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Abstract. We develop a simplified implementation of the Hoshen-Kopel-
man cluster counting algorithm adapted for honeycomb networks. In our
implementation of the algorithm we assume that all nodes in the network
are occupied and links between nodes can be intact or broken. The algo-
rithm counts how many clusters there are in the network and determines
which nodes belong to each cluster. The network information is stored into
two sets of data. The first one is related to the connectivity of the nodes and
the second one to the state of links. The algorithm finds all clusters in only
one scan across the network and thereafter cluster relabeling operates on a
vector whose size is much smaller than the size of the network. Counting
the number of clusters of each size, the algorithm determines the cluster
size probability distribution from which the mean cluster size parameter can
be estimated. Although our implementation of the Hoshen-Kopelman algo-
rithm works only for networks with a honeycomb (hexagonal) structure, it
can be easily changed to be applied for networks with arbitrary connectivity
between the nodes (triangular, square, etc.). The proposed adaptation of
the Hoshen-Kopelman cluster counting algorithm is applied to studying the
thermal degradation of a graphene-like honeycomb membrane by means of
Molecular Dynamics simulation with a Langevin thermostat.

ACM Computing Classification System (1998): F.2.2, I.5.3.
Key words: cluster counting algorithm, honeycomb network, molecular dynamics simulation.



364 Hristina Popova

1. Introduction. The performance of algorithms to find and label clus-
ters is of great importance for the simulation of percolation phenomena. The
percolation problem was first posed in 1957 by Broadbent and Hammersley [1]
and the first effective simulation technique that could simulate this problem in
an efficient way was proposed in 1976 by Hoshen and Kopelman [2]. The intro-
duction of the Hoshen-Kopelman algorithm was an important breakthrough in
the analysis of cluster size statistics in percolation theory [3, 4]. Only after the
introduction of this algorithm, did Monte-Carlo simulations of very large lattices
become possible [5, 6, 7]. The algorithm’s single and sequential pass through the
lattice linearizes the time and memory space requirement as a function of the
lattice size [8]. Before the Hoshen-Kopelman algorithm it was believed that the
computational efforts grow faster than the squared number of particles subject to
clustering. The Hoshen-Kopelman algorithm proved that this relationship can be
linear (the algorithm finds all clusters in only one scan across the lattice). That
was the real breakthrough, because very often, especially for percolation mod-
els, the number of particles in the system might be more than 106. Moreover,
the Hoshen-Kopelman algorithm solved the serious problem of lack of computer
memory for very large percolation systems. When the algorithm was developed,
saving memory and computation time was a crucial issue for getting results in
reasonable computing time. Nowadays such intelligent algorithms are still very
helpful, e.g. for investigating very large systems.

Although the algorithm was initially applied in statistical physics, nowa-
days it is applied in many diverse fields [9, 10, 11, 12, 13, 14]. The concept of
percolation has been useful in describing a variety of physical, chemical, and bio-
logical phenomena [15, 16, 17]. Among the typical applications of the percolation
theory one may also find material science [18, 19, 20], immunology [21, 22, 23, 24],
or forest fires problems [25, 26, 27] and studies of liquids moving in porous me-
dia [28, 29, 30], etc. Generally speaking, the percolation theory deals with sta-
tistical properties of the clusters of occupied nodes (site percolation) or occupied
edges (bond percolation) for a given graph, network or regular lattice. So, two
distinct types of percolation processes are recognized: site percolation and bond
percolation. Permeation of fluids through porous media [31, 32, 33] and gel for-
mation by polymers via cross-linking [34] can be explained in terms of the bond
percolation theory [15], whereas crystal phenomena, such as spontaneous magne-
tization of dilute ferromagnets [35], diffusion in binary alloys [36, 37], and exciton
percolation in molecular crystals [38, 39], are described within the framework of
site percolation. Site and bond percolation processes have both been suggested
for electrical conductivity models of disordered materials [40, 41, 42, 43]. But the
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algorithm is not restricted to pure site or pure bond lattices; it has been extended
to lattices that consist of sites and bonds [44, 45, 46, 47]. Furthermore, in 1997 the
Hoshen-Kopelman algorithm was extended [48] to determine information not only
on the cluster size but also on the structure of the clusters, such as the radius of gy-
ration, internal perimeter, or spatial moments. This enhanced Hoshen-Kopelman
algorithm was applied to large images [49], and used to calculate cluster proper-
ties and entropy in percolation models [50]. Different approaches were proposed
to parallelize the Hoshen-Kopelman algorithm [51, 52, 53, 54, 55].

Most adaptations and implementations of the Hoshen-Kopelman algo-
rithm were for lattice environments (discrete systems). Only a few studies were
devoted to discussing the Hoshen-Kopelman algorithm implementation in non-
lattice environments (continuous systems). In such systems, the positions of the
sites are arbitrary, and not restricted to the discrete points of a regular lattice.
Gawlinski and Stanley [56] were the first to adapt the Hoshen-Kopelman algo-
rithm to handle continuum percolation by overlaying an imaginary covering mesh
onto a square area. Their adaptation was implemented in other continuum per-
colation models on discs and spheres [57, 58]. Non-lattice environments exist not
only in the percolation theory of disordered discs and spheres, but also in the
networks of many interacting units that are observed in complex systems. Re-
searchers are only now beginning to unravel the structure and dynamics of such
complex networks [59, 60].

In the paper by Al-Futaisi and Patzek [61] in 2003, the Hoshen-Kopelman
algorithm for cluster labeling was extended to non-lattice environments where
network elements (sites or bonds) are placed at random points in space. This
extension of the Hoshen-Kopelman algorithm is not restricted to a non-lattice
environment, and can be applied to lattices in two, three or higher dimensions.
It can also be applied to networks consisting of sites (nodes), bonds, or both,
and each site can have a different number of connecting bonds. Then clusters
of sites, bonds, or sites-and-bonds in such a complex arbitrary network can be
labeled with this implementation of the Hoshen-Kopelman algorithm. Using this
extended algorithm, Al-Futaisi and Patzek studied the sizes of oil clusters trapped
in a disordered pore network extracted from a 3D micro-focused X-ray CT image
of Bentheimer sandstone (a real porous rock). The extension of the Hoshen-
Kopelman algorithm should be useful in the studies of percolation in continuum
systems and in the detection of fluid clusters in more realistic networks extracted
from complex rocks. Following Al-Futaisi and Patzek [61], we develop our simpli-
fied implementation of the cluster counting algorithm adapted for networks with
honeycomb structure. Thereafter we studied the degradation process [62, 63] of
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a two-dimensional membrane model with such honeycomb structure, as shown in
Fig. 1.

The paper is organized as follows. Next, in Section 2, we describe the
cluster counting problem. Then, in Section 3, we present our implementation of
the Hoshen-Kopelman cluster counting algorithm for honeycomb networks. After
that, in Section 4, we apply our cluster counting procedure to a graphene-like
honeycomb membrane in a process of thermal degradation. Finally, we end the
paper with a brief summary in Section 5. A detailed description of our implemen-
tation of the Hoshen-Kopelman cluster counting algorithm in the C programming
language is given in the Appendix.

2. Cluster counting problem. Let us imagine that we have a large
number of particles spread somehow in space and subject to clustering. Particle
here means any geometrical object which could be connected under certain rules
with some of its neighbors. Such objects could be atoms, monomers, polymers,
sand grains, . . . telephones, computers, computer networks, . . . stars, galaxies.
Each set of connected particles forms a connectivity (cluster). For each configu-
ration, we will need to extract some statistics for the distribution of the clusters-
their size, form, fractal dimension and so on. Then a statistics for an ensemble of
configurations could be made.

So, the cluster counting could be thought as the following task:

1. Create a (computer) model structure of the particles for which the spread of
connectivity will be studied. In some cases that could be a digitized image
of natural objects, e.g. a colony of bacteria.

2. Decide, for each pair of particles, if they are adjacent (bonded) or not.

3. Identify the clusters of connected particles.

4. Make statistics of certain properties of the clusters. Store the statistics for
further use.

5. Repeat items 1–4 (or 2–4) enough times in order to have reliable counts for
the statistics made within each single realization; or, follow the evolution of
the cluster statistics with time, if the realizations are not independent.

The difficulties are concentrated mainly in item 3 of the list above and
the present paper focuses on it.
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3. Implementation of the cluster counting algorithm. We
provide a simplified implementation of the Hoshen-Kopelman cluster counting
algorithm for honeycomb networks in non-lattice environments. We develop this
algorithm to study the thermal decomposition of a membrane with hexagonal
shape and honeycomb structure [62] (see Fig. 1). In such a honeycomb network
each node has at most three connecting bonds with the nearest-neighboring nodes,
except for the peripheral nodes on the edges of our hexagonal network which have
at most two connections with neighboring nodes. Although our implementation
of the Hoshen-Kopelman algorithm is simplified and works only for networks with
a honeycomb structure, it can be easily changed to be applied for networks with
arbitrary connectivity between the nodes (triangular, square, and so on structure).

In our implementation of the Hoshen-Kopelman algorithm we assume that
all nodes and all links in the network are occupied, but some links can be broken
when the network is subject to the process of thermal degradation. The algorithm
counts how many clusters there are in the given network and determines which
nodes belong to each cluster. The network information is stored in two arrays.
The first one is related to the connectivity of the nodes and the second one to the
state of links (intact or broken link). The connectivity of the nodes in the network
is described through the Bond_Neighbour array. In this array, we define the
neighboring nodes that are directly connected to each node. The size of this array
is the total number N of nodes in the network by the maximum connectivity or
the coordination number (which is 3 in a honeycomb network). Therefore for
the nodes that have a coordination number less than the maximum we define
their appropriate neighboring nodes and assign minus one (−1) to the remaining
array elements (such are the peripheral nodes). The other array bond_rupture
describes the state of each bond. If the bond is intact, we assign zero (0), otherwise
when the bond is broken, we assign one (1).

With these data arrays in hand, we are ready to describe our implemen-
tation of the Hoshen-Kopelman algorithm. The description of the algorithm is
also translated into the C programming language in the Appendix. In what fol-
lows, our implementation of the Hoshen-Kopelman cluster counting algorithm is
described in six steps:

1. Read the network data structures-the input (global) arrays Bond_Neigh-
bour and bond_rupture.

2. Initialize the output arrays NodeL which stores a cluster label for each
node.

3. Create an empty output array NodeLP which holds information about the
cluster labels.
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4. Scan the network nodes in their consecutive order. At each node, i, as
we traverse the network, elements in NodeL and NodeLP are changed
according to the following conditions:

(4.1) If the node does not have any links together with its adjacent (neigh-
boring) nodes, then start a new cluster, and record this new cluster in
NodeL and NodeLP.

(4.2) If the node has at least one link, then we define two possibilities:

(i) If none of the neighboring nodes is labeled, then start a new cluster,
and update NodeL and NodeLP, accordingly.

(ii) If there exists a labeled neighbor and its link also exists, then set
NodeL of the node and NodeLP of the neighboring nodes equal
to the minimum of NodeLP[NodeL[j]] of the neighboring nodes
j.

5. After the scan in Step 4 is completed, operate only on the array NodeLP,
and renumber labels in NodeLP to be sequential.

6. Apply the corrected labels in NodeLP to the array NodeL.

Just as for the classic (original) Hoshen-Kopelman algorithm on lattices
and for the extended Hoshen-Kopelman algorithm on continuum systems, our
implementation of the algorithm finds all clusters in a single pass through the
nodes of the network and cluster relabeling operates on a vector whose size is
much smaller than the size of the network. Finally, we record the total number
of clusters found in the network, and perform cluster statistics. To determine the
cluster size distribution (or probability distribution of fragment sizes), we have
to count the number of clusters of each size (and to store these data in the array
NC, which has to be normalized at the end).

4. Application: a thermal degradation of a graphene-like

honeycomb membrane. The proposed adaptation of the Hoshen-Kopelman
cluster counting algorithm is applied to study the thermal degradation of a graphene-
like honeycomb membrane by means of Molecular Dynamics simulation with a
Langevin thermostat.

A. Thermal degradation problem. Thermal degradation and sta-
bilization of polymer systems has been a long-standing focus of research from
both practical and fundamental viewpoints [64]. Plastic waste disposal has grown
rapidly to an ecological menace prompting researchers to investigate plastic re-
cycling by degradation as an alternative [65]. On the other hand, degradation
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of polymers and other high molecular weight materials in different environments
is usually a major limiting factor in their application. Thermal degradation (or,
thermolysis) plays a decisive role in the design of flame-resistant polyethylene and
other plastic materials [66]. Another interesting aspect for applications includes
reversible polymer networks [67, 68], and most notably, graphene, as a ”mate-
rial of the future” that shows unusual thermomechanical properties [69]. Re-
cently, with the rapidly growing perspective of exploiting bio-polymers as func-
tional materials [70, 71] the stability of such materials has become an issue of
primary concern [72, 73] as, e.g., that of double-stranded polymer decomposi-
tion [74]. Most theoretical and computational investigations have been focused
on degradation of polymer chains with one-dimensional (1D) topological connec-
tivity [75, 76, 77, 78, 79, 80, 81]. Understanding the interplay between elastic
and fracture properties is even more challenging and important in the case of
two-dimensional (2D) polymerized networks (elastic-brittle sheets). A prominent
example of biological microstructure is spectrin, the red blood cell membrane
skeleton, which reinforces the cytoplasmic face of the membrane. In erythrocytes,
the membrane skeleton enables it to undergo large extensional deformations while
maintaining the structural integrity of the membrane. A number of studies, based
on continuum-level [82], percolation-level [83, 84, 85], or molecular-level [86, 87]
considerations of the mechanical breakdown of this network, modeled as a tri-
angular lattice of spectrin tetramers, have been reported so far. Another ex-
ample concerns the thermal stability of isolated graphene nanoflakes [88]. Some
studies consider the problem of thermal decomposition of gels [89, 90], epoxy
resins [91, 92] and other three-dimensional (3D) networks, studied both exper-
imentally [89, 90, 91, 92], and by means of simulations [93] as in the case of
Poly-dimethylsiloxane (PDMS). In most of these cases, however, mainly a sta-
bility analysis is carried out whereas still little is known regarding the collective
mechanism of degradation, the dependence of rupture time on system size, as well
as the decomposition kinetics, especially as far as 2D polymer network sheets are
concerned. Therefore, in a recent work [62] using Molecular Dynamics (MD) sim-
ulation we extended the investigations to the case of 2D polymer network sheets,
embedded in 3D-space, and studied as a generic example the thermal degrada-
tion of a suspended membrane with honeycomb orientation, similar to that of
graphene.

B. Model. We study a coarse-grained model of honeycomb membrane
embedded in three-dimensional space. The membrane consists of N spherical par-
ticles (beads, monomers) of diameter σ connected in a honeycomb lattice struc-
ture whereby each monomer is bonded with three nearest neighbors except for
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the monomers on the membrane edges which have only two bonds (see Fig. 1).
The total number of monomers N in such a membrane is N = 6L2 where by
L we denote the number of monomers (or hexagonal cells) on the edge of the
membrane (i.e., L characterizes the linear size of the membrane). There are alto-
gether Nbonds = (3N − 6L)/2 bonds in the membrane. In our studies we consider
symmetric hexagonal membranes (flakes) so as to minimize possible effects due
to the asymmetric of edges or vertices at the membrane periphery.

Fig. 1. A model of a membrane with honeycomb structure that contains a total number
of N = 54 beads and has linear size L = 3 (L is the number of beads or hexagonal cells

on the edge of the membrane)

C. Potentials. The nearest neighbors in the membrane are connected to
each other by “breakable bonds” described by a Morse potential,

(1) UM(r) = ǫM{1− exp[−α(r − rmin)]}
2

where r is a distance between the monomers, α = 1 is a constant that determines
bond elasticity, rmin = 1 is the equilibrium bond length. The dissociation energy
of a given bond is ǫM = 1, measured in units of kBT , where kB denotes the
Boltzmann constant and T is the temperature. The minimum of this potential
occurs at r = rmin, UMorse(rmin) = 0. The maximal restoring force of the Morse
potential, fmax = −dUM/dr = αǫM/2, is reached at the inflection point, rinflex =
rmin +α−1 ln(2) ≈ 2.69. This force fmax determines the maximal tensile strength
of the membrane. Since UM(0) ≈ 2.95, the Morse potential, Eq. (1), is only weakly
repulsive and beads could partially penetrate one another at r < rmin. Therefore,
in order to allow properly for the excluded volume interactions between bonded
monomers, we take the bond potential as a sum of the Morse potential, UM(r),
and the so called Weeks-Chandler-Anderson (WCA) potential, UWCA(r), (i.e., the
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shifted and truncated repulsive branch of the Lennard-Jones potential),

UWCA(r) =







4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

+ ǫ, for r ≤ 21/6σ

0, for r > 21/6σ
(2)

with parameter ǫ = 1 and monomer diameter σ = 2−1/6 ≈ 0.89 so that the mini-
mum of the WCA potential coincides with the minimum of the Morse potential.
Thus, the length scale is set by the parameter rmin = 21/6σ = 1. The nonbonded
interactions between monomers are also taken into account by means of the WCA
potential, Eq. (2). The nonbonded interactions in our model correspond to good
solvent conditions whereas the bonded interactions make the bonds in our model
breakable so they undergo scission at sufficiently high temperature T .

Fig. 2. The interactions between neighboring atoms are described by the following poten-
tial model: the nonbonded interactions are described by the Weeks-Chandler-Andersen
(WCA) potential (i.e., the shifted and truncated repulsive branch of the Lennard-Jones
potential) and the bonded interactions are taken into account as a sum of the Morse

potential, Eq. (1), and the WCA potential, Eq. (2)

D. Molecular dynamics simulation procedure. In our MD simula-
tion we use a Langevin dynamics, which describes the Brownian motion of a set of
interacting particles whereby the action of the solvent is split into slowly evolving
viscous (frictional) force and a rapidly fluctuating stochastic (random) force. The
Langevin equation of motion is the following:

(3) m
−→
v̇i (t) =

−→
F i(t)−mγ−→vi (t) +

−→
R i(t)
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where m denotes the mass of the particles which is set to m = 1, −→v i is the

velocity of particle i,
−→
F i = (

−→
F M +

−→
F WCA)i is the conservative force which is a

sum of all forces exerted on particle i by other particles in the system, γ is the

friction coefficient and
−→
R i is the three-dimensional vector of random force acting

on particle i. The random force
−→
R i, which represents the incessant collision

of the monomers with the solvent molecules, satisfies the fluctuation-dissipation
theorem 〈Riα(t)Rjβ(t

′)〉 = 2γkBTδijδαβδ(t − t′) where the symbol 〈...〉 denotes
an equilibrium average and the Greek-letter subscripts refer to the x, y or z
components. The friction coefficient γ of the Langevin thermostat is set to γ =
0.25. The integration step is 0.002 time units (t.u.) and the time is measured
in units of rmin

√

m/ǫM . We emphasize at this point that in our coarse-grained
modeling no explicit solvent particles are included. In this work the velocity-Verlet
algorithm is used to integrate the equations of motion.

E. Results. Our MD simulations are carried out in the following order.
First, we prepare an equilibrated membrane conformation starting with a fully flat
configuration (shown schematically in Fig. 1), where each bead in the network is
separated by a distance rmin = 1 equal to the equilibrium separation of the bond
potential (UM +UWCA) [see Eqs. (1) and (2)]. Then we start the simulation with
this prepared conformation and let the membrane equilibrate in the heat bath
at a temperature low enough that the membrane stays intact (this equilibration
is done in order to prepare different starting conformations for each simulation).
Once the equilibration is finished, the temperature is raised to the working one
and we let the membrane equilibrate at this temperature for a while (roughly,
∼ 20 t.u.). Then the time is set to zero and we continue the simulation of this
well-equilibrated membrane conformation (see Fig. 3) to examine the thermal
(temperature-induced) scission of the bonds.

In the course of simulation we calculate properties such as the probability
distribution of breaking bonds regarding their position in the membrane, the
mean first breakage time of a bond (i.e., the elapsed time until the first bond
breakage occurs) depending on membrane size and temperature, the probability
distribution of the first breakage time, the mean extension of the bonds in the
membrane, as well as other quantities of interest. A detailed description of these
measurements can be found in our recent paper [62] where we demonstrated that
at lower temperature T = 0.10 the degradation process starts from the rim of the
membrane sheet and then proceeds inwards. In contrast, at higher temperature
T = 0.15 bonds break at random everywhere in the network sheet. The mean first
breakage time τ is found to decrease with the total number of network nodes N
by a power law τ ∝ N−0.5 and reveals an Arrhenian dependence on temperature,
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Fig. 3. A snapshot of a typical conformation of an intact membrane with L = 30
containing N = 5400 monomers after equilibration. Typical ripples are seen to cross the

surface

τ ∝ exp(∆Eb/kBT ), with a dissociation energy ∆Eb ≈ 1.

Also we examine the course of the degradation kinetics of a honeycomb
membrane in this way: at periodic time intervals in separate simulation runs we
analyze the distribution of fragment (cluster) sizes n of the initial membrane and
establish the time-dependent probability distribution function of fragment sizes,
P (n, t), as time elapses after the onset of the thermal degradation process. This

also yields the time evolution of the mean fragment size, N(t) =

∫

n(t)P (n, t)dn.

Thus, for a given time moment t we average data over more than 103 indepen-
dent runs, each starting from a different initial conformation of the honeycomb
membrane. We perform monitoring of the fragmentation process and statisti-
cal averaging of fragment sizes using appropriately developed for the system fast
cluster counting algorithm (given in the Appendix).

In the next, we present some results of our simulation study concerning the
temporal evolution of the fragmentation process. After the onset of the thermal
decomposition process the membrane flake disintegrates with time into smaller
fragments (clusters) of size n. In Fig. 4 we show the time variation of the ensuing
probability distribution of fragment sizes P (n, t). The initial size of the membrane
is N = 294 monomers and the temperature is T = 0.12. The system is seen to
start with a single sharp peak at time t = 0 when the membrane is still intact. As
time goes by, P (n, t) becomes bimodal, the maximum of the distribution is seen
to shift to smaller values of cluster size whereas an accumulation of fragments of
size 1 or 2 is observed to contribute to a second peak at n ≈ 1. Eventually, as
t → ∞, the probability distribution P (n, t) settles to a shape with a single sharp
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Fig. 4. Probability distribution of fragment (cluster) sizes P (n, t) at different times t (in
MD time units) after beginning of the thermal degradation process for a membrane with

N = 294 monomers. The parameters of the heat bath are T = 0.12 and γ = 0.25

peak (a δ-function) at n ≈ 1.

In Fig. 5 we give the course of temporal evolution of the mean fragment
size N(t), observed in our computer experiment for membranes with different
initial size N0 (i.e., N0 is the initial number of monomers when the membrane is
still intact). It can be seen that after the onset of the thermal degradation process
the membrane network disintegrates with time into smaller fragments whose mean
size (or average molecular weight) N(t) decreases steadily with time. One can
readily see that the quantity 1 − N−1(t) does not immediately follow a straight
line of decay when plotted in semi-logarithmic coordinates, rather, such a linear
decay is observed after an initial period of slower decline. This effect is due to
averaging over many realizations of the fragmentation process. In each run the
degradation of bonds starts earlier or later at a particular time τ (the mean first
breakage time). As a result a clear-cut exponential course of 1 − N−1(t) is only
observed in the late stages of fragmentation. Such exponential behavior is found
independently of the initial membrane size.

In addition, one could expect that the fragmentation process is not gov-
erned by a single rate constant in a presumably 1st-order chemical reaction even
though the bonds that undergo rupture are chemically identical. Therefore, from
the temporal mean cluster size behavior, presented in Fig. 5, one may conclude
that even in the case of a homogeneous membrane the thermal degradation process
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Fig. 5. Semi-logarithmic plot of time variation of mean fragment size N(t) for membranes
with different initial size N0 (as indicated in the legend). In the inset the same is shown
for the quantity 1 − 1/N(t). Symbols represent simulation results whereas a straight
line stands for the fitting function 1 − 1/N(t) ∝ exp (−kt), with a kinetic constant

k = 4.3× 10−5. The parameters of the heat bath are T = 0.12 and γ = 0.25

is more adequately described by several reaction constants which govern the dis-
sociation of different groups of bonds. In the recent paper [62] we suggest a simple
model of reaction kinetics which takes into account this conjecture. We developed
a theoretical scheme based on a set of 1st-order kinetic differential equations, de-
scribing the variation of the number of network nodes, connected by a particular
number of bonds to neighboring nodes, as time elapses. We demonstrated that
the analytical solution of such a system provides a faithful description of fragmen-
tation kinetics. More details about the simulation and more results concerning
the thermal decomposition of a honeycomb membrane can be found in our recent
paper [62].

5. Summary. A careful construction of efficient computer algorithms
is of prime importance for treating large samples. In this paper we describe a
simplified implementation of the Hoshen-Kopelman cluster counting algorithm
adapted for honeycomb networks. The description of the algorithm is also trans-
lated into the C programming language in the Appendix. In the implementation
of the algorithm we assume that all nodes in the network are occupied and links
between nodes can be intact or broken. The algorithm counts the total number of
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clusters in the network and performs cluster statistics. To determine the proba-
bility distribution of cluster sizes, we calculate the number of clusters of each size.
The cluster-counting technique is applied in conjunction with Langevin Molecular
dynamics simulation of a honeycomb membrane to investigate the fragmentation
kinetics and the distribution of fragment sizes as time elapses during the thermal
destruction process. Using an ad hoc cluster counting program in the course of
the MD-simulation we sample the time variation of the probability distribution
of fragment sizes, P (n, t), which gives the time evolution of the mean cluster size

N(t) =

∫

n(t)P (n, t)dn. The distribution of fragments sizes evolves with elapsed

time from initially a δ-function through a bimodal one into a single-peaked again
at late times. The proposed implementation of the Hoshen-Kopelman cluster
counting algorithm is useful for application to a large system with a honeycomb
(hexagonal) structure, but it can be easily changed to be applied for networks
with an arbitrary connectivity between the nodes (triangular, square, and so on
structure).
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APPENDIX: C function for cluster counting

Here, we provide the complete version of the function CLUSTER_-
COUNT() written in the C programming language that performs our imple-
mentation of the Hoshen-Kopelman cluster counting algorithm adapted for hon-
eycomb networks in non-lattice environments. Using the data structures proposed
in this paper as an input, the function performs cluster statistics. First, the func-
tion CLUSTER_COUNT() finds how many clusters there are in the network
and determines which nodes belong to each cluster. Then the function counts
the number of clusters of each size and determines the probability distribution of
cluster sizes. In addition, there are defined the auxiliary functions min2(x,y) and
min3(x,y,z), which return the minimum among two or three integer numbers,
respectively.

/**************************** AUXILIARY FUNCTIONS ***************************/

// This function returns the minimum of two integer numbers

#define min2(x,y) ((x<y)?x:y)
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// This function returns the minimum of three integer numbers

#define min3(x,y,z) ((x<y&&x<z)?x:(y<z)?y:z)

/******************************************************************************/

void CLUSTER_COUNT(long N)

{

/*=============================================================================

Adaptation of Hoshen-Kopelman cluster counting algorithm for honeycomb networks

=============================================================================*/

/* Local variables */

long i, nn1, nn2, nn3, link1, link2, link3, L_nn1, L_nn2, L_nn3;

long cluster_counter, cn, i_cn, NodeLPmin;

long NumberOfClusters, max_cluster_number, cluster_number, num_mono;

long Num_cl[4];

/*=============================================================================

Input arguments:

N - Number of nodes (monomers) in the network

Bond_Neighbour[][] - Neighboring nodes connected to each node

bond_rupture[i][j] - State of the bond (0-intact/1-broken) between

monomers i and j

Output arguments:

NumberOfClusters - Number of occupied clusters

NodeL[] - Array to store cluster labels of nodes

NodeLP[] - Array that holds information about the cluster labels

=============================================================================*/

/**************** COUNT CLUSTERS IN A NETWORK CONFIGURATION ****************/

// STEP 1: READ THE DATA AND INITIALIZE THE OUTPUT

NumberOfClusters = 0;

// STEP 2: INITIALIZE THE HOSHEN-KOPELMAN ALGORITHM VARIABLES - array NodeL

for (i = 0; i < N; i++) NodeL[i] = 0;

// STEP 3: CREATE EMPTY ARRAY NodeLP AND START CLUSTER COUNTER

for (i = 0; i <= N; i++) NodeLP[i]=0;

cluster_counter=0; // Cluster counter

// STEP 4: SCAN THE NETWORK NODES

//i - the number of the current monomer

//nn1, nn2, nn3 - the numbers of the bonded neighbors of the current monomer

for (i = 0; i < N; i++) { //loop over all monomers

//take the bonded neighbors of the current i-monomer

nn1 = Bond_Neighbour[i][0]; //take the number of the 1st-bonded neighbor

nn2 = Bond_Neighbour[i][1]; //take the number of the 2nd-bonded neighbor

nn3 = Bond_Neighbour[i][2]; //take the number of the 3th-bonded neighbor
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//chek for bond ruptures of i-monomer: link=1-broken bond (bond rupture);

// link=0-intact (unbroken) bond;

link1 = bond_rupture[i][nn1];

link2 = bond_rupture[i][nn2];

if (nn3 != -1) { //(nn3=-1) when the periphery monomer has only 2 bonded

// neighbors (instead of 3)

link3 = bond_rupture[i][nn3];

}

else link3 = 1;

// If this node is type (4.1) - all its links are broken!

if (link1==1 && link2==1 && link3==1)

{

cluster_counter +=1; // Start a new cluster

NodeL[i]=cluster_counter;

NodeLP[cluster_counter]=cluster_counter;

} // end if (end case 4.1)

// This node is of type (4.2) - it has at least one intact link!

else

{

L_nn1 = NodeL[nn1];

L_nn2 = NodeL[nn2];

if(nn3 != -1) L_nn3 = NodeL[nn3]; else L_nn3 = 0;

// Case 4.2 (i): No neighbour is already labeled

if (L_nn1==0 && L_nn2==0 && L_nn3==0)

{

cluster_counter +=1; // Start a new cluster

NodeL[i]=cluster_counter;

NodeLP[cluster_counter]=cluster_counter;

} // end if (end case 4.2 (i))

// Case 4.2 (ii): There exists a labeled neighbour

else

{

for (cn=0; cn<4; cn++) Num_cl[cn] = 0;

cn = 0;

//if the neighbour is already labeled (so it points to some cluster)

// and if it has an unbroken link with current monomer

if (L_nn1!=0 && link1!=1) Num_cl[++cn] = NodeLP[L_nn1];

if (L_nn2!=0 && link2!=1) Num_cl[++cn] = NodeLP[L_nn2];

if (L_nn3!=0 && link3!=1) Num_cl[++cn] = NodeLP[L_nn3];

if (cn==0) {

cluster_counter +=1; // Start a new cluster
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NodeL[i]=cluster_counter;

NodeLP[cluster_counter]=cluster_counter;

}

else { // Put in the minimum labeling

if (cn==1) NodeLPmin = NodeLP[Num_cl[1]];

if (cn==2) NodeLPmin = min2(NodeLP[Num_cl[1]], NodeLP[Num_cl[2]]);

if (cn==3) NodeLPmin = min3(NodeLP[Num_cl[1]], NodeLP[Num_cl[2]],

NodeLP[Num_cl[3]]);

NodeL[i] = NodeLPmin;

for (i_cn=1; i_cn<=cn; i_cn++) NodeLP[Num_cl[i_cn]] = NodeLPmin;

}

} // end else (end case 4.2 (ii))

} // end else (end case 4.2)

} // end for i

// STEP 5: RENUMBER LABELS IN NodeLP TO RUN SEQUENTIALLY

max_cluster_number = 0;

for (i=1; i<=cluster_counter; i++) {

if(NodeLP[i] > max_cluster_number) {

max_cluster_number ++;

NodeLP[i] = max_cluster_number;

}

}

// STEP 6: APPLY THE CORRECT LABELS TO THE ARRAY NodeL

for (i=0; i<N; i++) {

if (i!=0) NodeL[i] = NodeLP[NodeL[i]];

}

// RECORD NUMBER OF CLUSTERS

//NumberOfClusters - total number of clusters in that configuration

NumberOfClusters = max_cluster_number;

/*********************** PERFORM CLUSTER STATISTICS ************************/

//cluster_size[i] - gives the number of monomers in cluster_number "i"

//NC[i] - gives the total number of clusters of size "i"

for (i = 0; i <= N; i++) {NC[i] = 0; cluster_size[i] = 0;}

for (i = 0; i < N; i++) {

if (NodeL[i] != 0) {

cluster_number = NodeL[i];

cluster_size[cluster_number] += 1;

}

}
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for (i = 1; i <= NumberOfClusters; i++) {

num_mono = cluster_size[i];

NC[num_mono] += 1.0;

}

//create histogram NC = probability distribution of cluster sizes

for(i=1; i<=N; i++) NC[i] /= NumberOfClusters;

return ;

}

/*============================================================================*/
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