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Abstract. The paper deals with a single server finite queuing system

where the customers, who failed to get service, are temporarily blocked in

the orbit of inactive customers. This model and its variants have many

applications, especially for optimization of the corresponding models with

retrials. We analyze the system in non-stationary regime and, using the dis-

crete transformations method study, the busy period length and the number

of successful calls made during it.

1. Introduction. We consider a queueing model with one server which
serves N customers. Each of these customers in its free state (not being under
service or blocked) produces a Poisson process of demands (calls) of the same
rate λ. The customers arriving at the moments of a busy server are blocked for an
exponentially distributed (with intensity µ) time interval. During this interval the
customer is not allowed to make any attempts for service and is said to be blocked
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(to be in inactive state, or in the orbit of inactive customers). The service times
have probability distribution function G(x), with G(0) = 0, hazard rate function

γ(x) =
G′(x)

1−G(x)
,

Laplace-Stieltjes transform g(s) and first moment ν−1.
This model can be considered as a particular case of the models with

retrials, or as a generalization of the Engset models with losses. It has many
applications, both in itself and for optimization of the finite retrial queues. We
may find finite queues with lost or returning customers in our daily activities, as
well as in many telephone, computer and communication systems (for particular
examples see [5], [2]).

The generalized Engset models have been studied in a number of papers
but to the best of our knowledge they are mainly concerned with the blocking
probability in the cases of multiserver system with exponential service times ([10],
[9], [7]).

The steady state distributions of the system under considerations are in-
vestigated in [3]. The objective of the present paper is to investigate the busy
period, which is referred to the analysis of the system at non-stationary regime.
The method of analysis is similar to those in finite systems with retrials (see [1],
[4], [8]).

In Section 2 we present and extend some previously obtained results con-
cerning the distribution of the length of the busy period . Section 3 is devoted to
the number of successful calls made during the busy period. A conclusion closes
the paper.

2. Busy period length. Assume that the busy period starts at time
t0 = 0 at which there are no blocked customers and one of them generates a
call. It ends at the first epoch at which the server is free and there are no blocked
customers. The length of the busy period is denoted by ζ, its distribution function,
P{ζ ≤ x}, by H(x) and its Laplace – Stieltjes transform, by η(s). For each t ≥ 0
we consider the following probabilities (densities):

(2.1) P1n(t, x)dx = P {ζ > t,C(t) = 1, R(t) = n, x ≤ z(t) < x+ dx} ,

(2.2) P1n(t) = P {ζ > t,C(t) = 1, R(t) = n} ,

0 ≤ n ≤ N − 1,
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(2.3) P0n(t) = P {ζ > t,C(t) = 0, R(t) = n} , 1 ≤ n ≤ N − 1,

with initial conditions

(2.4) P0n(0) = 0, P1n(0, x) = δ(x)δ0n

and Laplace transforms P in(s) and P 1n(s, x).
Here, C(t) is the number of busy servers at instant t (i.e. C(t) is 0 or 1

according to whether the server is free or busy at time t), R(t) is the number of
inactive customers at the instant t, z(t) is equal to the elapsed service time in the
case of busy server, δ(x) is Dirac delta and δij is Kronecker’s delta.

Kolmogorov’s equations for these transient probabilities look as follows:

d

dt
P0n(t) = −[(N − n)λ+ nµ]P0n(t) + (n+ 1)µP0,n+1(t) +

∫ t

0
P1n(t, x)γ(x)dx,

P1n(t, 0) = (N − n)λP0n(t), 1 ≤ n ≤ N − 1,

∂

∂t
P1n(t, x) = −

[

(N − n− 1)λ+ nµ+ γ(x) +
∂

∂x

]

P1n(t, x)+

(n+ 1)µP1,n+1(t, x) + (N − n)λP1,n−1(t, x), 0 ≤ n ≤ N − 1,

with

P0N (t) = P1N (t, x) = P1,−1(t, x) = 0,

and initial conditions (2.4).
In addition, the following holds:

d

dt
H(t) =

∞
∫

0

P10(t, x)γ(x)dx + µP01(t),

N−1
∑

n=1

P0n(t) +
N−1
∑

n=0

∫

∞

0
P1n(t, x)dx = 1−H(t).

Applying Laplace transform in these equations , we get

[(N − n)λ+ nµ+ s]P 0n(s) =

(2.5) (1− δn,N−1) (n+ 1)µP 0,n+1(s) +

∫

∞

0
P 1n(s, x)γ(x)dx,
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(2.6) P 1n(s, 0) = (N − n)λP 0n(s), 1 ≤ n ≤ N − 1,

[

(N − n− 1)λ+ nµ+ γ(x) + s+
∂

∂x

]

P 1n(s, x) = δ(x)δn0+

(2.7) (1− δn,N−1) (n + 1)µP 1,n+1(s, x) + (N − n)λP 1,n−1(s, x),

0 ≤ n ≤ N − 1,

(2.8) η(s) =

∞
∫

0

P 10(s, x)γ(x)dx + µP 01(s),

(2.9)

N−1
∑

n=1

P 0n(s) +

N−1
∑

n=0

∫

∞

0
P 1n(s, x)dx =







1− η(s)

s
, if s 6= 0,

E[ζ], if s = 0.
.

According to the discrete transformations method (see for example [4], [6],
[8]), we rewrite equations (2.7) in a matrix form

(2.10) [θI −A]P 1(s, x) = D(x),

where θ is a scalar quantity,

θ = γ(x) + s+
∂

∂x
,

I is the identity matrix of order N, A is constructed from (2.7) in the usual way
and

P 1(s, x) =
(

P 10(s, x), . . . , P 1,N−1(s, x)
)T

,

D(x) = (δ(x), 0, . . . , 0)T .

Then we transform (2.10) using the matrices Y and Λ, such that Y −1AY = Λ.
They are obtained in [3], where the following proposition is proved.

Proposition 1. The matrix Λ is a diagonal matrix with elements

Λ = diag{0,−(µ + λ), . . . ,−(N − 1)(µ + λ)}
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and the entries of the kth column of Y,
(

y
(k)
0 , . . . , y

(k)
N−1

)T

, k = 0, 1, . . . , N − 1

can be calculated by the relations

(2.11) y
(k)
0 = 1,

(2.12) y(k)n =
−k(λ+ µ)

nµ

(

y
(k)
0 + · · ·+ y

(k)
n−1

)

+
(N − n)λ

nµ
y
(k)
n−1,

n = 1, . . . , N − 1,

or by their equivalent formulas

y(k)n =

n
∑

i=0

(−1)n−i

(

λ

µ

)i(N − k − 1

i

)(

k

n− i

)

,

with
(

j

l

)

= 0 if l > j.

Furthermore, for the sum of the first n coordinates of the kth column we have

n
∑

i=0

y
(k)
i =































n
∑

i=0

(

λ

µ

)i(N − 1

i

)

for k = 0,

n
∑

i=0

(−1)n−i

(

λ

µ

)i(N − k − 1

i

)(

k − 1

n− i

)

,

for k = 1, . . . , N − 1

and therefore

(2.13)
N−1
∑

i=0

y
(k)
i =











(

1 +
λ

µ

)N−1

for k = 0

0 for k = 1, . . . , N − 1.

Thus, applying in (2.10) the transformations

(2.14) P 1(s, x) = Y Q1(s, x)

we get it in the simpler form

(2.15) [θI − Λ]Q1(s, x) = Y −1D.



296 Velika Dragieva

Because only the first coordinate of the vector D is nonzero it is sufficient to find

only the first column of the matrix Y −1,
(

y
(0)
0 , . . . , y

(0)
N−1

)T

, for which we have:

(2.16) y
(0)
k =

(

N − 1

k

)(

λ

µ

)k ( µ

λ+ µ

)N−1

.

Equation (2.15) and relation (2.14) allow to express the functions P 1n(s, x)
in terms of N unknown quantities, the initial values Q1n(s, 0). Then, from (2.6)
and (2.8) we express P 0n(s) and η(s) in terms of the same unknowns, Q1n(s, 0)
and with the help of (2.5) and (2.9) derive a system of linear equations for
Q1n(s, 0). Thus, the following theorem holds.

Theorem 1. The Laplace transforms P 1n(s, x), P in(s) of the probabilities

P1n(t, x), Pin(t), i = 0, 1 and the Laplace–Stieltjes transform, η(s), of the busy

period distribution function can be calculated by the formulas

(2.17) P 1n(s, x) = [1−G(x)]

N−1
∑

k=0

y(k)n e−[k(λ+µ)+s]x
[

Q1k(s, 0) + y
(0)
k

]

,

P 1n(s) =

∫

∞

0
P 1n(s, x)dx =

(2.18)
N−1
∑

k=0

y(k)n

1− gk(s)

k(λ+ µ) + s

[

Q1k(s, 0) + y
(0)
k

]

, 0 ≤ n ≤ N − 1,

(2.19) P 0n(s) =
1

(N − n)λ

N−1
∑

k=0

y(k)n Q1k(s, 0), 1 ≤ n ≤ N − 1.

(2.20) η(s) =
N−1
∑

k=0

Q1k(s, 0)

[

1 + gk(s)−
k(λ+ µ)

(N − 1)λ

]

+
N−1
∑

k=0

gk(s)y
(0)
k ,

where the initial conditions Q1k(s, 0) satisfy the following system of linear equa-

tions

N−1
∑

k=0

Q1k(s, 0)

{

y(k)n

[

δn,N−1 +
nµ+ s

(N − n)λ
− gk(s)

]

+
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(2.21) (1− δn,N−1)
k(λ+ µ)

(N − n− 1)λ

(

y
(k)
0 + · · ·+ y(k)n

)

}

=

N−1
∑

k=0

gk(s)y
(k)
n y

(0)
k ,

1 ≤ n ≤ N − 1,

Q10(s, 0)

{

1 + g0(s) +

N−1
∑

n=1

sy
(0)
n

(N − n)λ
+ [1− g0(s)]

(

λ+ µ

µ

)N−1
}

+

N−1
∑

k=1

Q1k(s, 0)

{

1 + gk(s) +

N−1
∑

n=1

sy
(k)
n

(N − n)λ
−

k(λ+ µ)

(N − 1)λ

}

=

(2.22) g0(s)−

N−1
∑

k=0

gk(s)y
(0)
k .

Here y(k)n and y(0)n are given by (2.11), (2.12) and (2.16), respectively, gk(s) =
g(k(λ + µ) + s).

P r o o f. The kth of the equations (2.15) has the form

∂

∂x
Q1k(s, x) + [k(λ+ µ) + γ(x) + s]Q1k(s, x) = δ(x)y

(0)
k ,

0 ≤ k ≤ N − 1,

with solutions

Q1k(s, x) = [1−G(x)]e−[k(λ+µ)+s]x
[

Q1k(s, 0) + y
(0)
k

]

.

Thus, substituting in (2.14) and (2.6) we obtain formulas (2.17)–(2.19) for the
quantities P 1n(s, x), P 1n(s) and P 0n(s). Further, we substitute with these ex-
pressions in relations (2.5),

N−1
∑

k=0

Q1k(s, 0)

{

y(k)n

[

1 +
nµ+ s

(N − n)λ
− gk

]

−

(2.23) (1− δn,N−1)
(n+ 1)µ

(N − n− 1)λ
y
(k)
n+1

}

=

N−1
∑

k=0

gky
(k)
n y

(0)
k ,
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1 ≤ n ≤ N − 1,

then substitute y
(k)
n+1 according to (2.12) and obtain equations (2.21). By analogy,

substituting in (2.8) according to (2.17)–(2.19),

η(s) =

N−1
∑

k=0

Q1k(s, 0)

[

y
(k)
0 gk(s) +

µ

(N − 1)λ
y
(k)
1

]

+

N−1
∑

k=0

y
(k)
0 gk(s)y

(0)
k

and then y
(k)
0 and y

(k)
1 according to (2.12),

y
(k)
0 = 1,

y
(k)
1 =

−k(λ+ µ)

µ
+

(N − 1)λ

µ

we get (2.20). At the end, to verify (2.22) we substitute in the normalizing
condition (2.9) with (2.17)–(2.19), (2.20) and for s 6= 0 obtain

N−1
∑

k=0

Q1k(s, 0)

{

1 + gk(s)−
k(λ+ µ)

(N − 1)λ
+ sy

(k)
0

1− gk(s)

k(λ+ µ) + s
+

s

N−1
∑

n=1

y
(k)
n

(N − n)λ
+

1− gk(s)

k(λ+ µ) + s
s

N−1
∑

n=1

y(k)n

}

= 1−

s
N−1
∑

k=0

1− gk(s)

k(λ+ µ) + s
y
(0)
k

N−1
∑

n=0

y(k)n −
N−1
∑

k=0

gk(s)y
(0)
k .

For the sums
N−1
∑

n=1

y(k)n we apply relations (2.13) and the last equation gives (2.22).

For s = 0 equation (2.22) follows from (2.8). �

Thus, to calculate η(s) we have to find the solutions Q1k(s, 0) of the linear
system (2.21)–(2.22). Further, upon suitable differentiations in (2.20)–(2.22) we
can obtain formulas for computing the first moments of the busy period length, ζ.
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Fig. 1. Mean busy period length vs. system parameters

Besides this way, the mean busy period can be calculated with the help of formula
(2.9),

(2.24) E[ζ] =
N−1
∑

n=1

P 0n(0) +
N−1
∑

n=0

P 1n(0).

If substitute here P 0n(0) and P 1n(0) according to (2.18)–(2.19), we get

(2.25) E[ζ] =

N−1
∑

k=0

Q1k(0, 0)

{

N−1
∑

n=1

y
(k)
n

(N − n)λ
+

δk0
ν

(

λ+ µ

µ

)N−1
}

+
1

ν
,

with Q1k(0, 0)-solutions of (2.21)–(2.22) for s = 0.

In Figure 1 we see the behaviour of the mean busy period length, E[ζ]
against each one of the system parameters:
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• Source arrival rate, λ (the upper-left corner);

• Source activation rate, µ (the upper-right corner);

• Mean service time, 1/ν (the lower-left corner);

• Number of customers, N (the lower-right corner).

The presented results are calculated for different distributions of the ser-
vice time with the same mean, 1/ν:

• Deterministic distribution, equal to 1/ν, presented with dashed lines;

• Erlang distribution with parameter 4 and 4ν, presented with lines of
stars;

• Exponential distribution with parameter ν, presented with solid lines;

• Uniform distribution in the interval (0, 2/ν), presented with lines of
triangles.

The graphs show that the mean busy period length is an increasing func-
tion of the source arrival rate λ, source activation rate, µ, mean service time 1/ν,
while as a function of the number of sources, N it has a point of local minimum.
We can also see that the increase of each parameter increases the influence of the
type of the service distribution.

3. Analysis of the successful calls made during the busy
period. Suppose that at moment t = 0 a busy period starts, i.e., that all
customers are in free state and one of them generates a call. We denote the
number of successful calls made during the time interval (0, t), t ≥ 0 by NS(t),
the number of successful calls made during the busy period by NSBP , the length
of the busy period during which k successful calls occur by ζk, and consider the
probabilities (densities)

PS
1nk(t, x)dx = P

{

ζ > t,NS(t) = k,C(t) = 1, R(t) = n, x ≤ z(t) < x+ dx
}

,

PS
ink(t) = P

{

ζ > t,NS(t) = k,C(t) = i, R(t) = n
}

, i = 0, 1,

PSBP
k = P

{

NSBP = k
}

,

hk(t) =
dP {ζk ≤ t}

dt
=

dP
{

ζ ≤ t,NSBP = k
}

dt
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with Laplace transforms P
S
1nk(s, x), P

S
0nk(s), P

S
1nk(s) and hk(s).Then for the

distribution of the successful calls, made during the busy period we have

PSBP
k = P

{

NSBP = k
}

=

∞
∫

0

hk(t)dt = hk(0).

To calculate hk(0) we first derive Kolmogorov’s equations for the proba-
bilities (densities) PS

1nk(t, x) and PS
0nk(t),

d

dt
PS
0nk(t) = −[(N−n)λ+nµ]PS

0nk(t)+(n+1)µPS
0,n+1,k(t)+

∫ t

0
PS
1nk(t, x)γ(x)dx,

PS
1nk(t, 0) = (1− δk1)(N − n)λPS

0,n,k−1(t), k ≥ 1, 1 ≤ n ≤ N − 1,

∂

∂t
PS
1nk(t, x) = −

[

(N − n− 1)λ+ nµ+ γ(x) +
∂

∂x

]

PS
1nk(t, x)+

(n+ 1)µPS
1,n+1,k(t, x) + (N − n)λPS

1,n−1,k(t, x), 0 ≤ n ≤ N − 1,

with

PS
0Nk(t) = PS

1Nk(t, x) = PS
1,−1,k(t, x) = 0,

and

PS
0nk(0) = 0, PS

1nk(0, x) = δ(x)δ(n,k),(0,1).

Besides these equations the following relations hold

hk(t) =

∞
∫

0

PS
10k(t, x)γ(x)dx + µPS

01k(t),

N−1
∑

n=0

PS
0nk(t) +

N−1
∑

n=0

PS
1nk(t) =

∞
∑

q=k

∞
∫

t

hq(x)dx.

Applying Laplace transforms we get

[(N − n)λ+ nµ+ s]P
S
0nk(s) =



302 Velika Dragieva

(3.1) (1− δn,N−1) (n+ 1)µP
S
0,n+1,k(s) +

∫

∞

0
P

S
1nk(s, x)γ(x)dx,

(3.2) P
S
1nk(s, 0) = (1− δk1)(N − n)λP

S
0,n,k−1(s),

1 ≤ n ≤ N − 1,

[(N − n− 1)λ+ nµ+ γ(x) + s+
∂

∂x
]P

S

1nk(s, x) = δ(x)δ(n,k)(0,1)+

(3.3) (1− δn,N−1) (n+ 1)µP
S

1,n+1,k(s, x) + (N − n)λP
S

1,n−1,k(s, x),

0 ≤ n ≤ N − 1, k ≥ 1,

(3.4) hk(s) =

∞
∫

0

P
S
10k(s, x)γ(x)dx + µP

S
01k(s),

N−1
∑

n=0

P
S
0nk(s) +

N−1
∑

n=0

P
S
1nk(s) =

1

s







∞
∑

q=k

[

hq(0)− hq(s)
]







=

(3.5)
1

s







1− η(s)− (1− δk1)

k−1
∑

q=1

[

hq(0)− hq(s)
]







, if s 6= 0

and

(3.6)
N−1
∑

n=0

P
S

0nk(s) +
N−1
∑

n=0

P
S

1nk(s) =
∞
∑

q=k

E[ζq], if s = 0.

The system (3.1)–(3.6) is similar to the system (2.5)–(2.9), determining Laplace
transform of the busy period and its solutions can be found with the help of the
same discrete transformation, presented in Proposition 1. Solving this system
successively for k = 1, 2, . . . we can calculate each probability of the distribution
of the successful calls, made during the busy period.
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Fig. 2. Mean number of successful calls vs. system parameters

Now, we turn our attention to the computation of the mean value of this
distribution. Define

min(t) =

∞
∑

k=1

kPS
ink(t),

m(t) =
∞
∑

k=1

khk(t)

with Laplace transforms min(s), m(s) and

E
[

NSBP
]

=

∞
∑

k=1

kP
{

NSBP = k
}

=

∞
∑

k=1

khk(0) = m(0).
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To derive equations for min(s), m(s) we multiply each of the equations (3.1)–(3.4)
by k and sum over k = 1, 2, . . . :

[(N − n)λ+ nµ+ s]m0n(s) =

(3.7) (1− δn,N−1) (n + 1)µm0,n+1(s) +

∫

∞

0
m1n(s, x)γ(x)dx,

(3.8) m1n(s, 0) = (N − n)λm0n(s) + P 0n(s),

1 ≤ n ≤ N − 1,

[(N − n− 1)λ+ nµ+ γ(x) + s+
∂

∂x
]m1n(s, x) = δ(x)+

(3.9) (1− δn,N−1) (n+ 1)µm1,n+1(s, x) + (N − n)λm1,n−1(s, x),

0 ≤ n ≤ N − 1,

(3.10) m(s) =

∞
∫

0

m10(s, x)γ(x)dx + µm01(s).

On the basis of these equations we prove the following Proposition.

Proposition 2. The mean number of successful calls made during the

busy period, E
[

NSBP
]

, can be calculated by the formulas

E
[

NSBP
]

=
∞
∑

k=1

kP
{

NSBP = k
}

= m(0) =

N−1
∑

k=0

q1k(0, 0)

[

1 + gk(0)−
k(λ+ µ)

(N − 1)λ

]

+

(3.11)

N−1
∑

k=0

gk(0)y
(0)
k −

µ

(N − 1)λ
P 01(0),
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where q1k(0, 0) satisfy the equations

N−1
∑

k=0

q1k(0, 0)

{

y(k)n

[

δn,N−1 +
nµ

(N − n)λ
− gk

]

−

(1− δn,N−1)
k(λ+ µ)

(N − n− 1)λ

(

y
(k)
0 + · · ·+ y

(k)
n−1

)

}

=

N−1
∑

k=0

gky
(k)
n y

(0)
k +

(3.12)

[

1 +
nµ

(N − n)λ

]

P 0n(0)− (1− δn,N−1)
(n+ 1)µ

(N − n− 1)λ
P 0,n+1(0).

(3.13)

N−1
∑

k=0

q1k(0, 0)g
′

k(0) = E [ζ]−

N−1
∑

k=0

y
(0)
k g′k(0).

Here g′k(0) is the derivative of the Laplace–Stieltjes transform, g(s) of the service

times in the point s = k(λ+ µ).

P r o o f. Similarly to the proof of Theorem 1 we apply the discrete trans-
formations

m1n(s, x) =

N−1
∑

k=0

y(k)n q1k(s, x),

solve equations (3.9) and express the quantities m1n(s, x) in terms of the initial
values q1k(s, 0) :

m
(1)
1n (s, x) = [1−G(x)]

N−1
∑

k=0

y(k)n e−[k(λ+µ)+s]x
[

q
(1)
1k (s, 0) + y

(0)
k

]

,

0 ≤ n ≤ N − 1.

Then from (3.8) we express the quantities m0n(s),

m
(1)
0n (s) =

1

(N − n)λ

[

N−1
∑

k=0

y(k)n q
(1)
1k (s, 0)− P 0n(s)

]

, 1 ≤ n ≤ N − 1

and substituting in (3.7) derive equations for the initial values q
(1)
1k (s, 0) :

N−1
∑

k=0

q
(1)
1k

{

y(k)n

[

1 +
nµ+ s

(N − n)λ
− gk

]

−
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(1− δn,N−1)
(n+ 1)µ

(N − n− 1)λ
y
(k)
n+1

}

=

N−1
∑

k=0

gky
(k)
n y

(0)
k +

(

1 +
nµ+ s

(N − n)λ

)

P 0n(s)− (1− δn,N−1)
(n + 1)µ

(N − n− 1)λ
P 0,n+1(s).

According to formulas (2.12) for y
(k)
n+1,the last equations are

N−1
∑

k=0

q1k(s, 0)

{

y(k)n

[

δn,N−1 +
nµ+ s

(N − n)λ
− gk

]

−

(1− δn,N−1)
k(λ+ µ)

(N − n− 1)λ

(

y
(k)
0 + · · ·+ y

(k)
n−1

)

}

=

N−1
∑

k=0

gky
(k)
n y

(0)
k +

[

1 +
nµ+ s

(N − n)λ

]

P 0n(s)− (1− δn,N−1)
(n+ 1)µ

(N − n− 1)λ
P 0,n+1(s),

which for s = 0 give (3.12). Further, from (3.10) we have

m(s) =
N−1
∑

k=0

q1k(s, 0)

[

y
(k)
0 gk(s) +

µ

(N − 1)λ
y
(k)
1

]

+

N−1
∑

k=0

y
(k)
0 gk(s)y

(0)
k −

µ

(N − 1)λ
P 01(s)

and substituting y
(k)
0 and y

(k)
1 according to (2.12):

m(s) =

N−1
∑

k=0

q1k(s, 0)

[

1 + gk(s)−
k(λ+ µ)

(N − 1)λ

]

+

(3.14)

N−1
∑

k=0

gk(s)y
(0)
k −

µ

(N − 1)λ
P 01(s).

For s = 0 this equation gives (3.11). To prove the normalizing condition
(3.13) we sum up equations (3.5) over k = 1, 2, . . . ,

η(0) − η(s)

s
=

m(0)−m(s)

s
,
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then substitute according to (3.14) and obtain (3.13). This completes the proof
of the proposition �

Thus, to calculate the mean value of the number of successful calls made
during the busy period, we need the mean busy period length, E[ζ] and the
Laplace transforms P 0n(s) of the probabilities P0n(t). They can be calculated
according to the formulas of Theorem 1. Further to solve this system we proceed
in the same way as when solving the system (2.5)–(2.9).

In a similar way, multiplying each of equations (3.1)–(3.4) by k2, each of
(3.5) by k and summing over k = 1, 2, . . . we obtain a system for the second
moments of the joint distributions of the busy period length and the number
of successful calls. With their help we can calculate the second moment of the
number of successful calls, but the formulas are more complicated.

Figure 2 has the same structure as Figure 1 and shows the dependence of
the mean number of successful calls made during the busy period against each of
the system parameters. We see that the influence of the service distribution type
is stronger that the one shown in Figure 1, especially on the behaviour against
the source activation rate, µ (the blocking parameter).

4. Conclusion. In this paper we consider a finite source queueing system
of M/G/1 type in which the failed customers are not allowed neither to queue nor
to do repetitions. Instead, they are temporarily blocked in the orbit of inactive
customers. We investigate descriptors of the system functioning, connected with
its busy period: the busy period length and the number of successful calls made
during the busy period. Formulas for computing the Laplace–Stieltjes transform
of the busy period distribution, as well as the mean busy period length are derived.
We also have obtained formulas for successively computing the distribution of the
number of successful calls and its mean value. Some numerical examples are
presented. This investigation can be continued by finding formulas for the second
and third moments of the considered descriptions. Another interesting problem
for eventual future work is to study the number of lost calls made during the busy
period.
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