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Abstract. We consider optimal Lagrange interpolation with polynomials
of degree at most two on the unit interval [−1, 1]. In a largely unknown
paper, Schurer (1974, Stud. Sci. Math. Hung. 9, 77-79) has analytically
described the infinitely many zero-symmetric and zero-asymmetric extremal
node systems −1 ≤ x1 < x2 < x3 ≤ 1 which all lead to the minimal Lebesgue
constant 1.25 that had already been determined by Bernstein (1931, Izv.
Akad. Nauk SSSR 7, 1025-1050). As Schurer’s proof is not given in full
detail, we formally verify it by providing two new and sound proofs of his
theorem with the aid of symbolic computation using quantifier elimination.
Additionally, we provide an alternative, but equivalent, parameterized de-
scription of the extremal node systems for quadratic Lagrange interpolation
which seems to be novel. It is our purpose to bring the computer-assisted so-
lution of the first nontrivial case of optimal Lagrange interpolation to wider
attention and to stimulate research of the higher-degree cases. This is why
our style of writing is expository.
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1. Introduction. Lagrange polynomial interpolation is a classical and
feasible method to approximate continuous functions by algebraic polynomials of
a given maximal degree. The goodness of this approximation method, as com-
pared with the best possible approximation in Chebyshev’s sense, is measured
with the aid of the Lebesgue constants which can be viewed as operator norms or
interpolating projection constants or condition numbers, see [34]. They depend
solely on the chosen interpolation nodes and Lebesgue’s lemma suggests that we
choose the nodes in such a manner that the Lebesgue constants become minimal.
Such optimal interpolation nodes are in a sense the opposite to the equidistant in-
terpolation nodes which may lead to disastrous approximation results, see Runge’s
example in [1, p. 104], [17, p. 60].

The construction of an optimal Lagrange interpolation polynomial which
minimizes the Lebesgue constant finds applications, for instance, in the method
of Finite Elements when one has to describe the boundary of curvilinear domains
in two or three dimensions and to construct the mapping for elements adjacent
to the boundary: ... in this case the use of optimal points is essential because the
use of a uniformly distributed set of points could introduce excessive error, which
could affect the overall performance of the finite element method [1, p. 105].

The search for an analytical determination of extremal node systems and
corresponding minimal Lebesgue constants is still an intriguing topic in math-
ematics today, see e.g. [34]. In this paper we address the first nontrivial case
of optimal Lagrange interpolation with quadratic polynomials, i.e., of maximal
degree two, a case which had been considered earlier by [2], [6], [7], [13], [25],
[29] and [30]. We collect known results on optimal quadratic interpolation on
the unit interval [−1, 1] and in particular draw attention to the largely unknown
papers [25] and [29] which are referenced neither in dedicated books on interpo-
lation theory nor in the survey paper [5], nor in the encyclopedia [34]. Tureckii
seems to be the first to describe the infinitely many zero-symmetric node sys-
tems (and provides a proof in [30]). Schurer seems to be the first to describe all
(zero-symmetric and zero-asymmetric) extremal node systems consisting of three
interpolation nodes on [−1, 1]. However, his proof is only sketched, so we provide
two new and sound proofs of his result (Section 3.4, Section 3.5). Our proofs
are based on powerful symbolic computation using quantifier elimination. Ad-
ditionally, we provide an alternative, but equivalent, parameterized description
of all extremal node systems for quadratic interpolation (Theorem 3.6), which
seems to be novel. Several examples of extremal node systems are given in the
text. Furthermore we show, by example of a continuous function, that equality
can be attained in Lebesgue’s lemma (Proposition 3.2), and we verify a remark of
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[25] stating that only on Bernstein’s extremal node system the Lebesgue function
equioscillates most (Proposition 3.10).

This paper is on the edge between computer algebra systems (Mathemat-
ica, QEPCAD) and theoretical approximation theory (in particular, polynomial
interpolation) and leads to the computer-aided verification, by means of quantifier
elimination, of the shape of the 2D set of optimal points for quadratic Lagrange
interpolation. It thus provides another example of a successful link between sym-
bolic and numerical methods. The established equivalence of Schurer’s 2D set
with our parameterized description of it (Theorem 3.6) will serve as a blueprint
for future generalizations to the cubic and the quartic case assisted by more so-
phisticated symbolic tools such as Groebner bases and resultants, see [23] and
[32]. We hope that this paper, along with our dedicated web repository

www.math.u-szeged.hu/~vajda/Leb/

will add to the dissemination of computer-aided optimal (quadratic) Lagrange
interpolation and will facilitate its presentation and impartation.

2. Definitions and basic theoretical background. Let C(I) de-
note the Banach space of continuous real functions f on the interval I = [−1, 1],
equipped with the uniform norm (also called Chebyshev norm):

(1) ||f || = max
x∈I

|f(x)|.

Suppose we wish to approximate f by an algebraic polynomial of degree at most
n−1, where n ≥ 3. An old idea, going back to Waring and Euler but named after
Lagrange, see [18], is to sample f at n distinct points of I,

(2) Xn : −1 ≤ x1 < x2 < . . . < xn−1 < xn ≤ 1,

and to construct an interpolating polynomial of degree at most n− 1 as follows:

(3) Ln−1(x) = Ln−1(f,Xn, x) =

n
∑

j=1

f(xj)ℓn−1,j(Xn, x)

where

(4) ℓn−1,j(x) = ℓn−1,j(Xn, x) =

n
∏

i=1,i 6=j

x− xi
xj − xi

,

so that

(5) ℓn−1,j(Xn, xi) = δj,i (Kronecker delta)
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and hence

(6) Ln−1(xi) = f(xi), 1 ≤ i ≤ n.

Definition 2.1. We call the xi’s in (2) the interpolation nodes and the
grid Xn the node system.

Definition 2.2. The unique polynomial Ln−1 is called the Lagrange in-
terpolation polynomial and the polynomials ℓn−1,j (of exact degree n−1) are called
the Lagrange fundamental polynomials.

If ‖f‖ ≤ 1 then (3) implies that |Ln−1(x)| can be estimated from above
by

(7)

n
∑

j=1

|ℓn−1,j(x)| = λn(x) = λn(Xn, x).

Definition 2.3. The non-negative function λn, which is independent of
f , is called the Lebesgue function (named after Lebesgue, see [33]).

Three properties of λn are summarized in the following statement, see [5],
[16], [28, p. 95]:

Proposition 2.4.
(i) λn is a piecewise polynomial satisfying λn(x) ≥ 1 with equality only if x =

xi (1≤ i≤n).

(ii) λn has precisely one local maximum, which we will denote by µi = µi(Xn),
in each open sub-interval (xi, xi+1) of Xn (1 ≤ i ≤ n− 1). The extremum
point in (xi, xi+1), at which the maximum µi is attained, we will denote by
ξi = ξi(Xn) so that λn(ξi) = µi holds.

(iii) λn is strictly decreasing and convex in (−∞, x1) and strictly increasing and
convex in (xn,∞).

Definition 2.5. The largest value of λn on I, denoted by Λn = Λn(Xn),
is called the Lebesgue constant:

(8) Λn = max
x∈I

λn(x).

We thus have either
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Fig. 1. Typical shapes of a Lebesgue function (n = 3)

Λn = max(λn(−1), µ1, . . . , µn−1, λn(1)), if − 1 6= x1 and 1 6= xn;

or
Λn = max(λn(−1), µ1, . . . , µn−1), if − 1 6= x1 and 1 = xn;

or
Λn = max(µ1, . . . , µn−1, λn(1)), if − 1 = x1 and 1 6= xn;

or
Λn = max(µ1, . . . , µn−1), if − 1 = x1 and 1 = xn.

The importance of Λn in interpolation theory stems from the following
inequality which can be viewed as a version of Lebesgue’s lemma, but can also be
proved directly [24, Theorem 4.1]:

(9) ‖f − Ln−1‖ ≤ (1 + Λn)‖f − P ∗
n−1‖,

where f ∈ C(I), and P ∗
n−1 denotes the polynomial of best uniform approximation

to f out of the linear space of all algebraic polynomials of degree at most n − 1.
Usually, P ∗

n−1 is much harder to determine than Ln−1, and of course there always
holds ‖f − P ∗

n−1‖ ≤ ‖f − Ln−1‖. The estimate (9), which is sharp for some
f , tells us that a small Lebesgue constant implies that the approximation to f
by the Lagrange interpolation polynomial is nearly as good as the best uniform
approximation to f by means of P ∗

n−1. Therefore, it is desirable to minimize
Λn which can be achieved by a strategic placement of the interpolation nodes.
However, Λn cannot be forced to be arbitrarily close to 1: as we shall see, the
minimal value of Λn is 1.25, if n = 3, and in fact Λn grows at least logarithmically
with n.

It is known [24, p. 100] that for each n ≥ 3 a node system Xn = X∗
n on I

exists such that
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(10) Λ∗
n = Λn(X

∗
n) ≤ Λn(Xn) for all choices of node systems Xn

according to (2).

Definition 2.6. A node system X∗
n which satisfies (10) is called extremal,

and the corresponding Lebesgue constant Λ∗
n is called minimal.

It is furthermore known that for a given n ≥ 3 an extremal node system
is not unique, [16, Theorem 2], and in particular there exists an extremal node
system which includes the endpoints of I as interpolation nodes, see [24, p. 100].
Obviously, all extremal node systems, for a given n, generate the same minimal
Lebesgue constant.

Definition 2.7. The construction of Ln−1(f,X
∗
n, x), the Lagrange in-

terpolation polynomial on an extremal node system X∗
n, is called optimal La-

grange polynomial interpolation on I since it furnishes, for a given n, the minimal
Lebesgue constant and hence the minimal interpolation error in the sense of (9).

Definition 2.8. Following standard usage [5], [28] we will call a node
system, which includes the endpoints of I as interpolation nodes (that is, x1 = −1
and xn = 1), a canonical node system (CNS ).

In answering a conjecture which goes back to [2], it was proved by [9] and
by [14] that the following deep result holds:

Proposition 2.9. If a Lebesgue function corresponding to a CNS Xn

satisfies the so-called equioscillation property

(11) µ1 = µ2 = . . . = µn−2 = µn−1,

then Xn is an extremal node system, i.e., Xn = X∗
n with Λn(Xn) = Λ∗

n.

Thus, the fulfillment of (11) is a sufficient condition for a CNS to be
extremal. Actually, it was additionally proved that a CNS which satisfies (11)
is unique. This property answers part of a conjecture which goes back to [10].
However, extremal node systems are not given explicitly in [9], [14].

The search for the analytical (that is, not numerical) determination of X∗
n

and Λ∗
n is among the most intriguing problems of interpolation theory. Here are

some quotations on this subject:

• In spite of this nice characterization, the optimal nodes as well as the opti-
mal Lebesgue constants are not known explicitly... the problem of analytical
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description of the optimal matrix of nodes is considered by pure mathemati-
cians as a great challenge. [5]

• The following questions are still open: 1. Is there a set of relatively simple
functions fn such that the roots of fn are the optimal nodes for Lagrange
interpolation? [8, p. 21]

• It is of interest to mention that no elegant general method, whether a formula
or a special algorithm, has yet been discovered which serves to compute the
nodes yielding µ1 = µ2 = . . . = µn−2 = µn−1. [14]

• The nature of the optimal set X∗ remains a mystery [15, p. xlvii]

• In general, the location of optimal interpolation nodes is unknown and we
have made some numerical computations which may indicate the direction
in which such points should be sought. [16]

• It is an open problem to get the exact value of the optimal Lebesgue con-
stants... [17, p. 67]

In the present paper our main focus is on extremal (non-canonical) node systems
consisting of n = 3 interpolation nodes on I. The unique extremal CNS on I

for n = 3 can be easily obtained with the aid of Proposition 2.9, see Section 3.1
below.

3. On optimal quadratic Lagrange polynomial interpolation.

Our goal is to describe all extremal node systems X∗
3 on I which lead to the min-

imal Lebesgue constant Λ∗
3 = 1.25 associated with optimal Lagrange polynomial

interpolation by polynomials of a given maximal degree n− 1 = 2. In an attempt
to contribute to the classical subject of Lagrange polynomial interpolation we

• collect known results on optimal quadratic interpolation (in particular, we
refer to the largely unknown sources [29] and [25]),

• provide two complete proofs, by using symbolic computation, for Schurer’s
description [25] of the infinitely many (symmetric and asymmetric) extremal
node systems consisting of three interpolation nodes on I,

• add an alternative description of these node systems (Theorem 3.6), which
is believed to be novel, and which was inspired by the proof given in [16,
Theorem 2] for the non-uniqueness of extremal node systems,
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• provide examples of f ∈ C(I) showing that the estimate (9) can turn into
an equation (Proposition 3.2), and

• verify an unproven remark in [25] on the maximal equioscillation of λ3 on
Bernstein’s node system BNS (Proposition 3.10).

To this end, we consider first the unique extremal and canonical node sys-
tem, then extremal zero-symmetric node systems (which encompass the canoni-
cal one), and finally extremal general node systems (which encompass the zero-
symmetric ones).

We will skip the trivial linear case n− 1 = 1 with the sole extremal (and
canonical) node system X∗

2 : −1 = x∗1 < x∗2 = 1 consisting of two interpolation
nodes on I which yields the minimal Lebesgue constant Λ∗

2 = 1. The quadratic
case n − 1 = 2 considered here is the first non-trivial one and it can be resolved
completely. The investigation of the case n− 1 = 3 (optimal cubic interpolation)
we intend to expose in a separate paper [23], see also Remark 4.2 below.

3.1. The extremal and canonical node system. If X3 is assumed to

be canonical, we necessarily have x1 = −1 and x3 = 1. That then x2 =
x1 + x3

2
=

0 must hold can be deduced from a remark in [14], see also [13, Theorem 2], stating
that the interpolation nodes of an extremal CNS must be symmetric about the
midpoint of I. But we may simply take x2 = 0 as a self-suggesting guess and look
how the corresponding Lebesgue function behaves:

Example 3.1. Let X3 : x1 = −1 < x2 = 0 < x3 = 1. By their definition,
the corresponding Lagrange fundamental polynomials read

(12) ℓ2,1(X3, x) = x(x− 1)/2, ℓ2,2(X3, x) = 1− x2, ℓ2,3(X3, x) = x(x+ 1)/2,

and the corresponding Lebesgue function is accordingly given by

(13) λ3(X3, x)=−x2 − x+ 1 on (−1, 0) and λ3(X3, x)=−x2 + x+ 1 on (0, 1).

Setting the first derivative of λ3(X3, x) with respect to x equal to zero yields the
extremum points ξ1 = −0.5 and ξ2 = 0.5, and this eventually gives the equal local
maxima

(14) λ3(ξ1) = µ1 = 1.25 andλ3(ξ2) = µ2 = 1.25.

According to Proposition 2.9, since the canonical grid X3 with x2 = 0 thus
implies the equioscillation property of λ3(X3, x), it is in fact the unique extremal
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CNS, i.e., X3 = X∗
3 : x∗1 = −1 < x∗2 = 0 < x∗3 = 1, and, furthermore, Λ∗

3 = 1.25 is
the minimal Lebesgue constant.

The lowest estimate (9) hence reads ‖f−L2‖ ≤ 9

4
‖f−P ∗

2 ‖ for all f ∈ C(I),

if we interpolate on the grid X∗
3 , or on any other extremal node system consisting

of three interpolation nodes on I. The sharpness of this estimate follows from the
following statement:

Proposition 3.2. Let n = 3. There exists some f∗ ∈ C(I) so that
equality holds in (9) with Λ3 = Λ∗

3 = 1.25, that is

(15) ‖f∗ − L2‖ = 2.25 ‖f∗ − P ∗
2 ‖.

P r o o f. Consider the polygonal line f∗ ∈ C(I) defined by

(16) f∗(x) =







2x+ 1, if −1 ≤ x ≤ 0,
−4x+ 1, if 0 ≤ x ≤ 0.5,
4x− 3, if 0.5 ≤ x ≤ 1.

The quadratic polynomial L2 with L2(x) = −x2 + x + 1 interpolates f∗ on the
CNS X∗

3 : x∗1 = −1 < x∗2 = 0 < x∗3 = 1 since f∗(−1) = L2(−1) = −1, f∗(0) =
L2(0) = 1, f∗(1) = L2(1) = 1, i.e., L2 is the (optimal) Lagrange interpolation
polynomial of degree (at most) 2. The absolute value of the difference function
f∗ − L2 reads

(17) |f∗(x)− L2(x)| =







|x2 + x|, if −1 ≤ x ≤ 0,

|x2 − 5x|, if 0 ≤ x ≤ 0.5,

|x2 + 3x− 4|, if 0.5 ≤ x ≤ 1.

It follows from elementary calculus that the largest value in (17) is attained on I

at x = 0.5:

‖f∗ − L2‖ = max
x∈I

|f∗(x)− L2(x)| = |f∗(0.5) − L2(0.5)| = | − 1− 1.25| = 2.25.

On the other hand, the best uniform approximation to f∗ on I out of the linear
space of (at most) quadratic polynomials is the zero polynomial P ∗

2 given by
P ∗
2 (x) = 0 for x ∈ I. This follows from Chebyshev’s alternation theorem, see

[24, Theorem 1.7], because the difference function f∗−P ∗
2 = f∗ has 4 alternation

points on I: f∗(−1) = −1, f∗(0) = 1, f∗(0.5) = −1, f∗(1) = 1. It follows
from (16) that |f∗(x)| ≤ 1 for x ∈ I (and equality is attained), so that we have
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‖f∗‖ = ‖f∗ −P ∗
2 ‖ = 1. This eventually gives ‖f∗ −L2‖ = 2.25 = 2.25 ‖f∗ −P ∗

2 ‖,
so that indeed (15) holds.

We point out that interpolation on any other extremal node system dif-
ferent from the above X∗

3 would yield, after slight modifications, the same re-
sult (15). Take, for example, the extremal zero-asymmetric node system as

given in Example 3.8 below, i.e., X∗
3 : x∗1 = −197

207
< x∗2 =

3

207
< x∗3 =

203

207
with Λ∗

3 = Λ3(X
∗
3 ) = 1.25 and consider now the polygonal line f∗ ∈ C(I)

which connects the 5 pairs of points (−1, 0), (x∗1,−1) and (x∗1,−1), (x∗2, 1) and

(x∗2, 1),

(

103

207
,−1

)

and

(

103

207
,−1

)

, (x∗3, 1) and (x∗3, 1), (1, 0). The (optimal) La-

grange polynomial of degree (at most) 2 which interpolates f∗ on X∗
3 is readily

found to be L2 with L2(x) = (−42849x2 + 42642x + 39391)/40000. We deduce,

as before, that max
x∈I

|f∗(x)−L2(x)| = 2.25 (this value is attained at x =
103

207
) and

‖f∗‖ = 1 and P ∗
2 (x) = 0 for x ∈ I, so that ‖f∗ −P ∗

2 ‖ = ‖f∗‖ = 1, and hence (15)
holds true. �

The value Λ∗
3 = 1.25 =

5

4
was given first by [2] in a footnote on p. 1027,

who considered a particular (non-canonical) extremal zero-symmetric node sys-
tem, see Section 3.2 below. A proof of the equation Λ∗

3 = 1.25 for the CNS X∗
3

seems to have appeared first in the book by [30], as part of the solution to Problem
6.42.

3.2. Extremal zero-symmetric node systems. We consider next node
systems X3 having the property x1 = −x3, x2 = 0 and 0 < x3 ≤ 1, where we may
assume 0 < x3 < 1 in view of Section 3.1, but beyond that x3 is left undetermined.
The corresponding Lagrange fundamental polynomials ℓ2,j then read, by their
definition:

(18) ℓ2,1(X3, x) =
x(x−x3)

2x23
, ℓ2,2(X3, x) =

(x+x3)(x3−x)

x23
,

ℓ2,3(X3, x)=
x(x+x3)

2x23
.

It turns out that the infinitely many extremal node systems of this kind are given
by

(19) X∗
3 :x

∗
1=−x∗3 < x∗2=0 < x∗3 with

2
√
2

3
(≈0.9428) ≤ x∗3 < 1

and Λ3(X
∗
3 ) = 1.25.
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A first proof of this statement seems to be the one given in [30, Problem 6.42].
Actually, Tureckii had stated (19) already in [29, p. 229], but without a proof. To
the best of our knowledge, this rare source is not mentioned in the literature on
optimal Lagrange interpolation, except for [30]. In [6, p. 65] the statement (19) is

posed as advanced Problem 22, but without a solution (the condition
2
√
2

3
< x∗3

given in the first edition of [6] was corrected in the second edition to
2
√
2

3
≤ x∗3).

See also [34] for a discussion of (19). An alternative proof of (19) we provide in
Example 3.7 below. In his famous footnote [2] had obviously in mind the following

particular extremal zero-symmetric node system X∗
3 : −2

√
2

3
< 0 <

2
√
2

3
, herein

after referred to as BNS, which is a marginal case of X∗
3 in (19), see also the

remark in [17, p. 73]. Although he did not state BNS explicitly, Bernstein did

provide both the four extremum points −1, ξ1 = −
√
2

3
, ξ2 =

√
2

3
(≈ 0.4714),

1 of λ3(BNS), and the minimal Lebesgue constant Λ3(BNS) = 1.25. Since this
historical node system is connected to Bernstein’s conjecture on the equioscillation
of the Lebesgue function, we provide the suppressed calculation of Λ3(BNS):

Example 3.3. Let X3 : x1 = −x3 < x2 = 0 < x3. Insert x3 =
2
√
2

3
into

(18), yielding ℓ2,j(BNS, x). It is then readily found, by inspecting the sign of ℓ2,j
on consecutive sub-intervals, that the Lebesgue function is given by λ3(BNS, x) =
λ3(x) =

(20)

ℓ2,1(x)− ℓ2,2(x) + ℓ2,3(x) =
9

4
x2 − 1, if −1 ≤ x ≤ −x3,

ℓ2,1(x) + ℓ2,2(x)− ℓ2,3(x) = −9

8
x2 − 3

2
√
2
x+ 1, if −x3 ≤ x ≤ 0,

−ℓ2,1(x) + ℓ2,2(x) + ℓ2,3(x) = −9

8
x2 +

3

2
√
2
x+ 1, if 0 ≤ x ≤ x3,

ℓ2,1(x)− ℓ2,2(x) + ℓ2,3(x) =
9

4
x2 − 1, if x3 ≤ x ≤ 1.

On the two boundary intervals, the largest value of λ3 is λ3(−1) = λ3(1) = 1.25,
according to Proposition 2.4 (iii). On the two interior intervals, the zeros of the
first derivative of λ3 are indeed the above indicated ξ1 resp. ξ2, as follows from
(20), and insertion of these values immediately gives λ3(ξ1) = λ3(ξ2) = 1.25. It
thus turns out that we have equioscillation on the four sub-intervals of I given in
(20), see also Proposition 3.10 below.
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We also take the opportunity to correct a misprint in the footnote of [2, p.
1027]: The node polynomial (x− x1)(x− x2)(x− x3), denoted there by An+1(x),
n = 2, should have read

(21) An+1(x) = x

(

x2 − 8

9

)

, notAn+1(x) =

(

x2 − 8

9

)

.

3.3. Extremal general node systems. We finally consider, for n = 3,
all extremal node systems on I, including in particular those which are not zero-
symmetric. The infinitely many extremal general node systems can be described
in terms of the position of the first node, x1 = x∗1, as follows:

Theorem 3.4. Let n = 3. The extremal general node systems on I are
given by

(22) X∗
3 : x∗1 < x∗2 =

x∗1 + x∗3
2

< x∗3 with Λ∗
3 = Λ3(X

∗
3 ) = 1.25,

where

(23) (i) − 1 ≤ x∗1 ≤ −2
√
2

3
(≈−0.9428) ∧ (17 − 12

√
2)x∗1

+ 12
√
2− 16 ≤ x∗3 ≤ 1

or

(24) (ii) − 2
√
2

3
< x∗1 ≤ 33− 24

√
2(≈−0.9411) ∧ (17 + 12

√
2)x∗1

+ 12
√
2 + 16 ≤ x∗3 ≤ 1.

This theorem seems to have appeared first in a paper by [25]. It has been
reviewed, including the formulas (23) and (24), in the Mathematical Reviews
(MR0374758) and in Zentralblatt MATH (Zbl 0306.41001), but [25] has been ref-
erenced neither in the dedicated textbooks on polynomial interpolation [3], [17],
[19], [28] nor in the survey article on Lebesgue functions in polynomial interpola-
tion [5]. Also, Tureckii’s dedicated problem books on Lagrange interpolation [30],
[31] do not cover (23) and (24), nor does the encyclopedia [34]. Schurer himself
references to [25] in his valedictory lecture [26]. On the other hand, [25] does not
cite Tureckii’s result (19). The bound ≤ x∗3 in (24) reads < x∗3 in [25] (misprint).
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To the best of our knowledge, [25] is the only source in literature where
extremal zero-asymmetric node systems are mentioned (and provided). It is of
course advantageous to have as many extremal node systems at one’s disposal
as possible: we can then flexibly choose the one which most appropriately fits a
concrete approximation problem.

-1.00 -0.98 -0.96 -0.94

0.94

0.96

0.98

1.00

CNS

BNSx1
*

x3
*

Fig. 2. Each point of the shaded quadrilateral region (which is not a square) gives rise

to an extremal node system x∗

1
< x∗

2
< x∗

3
with x∗

2
=

x∗

1
+ x∗

3

2
. The diagonal connecting

CNS and BNS represents the zero-symmetric node systems (19)

Example 3.5. To give a zero-asymmetric example, we consider the upper
right vertex point of the shaded region in Figure 2: Choose x∗1 = 33 − 24

√
2(≈

−0.9411), x∗3 = 1, and hence x∗2 = 17 − 12
√
2(≈ 0.0294). Inserting these values

into (4) with n = 3 yields

(25)

ℓ2,1(x) =
(x− 1)(x− (17 − 12

√
2))

1088 − 768
√
2

,

ℓ2,2(x) =
(x− 1)(x− (33 − 24

√
2))

384
√
2− 544

,

ℓ2,3(x) =
(x− (17 − 12

√
2))(x− (33 − 24

√
2))

1088 − 768
√
2

.

Investigating the zeros of these functions on I leads to the following representation
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of the Lebesgue function: λ3(x) =

(26)

ℓ2,1(x)− ℓ2,2(x) + ℓ2,3(x), if x ∈ [−1, x∗1],
ℓ2,1(x) + ℓ2,2(x)− ℓ2,3(x), if x ∈ [x∗1, x

∗
2],

−ℓ2,1(x) + ℓ2,2(x) + ℓ2,3(x), if x ∈ [x∗2, 1].

On the boundary interval [−1, x∗1] the largest value of λ3 is λ3(−1), according
to Proposition 2.4 (iii), and it is readily verified that we get λ3(−1) = 1.25.
On the remaining two intervals the zeros of the first derivative of λ3 are ξ1 =
25 − 18

√
2(≈ −0.4558) and ξ2 = 9 − 6

√
2(≈ 0.5147), as is readily deduced from

(26). And a straightforward insertion yields λ3(ξ1) = λ3(ξ2) = 1.25, so that we
have equioscillation on the three sub-intervals in (26).

Schurer’s proof [25] of Theorem 3.4 is not given in full detail but is
sketched, using bridging phrases such as it is easy to verify or we omit the calcula-
tional details or after elementary but somewhat tediuos calculations, which make
it hard to follow, for students and lecturers alike.

Our first humble contribution to optimal quadratic Lagrange interpolation
is therefore to give a sound new proof of Schurer’s result (23), (24). The first part
of that proof follows the outline given by Schurer and leads us to the crucial
two inequalities stated right before Theorem 1 in [25]. For the transformation of
these inequalities to formulae (23), (24) we then use symbolic computation with
quantifier elimination.

3.4. Alternative proof of Theorem 3.4 with the aid of symbolic
computation (1).

P r o o f o f Th e o r em 3 . 4. It suffices to consider node systems which
do not contain an endpoint of I, i.e., X3 : −1 < x1 < x2 < x3 < 1. For if both
endpoints are included, then the only extremal node system is the extremal CNS
X∗

3 : x∗1 = −1 < x∗2 = 0 < x∗3 = 1. If only one endpoint is included, then the
following argument can be traced down with obvious modifications (compare with

Example 3.5). The Lebesgue function λ3(X3, x) =
3
∑

j=1

3
∏

i=1,i 6=j

|x− xi|
|xj − xi|

reads when

x ∈ (−1, x1) = I1, in view of max(x−x1, x−x2, x−x3, x1−x2, x1−x3, x2−x3) < 0,

(27) λ3(X3, x) =
(x2 − x)(x3 − x)

(x2 − x1)(x3 − x1)
+

(x1 − x)(x3 − x)

(x2 − x1)(x3 − x2)
+

(x1 − x)(x2 − x)

(x3 − x1)(x3 − x2)
.

For x ∈ (x1, x2) = I2 we get, in view of
max(x− x2, x− x3, x1 − x2, x1 − x3, x2 − x3) < 0 < x− x1,

(28) λ3(X3, x) =
(x2 − x)(x3 − x)

(x2 − x1)(x3 − x1)
+

(x− x1)(x3 − x)

(x2 − x1)(x3 − x2)
+

(x− x1)(x2 − x)

(x3 − x1)(x3 − x2)
.
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For x ∈ (x2, x3) = I3 we get, in view of
max(x− x3, x1 − x2, x1 − x3, x2 − x3) < 0 < min(x− x1, x− x2),

(29) λ3(X3, x) =
(x− x2)(x3 − x)

(x2 − x1)(x3 − x1)
+

(x− x1)(x3 − x)

(x2 − x1)(x3 − x2)
+

(x− x1)(x− x2)

(x3 − x1)(x3 − x2)
.

Finally, for x ∈ (x3, 1) = I4 we get, in view of
max(x1 − x2, x1 − x3, x2 − x3) < 0 < min(x− x1, x− x2, x− x3),

(30) λ3(X3, x) =
(x− x2)(x− x3)

(x2 − x1)(x3 − x1)
+

(x− x1)(x− x3)

(x2 − x1)(x3 − x2)
+

(x− x1)(x− x2)

(x3 − x1)(x3 − x2)
.

We consider next the maximum of λ3(X3, x) on the sub-intervals I1, I2, I3 and
I4 of I:
λ(X3, x) will be largest on I1 at x = −1, according to Proposition 2.4 (iii). We
thus obtain, inserting x = −1,

(31) max
x∈I1

λ3(X3, x) =
2− x22 + 2x3 + x2x3 + x1(2 + x2 + x3)

(x1 − x2)(x2 − x3)
.

The maximum of λ3(X3, x) on I2 will be attained at x =
x1 + x2

2
since the first

derivative of λ3(X3, x), which reads
2(−2x + x1 + x2)

(x1 − x3)(x2 − x3)
, vanishes there. We thus

obtain, inserting x =
x1 + x2

2
,

(32) max
x∈I2

λ3(X3, x) =
x21 + x22 − 2x1x3 − 2x2x3 + 2x23

2(x1 − x3)(x2 − x3)
.

The maximum of λ3(X3, x) on I3 will be attained at x =
x2 + x3

2
since the first

derivative of λ3(X3, x), which reads
2(−2x + x2 + x3)

(x1 − x2)(x1 − x3)
, vanishes there. We thus

obtain, inserting x =
x2 + x3

2
,

(33) max
x∈I3

λ3(X3, x) =
2x21 + x22 − 2x1x2 − 2x1x3 + x23

2(x1 − x2)(x2 − x3)
.

Finally, the maximum of λ3(X3, x) on I4 will be attained at x = 1 according to
Proposition 2.4 (iii). We thus obtain, inserting x = 1,

(34) max
x∈I4

λ3(X3, x) =
2− x22 − 2x3 + x2x3 + x1(−2 + x2 + x3)

(x1 − x2)(x2 − x3)
.
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We now map X3 onto I by means of the linear function f(x) =
2

x3 − x1
(x−x3)+1,

which satisfies f(x1) = −1 and f(x3) = 1. The mapped node system X ′
3 : −1 =

x′1 < f(x2) = x′2 < 1 = x′3 leads to a Lebesgue constant which is not larger than

Λ3(X3). In fact, we obtain with x′ =
2

x3 − x1
(x− x3) + 1, following [24, p. 100],

(35)

Λ3(X
′
3) = max

x′∈I

3
∑

j=1

3
∏

i=1,i 6=j

|x′ − x′i|
|x′j − x′i|

= max
x1≤x≤x3

3
∑

j=1

3
∏

i=1,i 6=j

| 2
x3−x1

(x− x3) + 1− 2
x3−x1

(xi − x3)− 1|
| 2
x3−x1

(xj − x3) + 1− 2
x3−x1

(xi − x3)− 1|

= max
x1≤x≤x3

3
∑

j=1

3
∏

i=1,i 6=j

|x− xi|
|xj − xi|

≤ max
x∈I

3
∑

j=1

3
∏

i=1,i 6=j

|x− xi|
|xj − xi|

= Λ3(X3).

If we assume that X3 is an extremal node system with minimal Lebesgue constant
Λ∗
3 = 1.25, then we must have Λ3(X

′
3) = Λ3(X3) = 1.25 since Λ3(X

′
3) < Λ3(X3)

would contradict the extremality of X3. This means that X ′
3 is actually an ex-

tremal CNS, so that we must necessarily have, by the uniqueness condition (see

Section 3.1), x′2 = f(x2) =
2

x3 − x1
(x2 − x3) + 1 = 0 which in turn implies

x2 =
x1 + x3

2
. Hence the assumption that X3 is extremal allows us to eliminate

the variable x2 in the maxima defined above. We thus eventually get, inserting

x2 =
x1 + x3

2
:

(36) max
x∈I1

λ3(X3, x) =
8 + x21 + 8x3 + x23 + x1(8 + 6x3)

(x1 − x3)2
,

(37) max
x∈I2

λ3(X3, x) = 1.25,

(38) max
x∈I3

λ3(X3, x) = 1.25,

(39) max
x∈I4

λ3(X3, x) =
8 + x21 − 8x3 + x23 + x1(−8 + 6x3)

(x1 − x3)2
.
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To ensure that X3 is indeed an extremal node system, we must impose on the
values in (36) and (39) the condition that they, too, cannot exceed 1.25, that is

(40)
8+x21+8x3+x23+x1(8+6x3)

(x1 − x3)2
≤ 1.25

∧ 8+x21−8x3+x23+x1(−8+6x3)

(x1 − x3)2
≤ 1.25,

or

(41)
8+x21+8x3+x23+x1(8+6x3)

(x1 − x3)2
−1 ≤ 0.25

∧ 8+x21−8x3+x23+x1(−8+6x3)

(x1 − x3)2
−1 ≤ 0.25.

We readily observe that the last two inequalities coincide with the crucial two
inequalities stated right before Theorem 1 in [25], that is with:

(42)
8(1 + x1)(1 + x3)

(x1 − x3)2
≤ 0.25 and simultaneously

8(1− x1)(1− x3)

(x1 − x3)2
≤ 0.25.

The final step is now to translate (42) into (23) and (24), a step whose
calculation has not been revealed by Schurer. A convenient and powerful way to
do so is by symbolic computation. We have employed the computer algebra system
Mathematica, see [35], and its function Reduce[expr, vars, dom] which reduces,
over the domain dom, the statement expr by solving equations or inequalities for
vars and eliminating quantifiers, see e.g. [27]. On a standard PC, the required
computation time is less than 1 second. The results have been cross-checked with
the technical computing software QEPCAD, see [4]. Note that below the term
beneath the radical sign is (x1 − 1)2 respectively (x1 + 1)2:

Reduce[32(1 + x1)(1 + x3) ≤ (−x1 + x3)
2 ∧ 32(1 − x1)(1 − x3) ≤ (−x1 + x3)

2

∧ − 1 < x1 < x3 < 1, {x1, x3},Reals]
The output is a two-staged description of the solution set, which is obviously
identical with Theorem 3.4 (where, however, the endpoints of I are also included):

(43)
(

−1 < x1 ≤
−2

√
2

3
∧−16 + 17x1 + 12

√
2
√

1− 2x1 + x21 ≤ x3 < 1

)

∨
(

−2
√
2

3
< x1 < 3(11 − 8

√
2) ∧ 16 + 17x1 + 12

√
2
√

1 + 2x1 + x21 ≤ x3 < 1

)

.�
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3.5. Alternative proof of Theorem 3.4 with the aid of symbolic
computation (2).Our second contribution to optimal quadratic Lagrange inter-
polation is to give an alternative new proof of (22), (23), (24) that is based solely
on symbolic computation, which underlines the power of the method. We have
again employed the computer algebra system Mathematica, this time with its
functions CylindricalDecomposition [ineqs, x1, x2,. . . ], which finds a decom-
position of the region represented by the inequalities ineqs into cylindrical parts
xi, and Resolve [expr, dom], which attempts to resolve the expression expr into
a form that eliminates, over the domain dom, the quantifiers ∀ and ∃. We so
directly arrive at (22), (23), (24). On a standard PC, the required computation
time is about 10 minutes. Again we have cross-checked the result with QEPCAD.

P r o o f o f Th e o r em 3 . 4. We first introduce an auxiliary function to
define the Lagrange fundamental polynomials:

LagrFund[i_, x_List, var_] :=

(

j−1
∏

i=1

var − x[[i]]

x[[j]] − x[[i]]

)





Length[x]
∏

i=j+1

var − x[[i]]

x[[j]]− x[[i]]



.

By evaluating the expression
(44)
CylindricalDecomposition[Resolve[− 1≤x1<x2<x3 ≤1 ∧ ∀x(−1≤x≤1) ⇒

3
∑

j=1

|LagrFund(j, {x1, x2, x3}, x)| ≤
5

4
,Reals],{x1, x3, x2}],

we get a four-staged description of the solution set as
(45)

(

x1 = −1 ∧ 24
√
2− 33 ≤ x3 ≤ 1 ∧ x2 =

x3 − 1

2

)

∨
(

−1<x1≤
−2

√
2

3
∧ −12

√
2x1 + 17x1 + 12

√
2− 16≤x3≤1 ∧ x2=

x1 + x3
2

)

∨
(

−2
√
2

3
<x1<33−24

√
2 ∧ 12

√
2x1+17x1+12

√
2+16 ≤ x3≤1 ∧ x2=

x1 + x3
2

)

∨
(

x1 = 33− 24
√
2 ∧ x3 = 1 ∧ x2 =

1

2

(

34− 24
√
2
)

)

.

This output is obviously identical with Theorem 3.4. �
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3.6. New description of extremal general node systems with the
aid of two parameters. Our third contribution to optimal quadratic Lagrange
interpolation is the provision of an alternative, but equivalent, description of the
extremal general node systems. In Schurer’s description (Theorem 3.4), x∗1 is
chosen from an interval with fixed endpoints, and x∗3 is chosen from an interval
whose right endpoint is 1, whereas the left endpoint is a linear function of x∗1 (and

we have x∗2 =
x∗1 + x∗3

2
). In our description, two parameters (α and β) will be

freely chosen from two disjoint intervals (which are zero-symmetric to each other)
with fixed endpoints, and then x∗1 and x∗3 are computed as functions of α and β

(we also have x∗2 =
x∗1 + x∗3

2
). This description has been inspired by the proof of

Theorem 2 in [16]. To avoid ambiguity, in our description we denote the extremal
nodes by y∗i rather than by x∗i .

Theorem 3.6. Set a =
−3

2
√
2

and b =
3

2
√
2
(≈ 1.0607). For any α ∈

[a,−1] and for any β ∈ [1, b], the linear function S : [α, β] → I given by S(x) =
1

β − α
(2x − α − β) determines an extremal node system Y ∗

α,β : −1 ≤ y∗1 < y∗2 <

y∗3 ≤ 1 on I, if one consecutively maps the members of the extremal CNS X∗
3 :

x∗1 = −1 < x∗2 = 0 < x∗3 = 1, i.e., if one inserts x = x∗1 = 1, and x = x∗2 = 0 and
x = x∗3 = 1, which yields

(46) S(x∗1) = y∗1 =
1

β − α
(−2− α− β),

(47) S(x∗2) = y∗2 =
y∗1 + y∗3

2
=

−α− β

β − α
,

(48) S(x∗3) = y∗3 =
1

β − α
(2− α− β).

P r o o f. We have S(α) = −1 and S(β) = 1, so that S([α, β]) = I, and

the inverse function S−1 : I → [α, β] is given by S−1(y) =
1

2
((β − α)y + α + β)

with S−1(−1) = α and S−1(1) = β. Since S is linear with positive slope
2

β − α
,

the ordering of X∗
3 : x∗1 = −1 < x∗2 = 0 < x∗3 = 1 on I translates to Y ∗

α,β, so that
indeed y∗1 < y∗2 < y∗3 holds. The Lebesgue function corresponding to X∗

3 reads,
see (12) and (13),
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(49) λ3(X
∗
3 , x) = |x(x− 1)|/2 + |1− x2|+ |x(x+ 1)|/2

withΛ∗
3 = max

x∈I
λ3(X

∗
3 , x) = 1.25

We wish to determine the point b > 1 where λ3(X
∗
3 , x) intersects with the

constant function c(x) = Λ∗
3 = 1.25. According to Proposition 2.4, λ3(X

∗
3 , x) is

monotone increasing on (1,∞), and in fact is represented there by λ3(X
∗
3 , x) =

2x2 − 1, see (49). The positive solution to the equation 2x2 − 1 = 1.25 is x =

b =
3

2
√
2

=

√

9

8
. In a similar fashion we determine the point a < −1, where

λ3(X
∗
3 , x) intersects with the constant function c(x) = Λ∗

3 = 1.25 and obtain

x = a = − 3

2
√
2

= −
√

9

8
. By construction, λ3(X

∗
3 , x) ≤ 1.25 on [a, b], and

hence λ3(X
∗
3 , x) ≤ 1.25 on any subinterval [α, β] of [a, b], where α ∈ [a,−1] and

β ∈ [1, b]. Equality λ3(X
∗
3 , x) = 1.25 occurs, if x ∈ {a,−0.5, 0.5, b}.

We finally wish to verify that the node system Y ∗
α,β : −1 ≤ y∗1 < y∗2 < y∗3 ≤ 1 as

given in (46)–(48) is an extremal node system on I, for every choice of α ∈ [a,−1]
and β ∈ [1, b]. To this end, we observe that, for y ∈ I,

λ3(Y
∗
α,β, y) =

3
∑

j=1

3
∏

i=1,i 6=j

|y − y∗i |
|y∗j − y∗i |

=

3
∑

j=1

3
∏

i=1,i 6=j

|S(x) − S(x∗i )|
|S(x∗j )− S(x∗i )|

=

3
∑

j=1

3
∏

i=1,i 6=j

| 1
β−α

(2x− α− β)− 1
β−α

(2x∗i − α− β)|
| 1
β−α

(2x∗j − α− β)− 1
β−α

(2x∗i − α− β)|
=

3
∑

j=1

3
∏

i=1,i 6=j

|x− x∗i |
|x∗j − x∗i |

=

3
∑

j=1

3
∏

i=1,i 6=j

|S−1(y)− S−1(y∗i )|
|S−1(y∗j )− S−1(y∗i )|

= λ3(X
∗
3 , x),

where x ∈ [α, β], and hence max
y∈I

λ3(Y
∗
α,β, y) = max

x∈[α,β]
λ3(X

∗
3 , x) = 1.25 = Λ∗

3. �

Example 3.7. Set α = a =
−3

2
√
2
. Then y∗1 =

−8 + 3
√
2− 4β

3
√
2 + 4β

and

y∗3 =
8 + 3

√
2− 4β

3
√
2 + 4β

, and hence

y∗1 ∈ [−2
√
2

3
,−(24

√
2− 33)] and y∗3 ∈ [

2
√
2

3
, 1], if β varies in [1, b].

Set α = −1. Then y∗1 = −1 and y∗3 =
3− β

β + 1
, and hence

y∗3 ∈ [24
√
2− 33, 1], if β varies in [1, b].
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Set β = 1. Then y∗1 =
3 + α

α− 1
and y∗3 = 1, and hence

y∗1 ∈ [−1,−(24
√
2− 33)], if α varies in [a,−1].

Set β = b =
3

2
√
2
. Then y∗1 =

3 + 2
√
2(2 + α)

2α
√
2− 3

and y∗3 =
3− 2

√
2(2− α)

2α
√
2− 3

, and

hence

y∗1 ∈ [−1,−2
√
2

3
] and y∗3 ∈ [24

√
2− 33,

2
√
2

3
], if α varies in [a,−1].

Set α = −β. Then y∗1 = −y∗3, y∗2 = 0, y∗3 =
1

β
, and hence y∗3 ∈ [

2
√
2

3
, 1], if

β varies in [1, b]. This provides an alternative proof for Tureckii’s result (19)
which describes the extremal zero-symmetric node systems.

Example 3.8. We now choose fixed values for both α and β. Set α =
−1.05 and β = 1.02, say. The resulting node system, which is asymmetric to zero
and does not include an endpoint of I, is

Y ∗
−1.05,1.02 : y

∗
1 = −197

207
(≈ −0.9517) < y∗2 =

3

207
(≈ 0.0145) < y∗3 =

203

207
(≈ 0.9807).

We leave it to the reader to verify that

ℓ2,1 = (42849y2 − 42642y + 609)/80000,

ℓ2,2 = (−85698y2 + 2484y + 79982)/80000,

ℓ2,3 = (42849y2 + 40158y − 591)/80000,

and that max
y∈I

λ3(Y
∗
−1.05,1.02, y) = max

y∈I

3
∑

j=1

|ℓ2,j(Y ∗
−1.05,1.02, y)| = 1.25 = Λ∗

3 is at-

tained on I at y = ξ1 = − 97

207
(≈ −0.4686) and at y = ξ2 =

103

207
(≈ 0.4976), but

not at y = ±1.

We are now going to verify that our description of extremal general node
systems produces the same result as Schurer’s:

Proposition 3.9. Theorems 3.4 and 3.6 are equivalent.

P r o o f. Since Theorem 3.4 describes all extremal general node systems,
the set of extremal node systems y∗1, y

∗
2, y

∗
3 according to Theorem 3.6 must be

a subset of the extremal node systems x∗1, x
∗
2, x

∗
3 according to Theorem 3.4. On

the other hand, it suffices to show that all extremal node systems, as given in
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Theorem 3.4, can be obtained as the image of the CNS under the linear map S.

We will again use quantifier elimination. In view of y∗2 =
y∗1 + y∗3

2
, it suffices to

consider the image y∗1 of −1 and y∗3 of 1. By existential elimination of the variables
α, β from the formula φ given in (50) below,

(50)

− 3

2
√
2
≤ α ≤ −1 ∧ 1 ≤ β ≤ 3

2
√
2

∧
y∗1(β − α) = (−2− α− β) ∧ y∗3(β − α) = (2− α− β),

i.e., after the Mathematica call Resolve[Exists[{α, β}, φ], {y∗1, y∗3},Reals], we get
exactly the same 2D region as given in (23)–(24):

(51)

(

−1 ≤ y∗1 ≤ −2
√
2

3
∧ 8− 4y∗1 + 3

√
2y∗1

4 + 3
√
2

≤ y∗3 ≤ 1

)

∨
(

−2
√
2

3
< y∗1 <

−12 + 3
√
2

4 + 3
√
2

∧ 8 + 4y∗1 + 3
√
2y∗1

−4 + 3
√
2

≤ y∗3 ≤ 1

)

∨
(

y∗1 =
−12 + 3

√
2

4 + 3
√
2

∧ y∗3 = 1

)

.

�

Remark 2 in [25], given there without proof, states a maximal equioscilla-
tion property of λ3 on the particular extremal node system BNS, see Section 3.2.
We verify this statement here, for the reader’s convenience.

Proposition 3.10. The only extremal node system X3 : −1 < x1 < x2 <
x3 < 1 having the property that the maximum of λ3(X3, x) equals Λ∗

3 = 1.25 on

all four sub-intervals I1, I2, I3 and I4 of I, is the BNS X∗
3 : −2

√
2

3
< 0 <

2
√
2

3
.

P r o o f. We know from Section 3.4 that x2 =
x1 + x3

2
and that on the two

interior sub-intervals I2 and I3 the maximum of λ3(X3, x) always coincides with
Λ∗
3 = 1.25 if X3 : −1 < x1 < x2 < x3 < 1 is extremal, see (37), (38). If we impose

the additional condition that the values in (36) and (39) be equal then we get,
after some elementary algebraic manipulation, that x1 = −x3. If we furthermore
require that the values in (36) and (39) be equal and coincide with Λ∗

3 = 1.25

then it follows from
8 + x21 + 8x3 + x23 + x1(8 + 6x3)

(x1 − x3)2
= 1.25 respectively from
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8 + x21 − 8x3 + x23 + x1(−8 + 6x3)

(x1 − x3)2
= 1.25, with x1 = −x3, that x3 =

2
√
2

3
must

hold. Consequently, X3 is the BNS. �

4. Concluding remarks.

Remark 4.1. The minimal Lebesgue constant (for n = 3: Λ∗
3 = 1.25)

is also called minimal interpolating projection constant. It is surely an upper
bound for the (general) minimal projection constant, but the minimal projection
constant, for n = 3, is slightly smaller than 1.25, see [11], [12] for details. In-
cidentally, Theorem 18 in [12], stated there without proof, has been established
already in [20].

Remark 4.2. If we consider optimal polynomial Lagrange interpolation
with n ≥ 4, then very little seems to be known about the analytic expressions of
extremal node systems and minimal Lebesgue constants. At least for the cubic
case n = 4 the analytic form of the unique extremal and canonical node system
and of the minimal Lebesgue constant Λ∗

4 has been determined, see [21], [22].
In a prospective paper [23] we intend, with the aid of symbolic computation, to
shed some more light on the cubic case and we hope to achieve some progress
for the next low-degree polynomial cases as well. Since quantifier elimination was
completely sufficient for resolving the optimal quadratic interpolation problem,
we did not consider other symbolic tools in this paper. However, in the course of
the investigation of the cubic, quartic and quintic cases we will also use Groebner
bases and resultants. The reader is invited to visit our online repository at www.
math.u-szeged.hu/~vajda/Leb/ where we maintain information on optimal low-
degree Lagrange interpolation.
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