
Serdica J. Computing 8 (2014), No 1, 47–70 Serdica
Journal of Computing

Bulgarian Academy of Sciences
Institute of Mathematics and Informatics

CONSTRUCTING 7-CLUSTERS

Sascha Kurz, Landon Curt Noll, Randall Rathbun, Chuck Simmons

Abstract. A set of n lattice points in the plane, no three on a line and no
four on a circle, such that all pairwise distances and coordinates are integers
is called an n-cluster (in R2). We determine the smallest 7-cluster with
respect to its diameter. Additionally we provide a toolbox of algorithms
which allowed us to computationally locate over 1000 different 7-clusters,
some of them having huge integer edge lengths. Along the way, we have
exhaustively determined all Heronian triangles with largest edge length up
to 6 · 106.

1. Introduction. Point sets with pairwise rational or integers distances
have been studied for a long time, see e.g. [21]. For brevity we will call those point
sets rational or integral. Nevertheless, only a few theoretical results are known;
integral point sets seem to be unexpectedly difficult to construct. On the other
hand there is the famous open problem, asking for a dense set in the plane such
that all pairwise Euclidean distances are rational, posed by Ulam in 1945 [36]. As
of now we only know constructions of rational point sets which are dense either
on a line or a circle, see e.g. [3, Sec. 5.11] or [1]. In [34] the authors have shown
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that no irreducible algebraic curve other than a line or a circle contains an infinite
rational set. Thus if Ulam’s question admits a positive answer the corresponding
point set has to be very special.

Almering [12] established that, for a given triangle with rational side
lengths, the set of points with rational distances to the three vertices is dense
in the plane of the triangle. Berry [15] relaxed the conditions to one rational side
length and the other two side lengths being a square root of a rational number.
More general considerations can be found in the preprint [13]. So far no such
result is known for a quadrilateral with pairwise rational distances. Dubickas
states in [16] that every n ≥ 3 points in R2 can be slightly perturbed to a set of
n points in Q2 such that at least 3(n − 2) of the mutual distances are rational.
So, for n = 5 just 1 distance may be non-rational. Declaring which of the mutual
distances have to be rational can be modeled as a graph. Classes of admissible

graphs have been studied, see e.g. [14, 17].
Given a finite rational point set, we can of course convert it into an integral

point set by rescaling its edge lengths with the least common multiple of their
respective denominators.1 Thus, for each finite number n one can easily construct
an integral point set consisting of n points where all points are located on a circle.
Several constructions of finite integral point sets, where n−4 points are located on
a line or n− 3 points are located on a circle, are known, see e.g. [3, Sec. 5.11]. To
this end several authors, including Paul Erdős [10, Problem D20], ask for integral
point sets in general position, meaning that no three points are on a line and
no four points are on a circle. These objects seem to be rather rare or at the
very least hard to find. For n = 6 points a few general constructions for integral
point sets in general position are known [19]. The only two published examples
of 7-point integral point sets in general position are given in [20]. Independently
and even earlier, in May 2006 Chuck Simmons and Landon Curt Noll found2 more
restricted configurations. Their smallest example has integer coordinates:

(0, 0), (327990000, 0), (238776720, 118951040), (222246024,−103907232),

(243360000, 21896875), (198368352, 50379264), (176610000,−94192000).

Aiming at n-point integral point sets in general position, especially n =
6, Noll and Bell [30] additionally required that the coordinates also have to be
integers. They called those structures n2-clusters, or when the restriction to the
dimension3 is clear from the context, n-clusters. Using a computer search, the

1As shown in [2, 8] each infinite integral point set is located on a line.
2cf. http://www.isthe.com/chongo/tech/math/n-cluster/
3The notion of an integral point set can be easily generalized to arbitrary dimensions m. The
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authors found 91 non-similar 6-clusters, where the respective greatest common
divisor of their corresponding edge lengths is one, but no 7-clusters.4 Using a
slightly improved version and lots of computing time, Simmons and Noll found
the first 7-clusters in 2006 and extended their list to twenty-five 7-clusters in 2010.

The aim of this paper is to present a set of sophisticated algorithms in or-
der to construct n-clusters for n ≥ 5. Using an exhaustive search, we were able to
determine the smallest 7-cluster, with respect to its diameter, and provide heuris-
tic methods to produce more than 1000 non-similar 7-clusters. Unfortunately, no
8-cluster turned up. So the hunt for an integral octagon in general position or
even an 8-cluster is still open. In this context we mention the Erdős/Noll “infinite-
or-bust” nm-cluster conjecture: For any dimension m > 1, and any number n > 2
of points, there exists either 0 or an infinite number of primitive nm-clusters.

In Section 2 we summarize the known theory on integral point sets, and
in Section 3 we go into the algorithmic details of how to generate large lists of
Heronian triangles. Section 4 is devoted to exhaustive searches for n-clusters up
to a given diameter. Here the idea is to combine n-clusters that share a common
n − 1-cluster. Allowing the containment of similar (n − 1)-clusters, i.e. a scaled
version, is the idea behind Section 5. Our most successful algorithmic approach
is presented in Section 6. Since the basic operations of our algorithms have to be
performed quite often, we present low level details in Section 7. A theoretically
interesting algorithm, based on circle inversion, is presented in Section 8. Since
almost all of our presented algorithms depend on a selection of Heronian triangles,
which may not be too large due to computational limits, we present ways to select
Heronian triangles from larger sets in Section 9. Our computational observations
are summarized in Section 10. We present our computational results in Section 11
before we draw a conclusion in Section 12.

2. Basic results and notation.

Definition 2.1. An integral point set P is a set of points in the plane,

not all on a line, such that the pairwise distances are integers.

We note that integral point sets can easily be defined in arbitrary dimen-
sions, see e.g. [23, 26]. Here we restrict ourselves to the two-dimensional case.

One of the first questions arising when dealing with integral point sets is
how to represent them. Of course, one may use a list of coordinates. One example

term general position then has the meaning that no m+1 points are contained in a hyperplane
and no m+ 2 points are contained in a hypersphere, see e.g. [30].

4Independently, Randall Rathbun found a few 6-clusters.
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of such a representation is given in the introduction. Another way is to provide
a table of the pairwise distances – from which a coordinate representation can
easily be computed. For the example from the introduction we have the following
distance table:















0 327990000 266765200 245336520 244343125 204665760 200158000
327990000 0 148688800 148251480 87416875 139067760 178292000
266765200 148688800 0 223470520 97162325 79592240 222024000
245336520 148251480 223470520 0 127563605 156123240 46658680
244343125 87416875 97162325 127563605 0 53249365 133911125
204665760 139067760 79592240 156123240 53249365 0 146199440
200158000 178292000 222024000 46658680 133911125 146199440 0















Given a matrix of distances one can decide whether there exists a set of vertices in
the m-dimensional Euclidean space Rm attaining those distances, based on a set
of inequalities and equations involving the so-called Cayley-Menger determinants
[24, 29].

Definition 2.2. If P is a point set in Rm with vertices v0, v1, . . . , vn−1

and C = (d2i,j) denotes the n × n matrix given by d2i,j = ‖vi − vj‖22 the Cayley-

Menger matrix Ĉ is obtained from C by bordering C with a top row (0, 1, 1, . . . , 1)
and a left column (0, 1, 1, . . . , 1)T . With this, the Cayley-Menger determinant

CMD({vi0 , vi1 , . . . , vir−1
}) is given by det Ĉ.

Theorem 2.3 (Menger [29]). A set of vertices {v0, v1, . . . , vn−1} with

pairwise distances di,j is realizable in the Euclidean space Rm if and only if

(−1)rCMD({vi0 , vi1 , . . . , vir−1
}) ≥ 0,

for all subsets {i0, i1, . . . , ir−1} ⊂ {0, 1, . . . , n − 1} of cardinality r ≤ m+ 1, and

(−1)rCMD({vi0 , vi1 , . . . , vir−1
}) = 0,

for all subsets of cardinality m+ 2 ≤ r ≤ n.

Thus it is possible to deal with integral point sets by storing their pairwise
distances only. Nevertheless it is often computationally cheaper to use coordinate
representations which are easy to compute, see Section 7.2. As remarked in the
introduction, we are interested in integral point sets in the Euclidean plane R2

with some additional properties.

Definition 2.4. An integral point set is in general position, if no three

points are on a line and no four points are on a circle.
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For the plane it suffices to check the triangle inequality in order to de-
tect three collinear points. Checking the condition of Ptolemy’s theorem, one
can easily detect when four points lie on a circle. For general dimensions m ≥ 2
the conditions of general position can be expressed using Cayley-Menger deter-
minants, see e.g. [23, 24].

Definition 2.5. An n-cluster is a plane integral point set in general

position that consists of n points such that there exists a representation using

integer coordinates, i.e., lattice points.

Fortunately we do not have to deal with the constraint of integral coor-
dinates. For an explanation we have to go far afield: The area A∆(a, b, c) of a
triangle with side lengths a, b, c is given by

A∆(a, b, c) =

√

(a+ b+ c)(a+ b− c)(a− b+ c)(−a+ b+ c)

4

due to the Heron formula. If the area is non-zero, we can uniquely write A∆(a, b, c)
= q

√
k with a rational number q and a square-free integer k. The number k is

called the characteristic of the triangle with side lengths a, b, c. Kemnitz [19]
has shown that each non-degenerate triangle of an integral point set has the same
characteristic, which was also generalized to arbitrary dimensions in [24]. Since
triangles with integral coordinates have a rational area, see e.g. Pick’s theorem,
the triangles of an n-cluster all have to have a characteristic of 1.

We now argue that the opposite is also true. Given an integer sided
triangle with characteristic 1, we can easily determine a representation using
rational coordinates, see e.g. [24]. Due to Fricke [9], see also [28, 37], each integral
point set in the plane which has a representation in rational coordinates has a
representation in integral coordinates.

Lemma 2.6. Let P ⊆ R2 be a point set with pairwise integral distances.

If P contains a non-degenerated triangle with characteristic 1, then P permits a

representation in Z2.

Thus, there is no need to explicitly search for integral coordinates for n-
clusters. One just needs to check that all pairwise distances are integral and that
at least one contained non-degenerate triangle has characteristic 1 or, equivalently,
that it has a representation in rational coordinates, to ensure the existence of a
representation with integral coordinates.

A Heronian triangle is traditionally defined as a triangle with integer side
lengths and area.5 From the formula for A∆(a, b, c) we can deduce that the area

5Some authors allow the side lengths and the area of the Heronian triangle to be rational
and remark that all quantities can be easily rescaled to be integers.
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of an integer sided triangle with characteristic 1 is rational. To conclude that the
area is indeed integral one may consider the cases of the side lengths modulo 8
(see [6]). We summarize these findings in:

Lemma 2.7. Given a non-degenerate triangle T with integer side lengths

then the following statements are equivalent:

(a) T has characteristic 1

(b) T has rational area

(c) T has integrer area, i.e., T is Heronian.

Thus Heronian triangles are the basic building blocks of n-clusters and we
will consider algorithms how to generate them in the next section.

In the introduction we have spoken of the smallest cluster. So in order
to have a measure of the size of an n-cluster, or more generally an integral point
set, we denote the largest distance between two points as its diameter. If we
perform an exhaustive search in the following, we will always impose a limit on
the maximum diameter. We note that other metrics are possible too, but most of
them can be bounded by constants in terms of the maximum diameter.

Given an n-cluster, we can obviously construct an infinite sequence of
non-isomorphic n-clusters by rescaling the clusters by integers 2, 3, . . . . We call
those n-clusters similar, and we are generally interested in lists of non-similar n-
clusters. To this end we call a given n-cluster primitive if its edge lengths do not
have a common factor larger than 1. As argued before, dividing the edge lengths
of a given integral point set by the greatest common divisor does not destroy the
property of admitting integral coordinates.

Applying this insight to the example given in the introduction, we observe
that the greatest common divisor of the edge lengths is 145. Thus dividing all
edge lengths by 145 gives the following distance matrix:





















0 2262000 1839760 1691976 1685125 1411488 1380400
2262000 0 1025440 1022424 602875 959088 1229600
1839760 1025440 0 1541176 670085 548912 1531200
1691976 1022424 1541176 0 879749 1076712 321784
1685125 602875 670085 879749 0 367237 923525
1411488 959088 548912 1076712 367237 0 1008272
1380400 1229600 1531200 321784 923525 1008272 0




















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This 7-cluster has a diameter of 2262000, which is the smallest possible as verified
in Section 4. A coordinate representation is given by

(0, 0), (374400,−2230800), (1081600,−1488240), (−453024,−1630200),

(426725,−1630200), (569088,−1291680), (−439040,−1308720).

3. Generation of Heronian triangles. The conceptually simplest
algorithm to exhaustively generate all Heronian triangles up to a given diameter
is to loop over all non-isomorphic integer triangles and to check whether the area
is integral. This leads to time complexity Θ(n3). Two O(n2+ε) algorithms, where
ε > 0 is arbitrary, have been given in [25]. We give and apply another O(n2+ε)
algorithm here.

Complete parameterizations have been known for a long time: the Indian
mathematician Brahmagupta (598-668 A.D.) gives the parametric solution

a =
p

q
h(i2 + j2), b =

p

q
i(h2 + j2), and c =

p

q
(i+ h)(ih − j2)

for positive integers p, q, h, i, and j fulfilling ih > j2 and gcd(p, q) = gcd(h, i, j) =
1, see e.g. [5, 25].

Due to the presence of the denominators q, this parameterization is not
strongly compatible with restrictions on the maximum diameter. We can easily
generate primitive Heronian triangles by looping over all feasible triples (h, i, j) be-
low a suitable upper bound, setting p to 1 and choosing q such that gcd(a, b, c) = 1.
Using this approach we can quickly generate a huge number of primitive Hero-
nian triangles. But we may get those with small diameters rather late, compared
to the upper bound on h, i, j, and have to face the fact that the same primitive
Heronian triangle may be generated several times over.

For the purpose of this paper we use a different exhaustive algorithm to
generate all primitive Heronian triangles up to a prescribed diameter. Given a

triangle with side lengths a, b, and c we have cosα =
b2 + c2 − a2

2bc
and sinα =

2A∆(a, b, c)

bc
. For a Heronian triangle sinα and cosα are rational numbers so that

also tan
α

2
=

sinα

1 + cosα
∈ Q. Thus, there are coprime integers m,n satisfying

tan
α

2
=

n

m
. With these parameters we obtain

cosα =
1− tan2 a

2

1 + tan2 a
2

=
m2 − n2

m2 + n2
,
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where gcd(m2−n2,m2+n2) ∈ {1, 2}. We conclude that m2+n2 divides 4bc. So,
given two integral side lengths b and c of a Heronian triangle, we can determine all
possibilities for m2 + n2, then determine all possibilities for m and n, and finally
determine all possibilities for the third side a:

Algorithm 3.1 (Find the third side).
loop over all divisors k of 2bc

loop over all solutions (m,n) of m2 + n2 = k

solve
b2 + c2 − a2

2bc
=

m2 − n2

m2 + n2
for a

if a ∈ Q and the triangle inequalities are strictly satisfied for (a, b, c)
then output a

So, in order to determine all primitive Heronian triangles up to diameter
N , we have to loop over all coprime pairs (b, c) with N ≥ b ≥ c ≥ 1 and apply
the above algorithm to determine a. Given a, we can check whether a, b, c are
coprime, a ≤ N , and a ≥ b, a ∈ N (to avoid isomorphic duplicates). A similar
approach is presented in [18].

In this context the maximum diameter n has to be limited to a few millions
so that we can easily determine the prime factorizations of all integers at most
n in a precomputation. Given this data, we can quickly determine the prime
factorization of 2bc and loop over all divisors without any additional testing.

Next, we want to describe the set of solutions of m2 +n2 = k and assume
that

k = 2h · qi11 . . . qiss · pj11 . . . pjtt ,

where the ql are primes congruent to 3 modulo 4 and the pl are primes congruent
to 1 modulo 4. If any of the il is odd, then no integer solution of m2 + n2 = k
exists. Otherwise each solution can be written as (m,n) = λ · (m̃, ñ), where

λ = 2⌊h/2⌋ · qi1/21 . . . qis/2s and m̃2 + ñ2 = k/λ2 =: k̃, i.e.

k̃ = 2h̃ · pj11 . . . pjtt ,

where h̃ ≤ 1. Due to (x21 + x22)(y
2
1 + y22) = (x1y1 + x2y2)

2 + (x1y2 − x2y1)
2 and

the unique factorization of the Gaussian integers Z[i], it suffices to combine the
solutions of the problem, where k̃ is a prime power. Ignoring signs for k̃ = 2, the
unique solution is given by 12+12 = 2. Ignoring signs and order, there is a unique
solution for u2+v2 = p, if the prime p is equivalent to 1 modulo 4. Again ignoring
signs and order, for prime powers the set of solutions of x2 + y2 = pj is given by
x+ yi = (u+ vi)l(u− vi)j−l, where 0 ≤ l ≤ j/2. Thus, it remains to determine a
solution of u2+v2 = p, which can be done by the Hermite-Serret algorithm: First
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determine an integer z satisfying z2 ≡ i (mod p), using that w
p−1

2 ≡ −1 (mod p)
for each quadratic nonresidue w, and then apply the Euclidean algorithm on (p,w)
to determine (u, v). See [11, 32] for the original sources and [4] for an improved
algorithm. The just sketched algorithm for the generation of all Heronian triangles
up to diameter n runs in O(n2+ε) time, where ε > 0 is arbitrary.

Using this algorithm we have exhaustively generated all primitive Hero-
nian triangles up to diameter 6 · 106. They are available for download at [22].
Having the data at hand we have computed an approximate counting function,
which fits best for a given type of functions. Let count(x) denote the number of
primitive Heronian triangles with diameter between (x−1)·10000+1 and x·10000.
The best least squares fitting function of the form c1 + c2 log x+ c3 log

2 x+ c4x+
c5x log x+ c6x log

2 x is given by

160436.33 + 117761.45 log x+ 3191.78 log2 x+ 12023.76x−
− 2787.79x log x+ 169.14x log2 x

and leads to a ‖ · ‖2-distance of 152331 for the entire data.
We note that, besides the (implicit) O(n1+ε) upper bound from [25], we are

not aware of any non-trivial lower and upper bounds for the number of (primitive)
Heronian triangles with a given diameter. As shown in [27] one may deduce
lower bounds for the minimum diameter of plane integral point sets. However,
current knowledge is still incomplete [33]. The number of Heronian triangles with

diameter at most n is in O(n
25

13
+ε), see [18]. Counts with additional restrictions

are also given in [35].

4. Exhaustive generation of n-clusters up to a given diame-

ter. In order to determine the smallest 7-cluster, we have performed an exhaus-
tive search for n-clusters up to a given diameter. For the purpose of this paper
the chosen maximum diameter is 6 · 106. A starting point is a complete list of
all Heronian triangles up to this diameter. More concretely we have chosen the
exhaustive algorithm described in Section 3 to generate all primitive Heronian
triangles up to diameter 6 · 106 and extended this list by including all rescaled
versions such that the resulting diameter is at most 6 · 106.

The underlying basic idea to construct n-clusters is to combine two (n−1)-
clusters sharing a common (n− 2) cluster. This way, we can benefit from the fact
that the constraints can be partially checked very early. So, starting from a list
of 3-clusters, i.e. Heronian triangles, we generate all 4-clusters, then all 5-clusters,
then all 6-clusters, and finally all 7-clusters.
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For the first combination step, i.e., n = 4, “sharing a common (n − 2)-
cluster” means that the two triangles to be combined must both have a side of
the same length.

To save time and memory we apply the concept of orderly generation, see
[31], which avoids pairwise isomorphism checks when cataloging combinatorial
configurations as in our example of integral point sets or n-clusters. To this end
a canonical form has to be defined, so that during the algorithm only canonical
objects are combined. The constructed objects are accepted if and only if they
are canonical too. The benefit from such an approach is that no isomorphic copies
arise. For the details we refer the reader to [27] with the adaptation of considering
triangles of characteristic 1 only.

As a result we have computationally verified that the smallest 7-cluster
has diameter 2262000 and that there is no other 7-cluster with diameter less then
4 · 106. Along the way we have also exhaustively constructed all 4-, 5-, 6-, and
7-clusters with diameter at most 6 · 106. Those lists will be beneficial for the
construction of additional 7-clusters as will be explained in the following sections.

5. Combining lists of n-clusters. In the previous section we de-
scribed an algorithm to exhaustively generate a list of all n-clusters up to given
diameter D. As input we take a complete list of (n − 1)-clusters up to diameter
D so that initially we need a complete list of all Heronian triangles up to diam-
eter D. Such an approach is computationally limited to rather small diameters,
where only a few 7-clusters exist. So from now on we will leave the approach of
exhaustive generation and switch to incomplete construction algorithms.

Our assumption for this section is that we are given a list of n-clusters,
which we then combine to a list of n′-clusters. For our paper, the most general
setting is the following: Given a list L1 of n1-clusters and a possibly different list
L2 of n2-clusters we consider pairs (l1, l2), where l1 ∈ L1 and l2 ∈ L2, to construct
n′-clusters. Mostly we assume n′ > max(n1, n2).

In Section 4 we have assumed that the (n − 1)-clusters l1 and l2 share
a common (n − 2)-cluster. Since in the end we are only interested in lists of
non-similar n-clusters we relax that to the requirement that l1 and l2 contain a
common c-cluster, where c is an additional parameter.

Having the c-cluster C1 of l1 fixed we loop over all c-clusters C2 of l2
and check whether C1 and C2 can be rescaled so that they coincide. This
check is implemented as follows: Let diam1 be the diameter of C1 and diam2

be the diameter of C2. We define f1 = diam2/gcd(diam1, diam2) and f2 =
diam1/gcd(diam1, diam2). With this C1 and C2 are similar if and only if f1 · C1



Constructing 7-clusters 57

is isomorphic to f2 · C2. Comparing the sorted lists of the pairwise distances is
a first computationally cheap test for this task. If successful, we compare the
canonical forms of C1 and C2.

By rescaling we are in the situation that l1 and l2 contain a common
c-cluster and we proceed by computing common coordinates: We apply the algo-
rithm from Subsection 7.2 to compute coordinates for l1 and l2 separately.6 By
assuming that the first c points of l1 and l2 coincide, we can obtain a common
coordinate system by just scaling the numerators. We note that for c = 2 we
have two possibilities for the join, otherwise just one. Having the coordinates at
hand, we can loop over all k-sets of the points and check whether they satisfy the
conditions of a k-cluster relaxing the condition of integral distances to rational
distances. If all (relaxed) conditions are satisfied we store a primitive version of
the corresponding, possibly scaled, k-cluster.

We have mostly used three instances of this general framework. The first
is with the parameters n1 = n − 1, n2 = 3, and c = 2, i.e., we try to extend a
given list of (n− 1)-clusters by combining them with a list of primitive Heronian
triangles along a common edge. Since we use rescaling, this combination is always
possible, although an n-cluster might not be formed. Depending on the available
computation time and the size of the list of the (n− 1)-clusters, one may choose
all known primitive Heronian triangles for the second list. We have done that to
a large extent for the list of known 7-clusters but unfortunately did not locate an
8-cluster.

The second instance has the parameters n1 = n2 = 6 and c = 3, i.e., we
combine lists of 6-clusters sharing a common triangle. The resulting point sets
consist of nine points. We remark that the second method was able to discover
some previously unknown 6- and 7-clusters but turned out to be rather slow. For
later reference we call this method the combine-hexagons algorithm.

The third method mimics the exhaustive generation method from Sec-
tion 4. Starting from n = 4 we set n1 = n2 = n− 1, c = n− 2 and increase n by
one in each iteration.

6. Triangle extensions. The algorithms in Section 5 have to be applied
iteratively in order to end up with n-clusters for large n. Now we describe an
algorithm that directly approaches n-clusters without specifying n. Let L be a
list of primitive Heronian triangles of length n.

6If L2 is large it is computationally beneficial to store a coordinate representation, given by
the algorithm in Subsection 7.2, for each l2 ∈ L2.
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Algorithm 6.1 (Triangle extension).
for i from 1 to n
P = ∅
for j from i to n

combine L(i) with L(j) in all possible ways

compute coordinates of the fourth point p /∈ L(i)
if L(i) ∪ p is a 4-cluster then add p to P

compute all pairwise distances between the points in P
loop over all k-sets K = {p1, . . . , pk} of P such that L(i) ∪K\{pk} is a cluster

if L(i) ∪ K is a cluster then output L(i) ∪ K

The implementation details for the coordinate and distance computations
are described in Section 7.

7. Low-level mathematical and implementation details. In
the previous sections we have described our algorithms omitting implementation
details. The application of those algorithms result in many sub-computations,
such as coordinate and distance computations. Those sub-routines have to be
carefully designed in order to save costly unlimited precision rational computa-
tions.

7.1. Compute rational coordinates of a Heronian triangle. Sup-
pose we are given three integer side lengths a, b, and c, which form a non-
degenerate Heronian triangle. Our aim is to compute rational coordinates for
the points P1, P2, and P3 attaining those pairwise distances, i.e., |P1P2| = a,
|P1P3| = b, and |P2P3| = c.

W.l.o.g. we can assume that the first point is located in the origin and

the second point on the positive part of the x-axis, i.e., P1 = (0, 0) =

(

0

2a
,
0

2a

)

and P2 = (0, a) =

(

0

2a
,
2a2

2a

)

. Setting t1 := b2 − c2 + a2 and t2 := 4b2a2 − (b2 −

c2 + a2)2 we have P3 =

(

t1
2a

,± t2
2a

)

, where we may use the solution with positive

y-coordinate.

In some algorithms all permutations of the three edge lengths of a Hero-
nian triangle (a, b, c) have to be considered. To this end we assume that the above
auxiliary integer values t1 and t2 have already been computed. Permuting the two
latter side lengths, i.e., (a, c, b), is equivalent to swaping the points P1 and P2.
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The corresponding coordinates with non-negative y-values are given by

(

0

2a
,
0

2a

)

,

(

2a2

2a
,
0

2a

)

,

(

2a2 − t1
2a

,
t2
2a

)

.

By applying a suitable rotation matrix, we obtain the coordinate representation

(

0

2b
,
0

2b

)

,

(

2b2

2b
,
0

2b

)

,

(

2b2 − t1
2b

,
t2
2b

)

for the triangle (b, c, a) and

(

0

2c
,
0

2c

)

,

(

2c2

2c
,
0

2c

)

,

(

2a2 − t1
2c

,
t2
2c

)

for the triangle (c, a, b).

So there is no need to compute additional square roots. Of course, the
common sub-expressions like a2, b2, and c2 should be stored additionally.

7.2. Compute rational coordinates of an n-cluster. We assume a
suitable but fixed ordering of the points and denote the integer distance between

the first two points by a. According to Subsection 7.1 we set P1 =

(

0

2a
,
0

2a

)

,

P2 =

(

0

2a
,
2a2

2a

)

, and P3 =

(

t1
2a

,
t2
2a

)

. For 4 ≤ i ≤ n we apply the construction

of Subsection 7.1 to the triangle given by the points P1, P2, and Pi. To decide
the sign of the y-coordinate of Pi we utilize the distance to P3. Thus all points

have coordinates
( xi
2d

,
yi
2d

)

with integers xi, yi.

7.3. Checking for rational distances. Suppose we are given two points

with rational coordinates

(

x1
a1

,
y1
b1

)

and

(

x2
a2

,
y2
b2

)

. The task is to decide whether

they are at rational distance and eventually compute the distance. Since during
our searches most of the checked distances are irrational, it is important to have
a quick check for the decision problem. An exact expression for the distance is
given by

√

(b1b2)2(a2x1 − a1x2)2 + (a1a2)2(b2y1 + b1y2)2

a1a2b1b2
.

Thus the problem is reduced to the question whether a certain integer is a square.

Here we can benefit from modular arithmetic. Suppose that m is an arbi-
trary integer and compute (b1b2)

2(a2x1 − a1x2)
2 + (a1a2)

2(b2y1 + b1y2)
2 mod m
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by performing all intermediate computations modulo m. If the result is not a
square in Zm the distance under study can not be rational. If m is a product of
distinct primes then we can check the square property separately for each prime
p by simply tabulating a boolean incidence vector for the squares in Zp. In our
implementation we use m1 = 493991355 = 3 · 5 · 11 · 13 · 17 · 19 · 23 · 31 and
m2 = 622368971 = 7 · 29 · 37 · 41 · 43 · 47, i.e., we perform two successive modular
tests. Since computations modulo 4 are very cheap in most arbitrary precision
libraries it pays off to first check whether the integer under study is equivalent to
either 0 or 1 modulo 4; otherwise its square cannot be rational.

If we can assume a common denominator of the coordinates, as e.g.
implied by the algorithm in Subsection 7.2, the computations can be simpli-

fied since the distance between the points
(x1
d
,
y1
d

)

and
(x2
d
,
y2
d

)

is given by
√

(x1 − x2)2 + (y1 + y2)2

d
.

7.4. Canonical forms. In order to be able to check n-clusters for simi-
larity, we define a canonical form in such a way that two n-clusters are similar if
and only if their canonical forms coincide. Given a matrix of the pairwise rational
distances we first normalize by multiplying with the unique rational number such
that all distances are coprime integers. Since distances are symmetric, it suffices
to consider the upper right triangular submatrix without the diagonal of zeros.
We append the columns of this matrix to a distance vector v. With this we define
the canonical form to be the lexicographically maximal distance vector over all
permutations of the points.

Clearly, this canonical form is unique and can be determined by comparing
all n! possible permutations. For our purposes this was fast enough even for n = 7,
but we note that one can easily design an O(n2) algorithm.

8. Circle inversion. As observed in [34], the rationality of distances in
R2 is preserved by translations, rotations, scaling with rational numbers, and by
some kind of circle inversion. Here we go into the details of the latter transform.
Assume that our point set has a point at the origin. A circle inversion through the
origin with radius one sends each point with coordinates (x, y) except the origin

to

(

x

x2 + y2
,

y

x2 + y2

)

7.

Using this transform we can construct (n− 1)-clusters from n-clusters by
moving each of their points to the origin and applying the described circle in-

7Using complex notation this is (ignoring a reflection) equivalent to the map z 7→
1

z
.
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version. Doing this for the set of all known 7-clusters gives no new 6-clusters.
Strangely enough, the set of the contained subtriangles, i.e. the set of the (nor-
malized) subtriangles from the resulting 6-clusters, coincides with the set of the
subtriangles contained in the 7-clusters.

Discarding one point is, on the one hand, disadvantageous. On the other
hand we obtain some freedom in the initial point set, i.e. it does not have to be an
n-cluster. To be more precise, we need a rational point set P with characteristic 1,
where no four points are on a line and no four points are on a circle. Circle
inversion at a vertex of P automatically destroys collinear triples. We were able
to extend some of the 7-clusters to an 8-point rational set. Unfortunately, in each
of these cases the 8th point also was part of a circle containing four points of the
point set. A promising configuration might be the so-called Pappus configuration
consisting of nine points and nine lines, with three points per line and three lines
through each point. Unfortunately we were not able to find a representation of
the Pappus configuration with pairwise rational distances.

So while circle inversion might be theoretically interesting, we were not
able to draw any computational advantages.

9. Choosing promising Heronian triangles. The algorithms pre-
sented in the previous sections can in principle deal with large lists of n-clusters,
but of course the computation time limits such searches. In order to find many
non-similar 7-clusters we have tried to restrict ourselves to promising search
spaces.

Both the exhaustive-like algorithm from Section 5 and the triangle ex-
tension algorithm from Section 6 are based on a list of Heronian triangles. Un-
fortunately we do not have the computational capacity to run those algorithms
with all Heronian triangles known to us, but have to select a subset of them. Of
course, this subset should be selected in a way so that it is small but generates
many 7-clusters. Satisfying the latter aim is essential but, of course, harder. To
formalize this idea, we ask for a method that is able to compute a score for a
given Heronian triangle, and then choose a given number of Heronian triangles
with the largest scores.

A very easy but effective scoring function is the negative diameter of all
Heronian triangles. In order to verify our claim we used the triangle extension
algorithm with subsets of 1000 Heronian triangles. Using the first 1000 smallest
Heronian triangles produces 237 6-clusters and four 7-clusters (having diameters
5348064, 15772770, 47570250, and 662026750). The second smallest 1000 Hero-
nian triangles produces only nine 6-clusters and no 7-cluster.
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A promising idea might be to use the number of divisors or prime divisors
of the side lengths normalized by magnitude, i.e. prime side lengths should get
the lowest possible score while highly composite numbers get large scores. As an
example, we report the results of two explicit scoring functions based on this idea.
For

score1(a, b, c) :=
#prime divisors a

log log a
+

#prime divisors b

log log b
+

#prime divisors c

log log c

we have chosen the 1000 Heronian triangles with maximal score among all Hero-
nian triangles with diameter at most 10000. Applying the triangle-extension
algorithm results in three 6-clusters and no 7-cluster. The similar function

score2(a, b, c) :=
#prime divisors a

log a
+

#prime divisors b

log b
+

#prime divisors c

log c

increases the number of found 6-clusters to 40 with the same setting. But of course
score2 tends to prefer triangles with smaller diameter. We note that using the
number of divisors instead of the number of prime divisors yields similar results.

The most successful approach in our computational study was to use the
known lists of n-clusters as selectors. To be more precise, given a list of n-clusters
we can determine the contained sub-triangles, which then, after rescaling, gives
a list of primitive Heronian triangles. If the resulting list of Heronian triangles is
too large for our purposes we take the m smallest ones according to their diameter
or we take frequency into account, i.e. we consider only those primitive Heronian
triangles which appear at least k times, where k is suitably chosen, as sub-triangles
within the list of n-clusters.

As an example, we report the following experiments performed near the
end of our computational study, when we already knew lots of 6- and 7-clusters.
For n = 6 and n = 7 we choose the 1000 Heronian triangles having the smallest
diameter, respectively. In the first case triangle extension yields 247 6-clusters and
four 7-clusters. For the latter case we obtain 912 6-clusters and 100 7-clusters. So
a higher initial value of n results in more clusters, but of course those examples
are harder to find.

A completely different idea is to associate Heronian triangles (a, b, c) with

ellipses represented by
a+ b

c
. As an experiment we took the 3000000 smallest

Heronian triangles and computed the three associated ellipses in each case. The
most frequent ellipse representation occurs 10277 times. Taking the smallest
1000 triangles results in 603 5-clusters applying the triangles extension algorithm.
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Taking triangles from ellipse representations that occur exactly once result in just
six 5-clusters.

We did not come to a satisfactory solution and propose the design of a
good scoring function as an open problem.

10. Computational observations. In this section we collect some
computational observations that help us to design our searches for 7-clusters.

Observation 10.1. The triangle-extension algorithm is more effective

than the combine-hexagons algorithm.

Using the 412 triangles contained in the original twenty-five 7-clusters
found by Simmons and Noll in 2010 as an input for the triangle-extension al-
gorithm yields 84 non-similar 7-clusters in less than two minutes of computation
time. If we instead take the sub-hexagons of the original twenty-five 7-clusters plus
an additional list of 1736 hexagons and apply the combine-hexagons algorithm
we end up with 33 non-similar 7-clusters. We remark that all but one of these
heptagons are contained in the list of the 84 heptagons from the triangle extension
algorithm. Additionally the computation time of the combine-hexagons algorithm
is usually much larger than the computation time of the triangle-extension algo-
rithm.

Observation 10.2. Stripping isosceles triangles from the input set of

Heronian triangles only mildly reduces the number of 6- and 7-clusters found in

the search of the triangle-extension algorithm.

Because any pair of isosceles Heronian triangles, after scaling, forms a
4-cluster, there are numerous 4-clusters formed from pairs of isosceles triangles.
When three isosceles Heronian triangles are joined together along their base, then
the resulting pentagon has pairwise rational distances, but three points are on a
line. This situation happens when combining two such 4-clusters with a common
isosceles triangle.

As expected the runtime increases while including isosceles Heronian tri-
angles, where the precise factor strongly depends on the chosen subset of Heronian
triangles. For comparison we chose the 1000 smallest non-isosceles Heronian trian-
gles and applied the triangle-extension algorithm, which resulted in 172 6-clusters
and four 7-clusters. So we have missed 65 6-clusters but no 7-cluster. Here
the computation time was decreased by a factor of two. In a larger experiment
we have chosen 1383799 Heronian triangles and obtained 424593 6-clusters and
1110 7-clusters. Stripping all 24583 isosceles triangles we have obtained 424543
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6-clusters and 1110 7-clusters, while the computation time decreases by a factor
larger than 10.

Observation 10.3. Partitioning the set of triangles can speed up the

search of the triangle-extension algorithm.

Given a list of m n-clusters containing the same (n−1)-cluster the ordinary
combination would need m2 tests. Since integral point sets with many points on
a line or a circle are quite common it makes sense to take this fact into account.
Partitioning 4-clusters by a line through 2 of the points or by a circle through 3
of the points avoids many spurious comparisons and speeds up the search. The
important thing is that a pair of items in a partition cannot form an n + 1-
cluster because it would violate a con-circularity or co-linearity constraint. In our
programs we can either turn on or off the partitioning algorithm, but mostly use
it to increase the computation speed. The typical performance boost is around
10%.

Observation 10.4. Large Heronian triangles tend to not form 4-clusters.

That is, given two random small Heronian triangles, the probability they
form a 4-cluster is relatively high compared to the probability that two large
Heronian triangles will form a 4-cluster, i.e. we have to perform many unsuc-
cessful combinations of Heronian triangles per found 4-cluster. To justify this
theoretically, one might appeal to Ceva’s theorem. As we allow the size of a
Heronian triangle to increase the prime factors present in the numerators of the
sines of the Heronian angles increase making it more difficult to find sets of angles
where the numerators cancel each other out.

Observation 10.5. Iterating the triangle-extension algorithm can find

new triangles and n-clusters.

As described in Section 9 combining the triangles contained in the twenty-
five 7-clusters found by Simmons and Noll in 2010 yields 84 non-similar 7-clusters.
Those 7-clusters contain 602 triangles which combine to 86 non-similar 7-clusters
using the triangle extension algorithm. Then the iteration gets stuck since those
7-clusters contain exactly 602 non-similar triangles again.

Similarly we have used the 237 6-clusters which arose from combining the
1000 smallest Heronian triangles, see Section 9. Those 6-clusters contain 1808
non-similar triangles which can be combined to 1644 non-similar 6-clusters and
22 non-similar 7-clusters.

Observation 10.6. The rational distance test rules out most of the com-

binations of Heronian triangles.
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To make this observation plausible we report the statistics of a large scale
experiment. We chose the 3000000 smallest primitive Heronian triangles along
with those contained in the 6-clusters known to us. Using 25000 cores during
4.5 days 3.0 · 1014 pairs of 3-clusters were tried. In 99.71% the missing sixth
distance was not rational. The concircular test ruled out 10414450261 possibil-
ities (0.00%) and the collinearity test 20129596307 possibilities (0.01%), while
we found 835620202676 (possibly similar) successful combinations (0.28%). The
longest list of 4-clusters containing a common 3-cluster had length 396442. In
Table 1 we have summarized the corresponding statistics for the combinations of
the resulting k-clusters for 3 ≤ k ≤ 7.

Table 1. Failure of different checks for k + 1-clusters combining two k-clusters

k comb. distance concircularity collinearity successful intersectable

3 3.0 · 1014 99.71% 0.00% 0.01% 0.28% 396442

4 2.1 · 1015 41.87% 58.13% 0.00% 0.00% 91

5 1.6 · 108 49.93% 33.17% 14.01% 2.89% 16

6 1.5 · 105 60.89% 18.93% 8.86% 11.32% 2

7 82 100% 0.00% 0.00% 0.00% 0

11. Computational results. We constructed 1154 non-similar 7-
clusters and 443711 non-similar 6-clusters8. The 5- and 4-clusters are so numerous
that we did not collect them. The total number of stored Heronian triangles is
807677361. The smallest diameter of a primitive 7-cluster is 2262000 while the
largest found primitive 7-cluster has a diameter of

92986018038515228913684944937313015456 ≈ 1038.

The 1154 7-clusters contain in total

(

7

3

)

· 1154 = 40390 sub-triangles, while

only 9264 of them are non-similar, i.e., on average each (normalized) triangle is
used more than four times. The smallest contained triangle is (5, 4, 3), which
is indeed the smallest possible Heronian triangle, and the largest has diameter
121990813408205791 ≈ 1018. Some counts of 7-clusters are given in Table 2. We
note that the Heronian triangles (6, 5, 5), (8, 5, 5), and (13, 12, 5) are not contained
in any of the known 7-clusters. The 6-clusters contain more than 1400000 non-
similar Heronian triangles. The smallest Heronian triangle that is not contained
in one of the known 6-clusters is (149, 148, 3).

8The list of the primitive 6- and 7-clusters currently known to us can be obtained at [22].
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Table 2. Number of (known) non-similar 7-clusters up to a given diameter

diameter # 7-clusters diameter # 7-clusters diameter # 7-clusters

≤ 107 4 ≤ 1019 688 ≤ 1031 1130

≤ 108 11 ≤ 1020 752 ≤ 1032 1137

≤ 109 26 ≤ 1021 819 ≤ 1033 1145

≤ 1010 52 ≤ 1022 877 ≤ 1034 1147

≤ 1011 89 ≤ 1023 927 ≤ 1035 1150

≤ 1012 139 ≤ 1024 974 ≤ 1036 1153

≤ 1013 198 ≤ 1025 1024 ≤ 1037 1153

≤ 1014 270 ≤ 1026 1050 ≤ 1038 1154

≤ 1015 347 ≤ 1027 1067

≤ 1016 431 ≤ 1028 1087

≤ 1017 516 ≤ 1029 1111

≤ 1018 609 ≤ 1030 1124

As hardware we used 25000 cores at Google Inc. and the Linux computing
cluster of the University of Bayreuth, which consists of 201 2xIntel E5520 2.26
GHz and 52 2xIntel E5620 2.4GHz processors (100-300 jobs are done in parallel).
The computations for the triangle-extension algorithm using the triangles in the
known 7-clusters were done on a customary laptop computer in less than one day
of computation time per iteration. We used the GNU MP Bignum library9 and
class library of numbers (CLN)10 libraries to provide arbitrary precision integers
and rationals.

Although we have invested a large amount of processing power we have
not found an 8-cluster.

12. Conclusion. The techniques of finding n-clusters have dramati-
cally improved since the discovery of the first 6-clusters in R2. Before that some
researchers had even incorrectly conjectured that 6-clusters in R2 did not exist.
At the current state it is still a significant computational challenge to find new
7-clusters, but we have shown that many examples exist. A toolbox of algorithms
to generate n-clusters is provided. Using the triangle-extension algorithm one
may eventually extend a small list of n-clusters to a larger list of n-clusters by
just combining their contained subtriangles. Compared with its running time and
its output in terms of newly found n-clusters this is certainly the most effective

9http://gmplib.org/
10http://www.ginac.de/CLN/
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algorithm that is currently known. For a given n-cluster the knowledge of only

n− 2 of its sub-triangles may suffice to recover all distances and so all

(

n

3

)

sub-

triangles. Moreover we have some kind of scale invariance, i.e. only the angles
but not the side lengths have to be known in advance. Considering all possible
scalings comes at constant cost.

However this algorithm is at the mercy of a good list of Heronian triangles,
or indirectly a list of starting n-clusters. To some extent the algorithm itself
produces some new Heronian triangles so that it can be applied iteratively. But
admittedly the number of successful iterations is observed to be rather small in
practice. So different algorithms are needed to populate the set of promising

triangles. Choosing them directly from the list of Heronian triangles, based on a
scoring function, still has no satisfactory solution and is left as an open problem.
So still the discovery of new 7-clusters depends on extensive computer calculations
so that highly optimized low level routines are essential to check a large number
of cases.

Along the way we have exhaustively constructed all primitive Heronian
triangles with diameter up to 6 · 106. This database may serve as a starting point
to check various conjectures.

The question of whether there exists an infinite number of non-similar
7-clusters is still open. At this point one may of course speculate on the existence
of 8-clusters in R2.
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