ) = 1√
2πσ1

exp

{

−1

2

(

x− µ1

σ1

)2
}

, −∞ < x < +∞,

and the conditional of Y , given X = x, is also a normal, with the parameters

µ2 + ρ

(

σ2
σ1

)

(x− µ1) and σ2
2(1− ρ2).

Indeed there are many families of bivariate distribution each possessing
its own version of f(x, y|θ), so the discussion which follows is generic, and is in
terms of f(x, y|θ).
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The most commonly used measure of dependence is the Galton-Pearson
coefficient of correlation ρ(x, y). With f(x, y|θ) specified, ρ(x, y) can always be
mathematically obtained. Irrespective of what f(x, y|θ) is, |ρ(X,Y )| ≤ 1, and
this is its attractive feature. Furthermore, when X and Y are independent,
ρ(X,Y ) = 0. However, ρ(X,Y ) = 0 does not imply that X and Y are nec-
essarily independent, and this is one of its limitations. An exception is the
bivariate normal, for which ρ(X,Y ) = ρ of Equation (2.2), and here ρ = 0,
implies that X and Y are independent. Another limitation of ρ(X,Y ) is that
it only encapsulates the extent of linear relationship between X and Y . This
becomes transparent when one looks at the definition of ρ(X,Y ), namely, that

ρ(X,Y )
def
= Cov(X,Y )/

√

V (X)V (Y ), where Cov(X,Y ) = E (X ·Y )−E (X)·E (Y ),
and E denotes expectation. The variance of X, V (X) = Cov(X,X). These prop-
erties boil down to the feature that the best known and commonly used measure
of dependence (or association), namely, the correlation is limited in scope. Thus,
alternates to correlation have been considered. Some of these are Kendall’s Tau
[6], Spearman’s Rho [18], and the several non-parametric measures of dependence
introduced by Lehmann [9], and further articulated by Barlow and Proschan [1].
We do not pursue here these alternatives.

After correlation, the next best known measure of a relationship is re-
gression. Specifically, the regression of Y on X is E (Y |X = x, θ); similarly,
E (X|Y = y, θ). The regression of Y on X can take several forms, such as
linear wherein E (Y |X = x, θ) = α + βx, with θ = (α, β), quadratic wherein
E (Y |X = x, θ) = α + βx + γx2, with θ = (α, β, γ), cubic, and so on. Like
the correlation ρ(X,Y ), the regression can also be theoretically computed, once
f(x, y|θ) is specified. Thus regression can encapsulate a variety of linear and non-
linear relationships, and is one step up the ladder from correlation for describing
relationships.

In the case of the bivariate normal distribution, the regression of Y on X
takes the linear form

E (Y |X = x, θ) = µ2 + ρ

(

σ2
σ1

)

(x− µ1).(3.1)

with V (Y |X = x, θ) = σ2
2(1 − ρ2). This means that the average value of Y

increases (decreases) linearly in x, depending on whether ρ is greater or less than
0. Clearly, in the case of the bivariate normal, the regression provides little added
insight about the relationship between X and Y beyond that which is provided
by the correlation ρ. The one interesting feature here is that V (Y |X = x) is
independent of x. It is this property which makes the bivariate normal distribution
attractive in the context of the standard Kalman Filter (cf. [12]).
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With the bivariate exponential of Gumbel, the regression of Y on X,
E (Y |X = x, θ) = (1 + σ+ σx)/(1 + σx)2, which for σ > 0 is a gracefully decreas-
ing function of x, starting from (1+σ) and tailing off to 0 as x goes to +∞. Here
the correlation ρ(X,Y ) < 0, and depending on the values of the dependency pa-
rameter σ, it ranges from −.4036 to 0. Here, the regression provides more insight
about the relationship between X and Y , than the correlation. A similar feature
is also exhibited by other bivariate distributions like the bivariate exponential of
Marshall and Olkin [11] and a second version of Gumbel’s bivariate exponential
distribution. The specifics about these distributions can be found in Singpurwalla
[17, p. 89–93].

In the case of Marshall and Olkin’s bivariate exponential distribution,

when the correlation ρ(X,Y ) =
1

3
, E (Y |X = x, ·) = 1 − 3e−x

4
, suggesting that

the regression is an exponentially increasing function of x, starting from
1

4
and

tapering off at 1. In the case of the second version of Gumbel’s bivariate expo-

nential distribution, when ρ(X,Y ) =
1

4
, the regression of Y on X, when X = x,

is
3

2
− e−x. This is an exponentially increasing function starting from

1

2
and

tapering off at
3

2
. When ρ(X,Y ) = −1

4
, the said regression is

1

2
+ e−x, which

is an exponentially decreasing function starting at
3

2
, and tapering off at

1

2
; see

Figure 3.1.

Fig. 3. 1. Regression for Gumbel’s Distribution

for Positive and Negative Correlations.
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Moving up the ladder for describing relationships, are the distance based
measures, of which Shannon’s mutual information is the best known. A more
recent entry in this category is the work of Szekely and Rizzo [20]. Mutual infor-
mation provides a measure of dependence without specifying its nature. It can
be interpreted as the gain in information in going from independence to depen-
dence. Since independence suggests an absence of learning, dependence implies
knowledge. Consequently if the notion of information can be quantified, then
the difference between information under dependence and information under in-
dependence, is the gain in knowledge. The quantification of information is due to
the work of Shannon [16]. With f(x, y|θ) specified, and the marginals f(x|θ) and
f(y|θ) known, Shannon’s measure of information leads to the result that the gain
in information (knowledge), say γ, is given by the expression

γ =

∫

x,y

{f(x, y|θ)logf(x, y|θ)− f(x|θ)f(y|θ)log[f(x|θ)f(y|θ)]}dxdy.

Thus γ is the amount of information conveyed to an individual who previously
supposed X and Y to be independent, by the statement that the joint probability
of X and Y is f(x, y|θ). It may of interest to note that γ provided Kullback and
Leibler (1951) a motivation for defining their famous measure of discrepancy or
divergence between two distributions.

On its own γ is a satisfactory measure of dependence which can be com-
puted once f(x, y|θ) is specified. However, under certain circumstances, in par-
ticular those pertaining to the form of f(x, y|θ), it can be shown (cf. [10]), that
γ is related to the Pearson correlation via the relationship

ρ(X,Y ) =
√

1− e−2γ .

In general, irrespective of what f(x, y|θ) is, the quantity
√

1− e−2γ lies between
0 and 1, and takes the value 0 when X and Y are independent. It takes the value
1 whenever X can be uniquely determined by Y and vice versa. Linfoot [10] refers

to
√

1− e−2γ as the informational coefficient of correlation, and besides the fact
that its special case is Pearson’s correlation, it has the virtue of invariance. In

other words
√

1− e−2γ does not change if X is replaced by X ′ = ϕ1(X) and Y
replaced by ϕ2(Y ), for any ϕ1 and ϕ2. The measure γ is also known as mutual

information; its invariance was pointed out by Jeffreys [5].

3.1. Association measures provide insight about models. Bullet 7
of Section 0 makes the claim that the mere act of seeking relationships in data sets
is of limited value. Limited, because a knowledge of associations can only provide
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insight about the nature of a joint distribution that may be entertained. With-
out further analyses and development, associations on their own do not enable
predictivity. Of the three measures of dependence discussed before, correlation
is the easiest estimate. Its value indicates the extent to which the two variables
in question bear a linear relationship to each other. On its own, correlation does
not provide a mechanism for predicting the value of one variable, say Y , knowing
the value of X. Mutual information is probably the most difficult measure to
compute because it entails the estimation of joint and marginal densities. But
having computed mutual information, all we know is that underlying variables are
dependent or not. Even if mutual information computed from data supports the
hypothesis of dependence, one is unable to predict Y knowing a value of X and
vice versa. This suggests that both correlation and mutual information should be
viewed as qualitative measures of dependence. Neither can help pinpoint a joint
probability model; thus the main purpose served by these measures is to refute
(or not) a contemplated model.

Matters become more attractive when it comes to regression. First, like
correlation, (but unlike mutual information), regression is easy to estimate. Sec-
ond, the functional form of regression can provide insight about the joint probabil-
ity model to entertain. For example, a bivariate normal if the regression is linear,
a bivariate Gumbel if it is exponential, and so on. Furthermore, the regression
function can serve as a device – albeit naive – for prediction as well. It therefore
appears that when seeking relationships in large data sets, it may be more fruitful
to pursue the regression function as opposed to correlation or mutual information.

4. Inference and predictivity. For purposes of discussion, we focus
attention on the bivariate case with the bivariate normal as the underlying model.
In the absence of any observed data on X and Y , predictivity is achieved via
Equation (2.0), once the model and the prior are specified. In the bivariate
normal case, θ = (µ1, µ2, ρ, σ1, σ

2), so that the simultaneous prediction of X and
Y is:

P τ

♀
(X ≥ x, Y ≥ y|H ) =

∫

θ

f(x, y|θ)P τ

♀
(θ;H )dθ,(4.1)

where f(x, y|θ) is prescribed by Equation (2.2). There are two challenges to imple-
menting Equation (4.1). One is a specification of the prior P τ

♀
(θ;H ); the second

is computing, which entails integration in five dimensions. Given the conceptual
character of this paper, both these “operational” matters are not discussed.

Data on the variables X and Y can arise under two scenarios, each calling
for its own approach to predictivity. We label the two scenarios retrospective



Seeking Relationships in Big Data: A Bayesian Perspective 107

and designed. Under the former scenario, one obtains n pairs of observations
(x1, y1), . . . , (xn, yn) as the realizations of two random variables X and Y . This
is the kind of data that arises in large data sets. Under the designed scenario,
one fixes X at say x∗i and observes the Y corresponding to x∗i as yi, i = 1, . . . , n.
Here yi is the realization of a random variable, whereas x∗i is not. To summarize
(xi, yi), i = 1, . . . , n, is a realization of a random variable (X,Y ), whereas with
(x∗i , yi), it is only yi that is the realization of a random variable Y when X is set
at x∗i .

Given the data d
✿

: [(x1, y1), . . . , (xn, yn)], the posterior distribution of θ is

obtained, via Bayes’ Law, as the proportionality relationship

P τ

♀
(θ; d

✿

) ∝ P τ

♀
(θ;H )L (θ; d

✿

),

where the likelihood L (θ; d
✿

), based on Equation (2.2), is:

n
∏

i=1

1

2πσ1σ2
√

1− ρ2
exp

{

− 1

2(1− ρ2)

[

(

xi − µ1

σ1

)2

+

(

yi − µ2

σ2

)2

− 2ρ(xi − µ1)(yi − µ2)

σ1σ2

]}

.

With the above in place, the predictive distribution is:

P τ

♀
(X ≥ x, Y ≥ y; d

✿

,H ) ∝
x

∫

−∞

y
∫

−∞

∫

θ

f(x, y|θ)P τ

♀
(θ; d

✿

)dθdydx,(4.2)

Continuing in this vein, that is, with (d) at hand, suppose that one wishes

to predict Y conditional on observing X = xn+1, say. That is, one wishes to
assess P τ

♀
(Y > y|X = xn+1; d

✿

,H ); this is proportional to

y
∫

−∞

∫

θ

f(y|X = xn+1, θ)P
τ

♀
(θ; d

✿

)dθdy,

where

f(y|X = xn+1, θ) =
1

σ2
√

2π(1− ρ2)
exp{−1

2
(
y − µ2 − ρσ2

σ1
(xn+1 − µ1)

σ2
√

(1− ρ2)
)2}.

Note that in the above assessment, X has not been observed as xn+1; rather, it
is in the subjunctive mood and it means, were X to be observed as xn+1.
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4.1. The scenario leading to linear models. This sub-section pertains
to predictivity when X is not random and its value is predetermined. Here d

✿

∗ =

[(x∗1, y1), (x
∗

2, y2), . . . , (x
∗

n, yn)], and one is interested in predictions about Y when
X is set at x∗n+1. To do so, one needs a probability model for Y , with X = x∗

acting as a parameter of the model. One possibility would be to consider a family
of models called linear models, and studied under the (incorrectly) labeled term
regression analysis. The scenario of having d∗ at hand arises in the context of
designed or (laboratory) controlled experiments.

We start with the question of what it is that motivates the development
of linear models and why the term regression analysis? In other words, what is
the genesis of linear models? Our answer to this question is suggested by two
features. One is Equation (3.1) pertaining to E (Y |X = x, θ), the regression of
Y on X. The other is the elementary fact that any random variable Y can be
written as the sum of its expectation (assuming that it is finite) and an error
whose expectation is 0. That is,

Y = E (Y ) + ǫ,

where ǫ is the error. Conditioning on X = x, we have

(Y |X = x) = E (Y |X = x) + (ǫ|X = x).(4.3)

In the case of the bivariate normal with µ1 = 0 and σ2
1 = 1, E (Y |X = x) =

µ2 + σ2ρx, and V (Y |X = x) = σ2
2

√

1− ρ2. Thus Equation (4.3) becomes, in the
bivariate normal case,

(Y |X = x) = µ2 + σ2ρx+ ǫ,

if ǫ is assumed independent of X = x. Also V (ǫ) = V (Y |X = x) = σ2
2

√

1− ρ2

when X is pre-selected and fixed at x∗, the above relationship gets written as:

Y (x∗) = α+ βx∗ + ǫ,(4.4)

where α = µα, β = σαρ, and ǫ has a normal distribution with mean 0, and
variance σ2 = σ2

2

√

1− ρ2.

This in turn means that the probability model for Y with x∗ as a parameter
is a univariate normal with mean α+ βx∗, and variance σ2.

The relationship of Equation (4.4) can be generalized to a polynomial in
x∗, and also to variables other than X giving us a family of linear models. This
could be one way to describe the genesis of linear models and a use of the term
regression in their context.
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With the above in place, and focussing on the simple linear model of
Equation (4.4), the posterior distribution of θ = (α, β, σ2), with d

✿

∗ at hand is

P τ

♀
(θ; d

✿

∗) ∝ P τ

♀
(θ;H )L (θ; d

✿

∗),

where P τ

♀
(θ;H ) is the prior, and the likelihood

L (θ; d
✿

∗) =

n
∏

i=1

1√
2πσ

e−
1

2
(
yi−α−βx∗i

σ
)2 .

Finally, the predictive distribution of Y with X fixed at x∗n+1 is now
obtained, at least in principle, as:

P τ

♀
(Y ≥ y; d

✿

∗, x∗n+1,H ) ∝
y

∫

−∞

∫

θ

1√
2πσ

e−
1

2
(
yi−α−βx∗n+1

σ
)2P τ

♀
(θ; d

✿

∗)dθdy,(4.5)
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