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Abstract. In 1971 using pseudo-divisions — that is, by working in Z [x] —
Brown and Traub computed Euclid’s polynomial remainder sequences (prs’s)
and (proper) subresultant prs’s using sylvester1, the most widely known
form of Sylvester’s matrix, whose determinant defines the resultant of two
polynomials.

In this paper we use, for the first time in the literature, the Pell-Gordon
Theorem of 1917, and sylvester2, a little known form of Sylvester’s ma-
trix of 1853 to initially compute Sturm sequences in Z [x] without pseudo-
divisions — that is, by working in Q [x]. We then extend our work in
Q [x] and, despite the fact that the absolute value of the determinant of
sylvester2 equals the absolute value of the resultant, we construct modi-

fied subresultant prs’s, which may differ from the proper ones only in sign.
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1. Introduction. The Sturm sequence of a polynomial p (x) ∈ Z [x] or
p (x) ∈ Q [x], of degree n > 2, is the sequence of functions f0 (x) , f1 (x) , . . . , fk (x),
k 6 n, where f0 (x) = p (x), f1 (x) = p′ (x), and, for 2 6 j 6 k, fj (x) is the neg-

ative remainder obtained on dividing fj−2 (x) by fj−1 (x).

In other words, the Sturm sequence of p (x) is obtained by negating the
remainders obtained in the process of finding the greatest common divisor of p (x)
and p′ (x) using the Euclidean algorithm.

If k = n, the Sturm sequence is called complete, whereas if k < n, it is
called incomplete.

Therefore, we see that obtaining polynomial remainders is the major op-
eration in computing Sturm sequences and, since 1836, pseudo-division (explained
below) has been the only method used to keep these computations in Z [x].

For example, the Sturm sequence in Z [x] of p(x) = x3 + 3x2 − 7x + 7
is shown below and was obtained with the sturm function of the freely available
Computer Algebra System (CAS) Xcas:1

> sturm(x^3+3x^2-7x+7)[1]

[[1, 3,−7, 7], [3, 6,−7], [60,−84],−2912]

Here, to obtain the first remainder, 60x − 84, we had to pseudo-divide; in other

words, we premultiplied the divident by 32, that is, by the leading coefficient of
the divisor raised to the power deg (p) − deg

(

p′
)

+ 1, and then we applied the
division algorithm for polynomials. The second remainder −2912 was computed
in a similar way.

However, using pseudo-division in every step of the Sturmian (Euclidean)
algorithm causes exponential coefficient growth [1]. To avoid this exponential
coefficient growth we can make every intermediate result primitive, that is, we can
divide the remainders by the greatest common divisors of their coefficients, the
so-called content. However, computing the content was (erroneously) considered
to be quite expensive, especially for multivariate polynomials, and one would like
to find divisors of the content without any gcd computation.

In 1853 Sylvester discovered that, for complete Sturm sequences in Z [x],
the coefficients of the polynomial remainders can be correctly computed as deter-
minants of submatrices of sylvester2, a little known form of Sylvester’s matrix
of dimension 2n × 2n [15], [5]; we call these determinants modified subresultants

to distinguish them from the proper subresultants which are determinants of sub-
matrices of sylvester1, the wel-known form of Sylvester’s matrix of dimension

1In both CASs used in this paper, Xcas and Sympy, enumeration begins with 0. The interface
to them was TeXmacs.
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(m+n)× (m+n), which was discovered in 1840 [14]. However, Sylvester’s result
of 1853 did not carry over to incomplete Sturm sequences, since the signs of the
coefficients could not be correctly computed.

As Sylvester pointed out, the coefficients of the polynomial remainders
obtained as modified subresultants are the smallest possible without introducing
rationals and without computing (integer) greatest common divisors. However,
since it is time consuming — and tiring — to evaluate a large number of determi-
nants, people use pseudo-division and then divide out a certain factor to reduce
the coefficients to modified subresultants.

In general, given p (x) , q (x) ∈ Z [x] of degrees deg(p) = n and deg(q) = m
with n ≥ m their (proper) subresultant polynomial remainder sequence (prs) is
a sequence of polynomials similar to the one obtained by applying Euclid’s algo-
rithm on p (x) , q (x). The two sequences differ in that the coefficients of each poly-
nomial in the subresultant prs are the determinants of submatrices of sylvester1.
The determinant of sylvester1 itself is called the resultant of p (x) , q (x) and
serves as a criterion of whether the two polynomials have common roots or not.

The problem of computing in Z [x] the proper subresultant prs of p (x) , q (x)
has been extensively studied in the literature along with its relation to the prs
obtained from Euclid’s algorithm [12], [7], [8], [10], [11], [9].

It has been shown in the literature that using sylvester1 the polynomials
in the proper subresultant prs are proportional to those obtained by the Euclidean
algorithm. Moreover, for complete sequences obtained using sylvester1, the
proper subresultant prs is identical to the Euclidean prs, where the polynomial
remainder pi+2 in the latter sequence has been divided by the square of the leading
coefficient of the polynomial pi [1].

In Xcas the function sylvester returns the matrix sylvester1. This
function can be easily renamed sylvester1 with the statement sylvester1 :=

sylvester. Then, for the polynomials p (x) = ax3+ bx2+ cx+ d with a > 0, and
q (x) = 3ax2 + 2bx+ c the 5× 5 sylvester1 matrix is given below:

> sylvester1(a*x^3+b*x^2+c*x+d, 3a*x^2+2b*x+c, x)












a b c d 0
0 a b c d
3a 2b c 0 0
0 3a 2b c 0
0 0 3a 2b c













Note that the entries in the above matrix are the coefficients of the two
polynomials; in the first group of two rows are the coefficients of p (x) = ax3 +
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bx2 + cx+ d, whereas in the second (last) group of three rows are the coefficients
of q (x) = 3ax2 + 2bx + c. The proper subresultant prs of p (x) , q (x) has two
additional polynomials, f · x+ g and h, of degrees 1 and 0, respectively.

The constant polynomial h of degree 0 — which is the resultant of the two
polynomials — is easily computed as the determinant of the 5 × 5 sylvester1

matrix and is shown below

(1) 27 · a3 · d2 − 18 · a2 · b · c · d+ 4 · a2 · c3 + 4 · a · b3 · d− a · b2 · c2.

To compute the coefficients f, g of the polynomial of degree 1, we delete 1
(the last) row from each group of rows in the sylvester1 matrix and we are left
with the 3× 5 matrix:





a b c d 0
3a 2b c 0 0
0 3a 2b c 0



 .

Then,

f =

∣

∣

∣

∣

∣

∣

a b c
3a 2b c
0 3a 2b

∣

∣

∣

∣

∣

∣

,

and, after we swap the 3rd and 4th columns,

g =

∣

∣

∣

∣

∣

∣

a b d
3a 2b 0
0 3a c

∣

∣

∣

∣

∣

∣

.

We have written code in Xcas that performs these computations easily,2

and the reader is urged to take advantage of it in order to compute the proper
subresultant prs of the polynomial p (x) = x6 + x5 − x4 − x3 + x2 − x+ 1 and its
derivative.3

Using the function subresultants of Sympy, another freely available CAS,
we can verify that the answer is:

x6 + x5 − x4 − x3 + x2 − x+ 1,

6x5 + 5x4 − 4x3 − 3x2 + 2x− 1,

2It can be downloaded from the link http://inf-server.inf.uth.gr/~akritas/

publications/subres_sylvester1
3This is the same example used by Van Vleck [16].
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−17x4 − 14x3 + 27x2 − 32x+ 37,

44x3 − 114x2 + 120x− 7,(2)

−516x2 + 828x+ 186,

9108x − 3114,

127359.

The proper subresultant prs computed this way is identical with the prs
obtained by Euclid’s algorithm for polynomials and the constant 127359 is the
value of the resultant of p (x) and its derivative. Consequently, sequence (2) differs
from the Sturm sequence of the polynomial p (x) = x6+x5−x4−x3+x2−x+1.

Using the Xcas function sturm we see that the Sturm sequence of p (x) is:

x6 + x5 − x4 − x3 + x2 − x+ 1,

6x5 + 5x4 − 4x3 − 3x2 + 2x− 1,

17x4 + 14x3 − 27x2 + 32x− 37,

−44x3 + 114x2 − 120x + 7,(3)

−516x2 + 828x + 186,

9108x − 3114,

−127359.

A term by term comparison of sequences (2) and (3) reveals that:

• the absolute values of the coefficients of both sequences are the same,
whereas

• the signs in the two sequences may differ.

Therefore, the proper subresultant prs computed using the sylvester1 matrix of
the polynomial p (x) = x6 + x5 − x4 − x3 + x2 − x+ 1 and its derivative gives us
information about the prs obtained by the Euclidean algorithm and the resultant
of the two polynomials.

However, there also exists a rarely used form of Sylvester’s matrix, call
it sylvester2, whose dimensions are 2n × 2n; that matrix was developed by
Sylvester in 1853 and by Jacobi eighteen years earlier and has been used by very
few authors, including the first author of this paper [16], [13], [2], [3], [4], [5], [6].
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For Xcas we have written our own function sylvester24 and for the same
polynomials p (x) = ax3 + bx2 + cx + d with a > 0 and q (x) = 3ax2 + 2bx + c
mentioned above the 6× 6 sylvester2 matrix is:

> sylvester2(a*x^3+b*x^2+c*x+d, 3a*x^2+2b*x+c,x)
















a b c d 0 0
0 3a 2b c 0 0
0 a b c d 0
0 0 3a 2b c 0
0 0 a b c d
0 0 0 3a 2b c

















.

Note that the entries in the above matrix are the coefficients of the two
polynomials written in 3 pairs. We can now use sylvester2 to compute a mod-
ified subresultant prs of p (x) , q (x), which also has two additional polynomials,
f̃ · x+ g̃ and h̃, of degrees 1 and 0, respectively.

The constant polynomial h̃ of degree 0 is easily computed as the determi-
nant of the 6 × 6 sylvester2 matrix and its value — reduced by dividing out a
— is shown below

(4) −27 · a3 · d2 + 18 · a2 · b · c · d− 4 · a2 · c3 − 4 · a · b3 · d+ a · b2 · c2.

Comparing (1) and (4) we see that the determinant of sylvester2 and the resul-
tant have opposite signs.

To compute the coefficients f̃ , g̃ of the polynomial of degree 1, we delete
1 pair (the last) of rows in the sylvester2 matrix and we are left with the 4× 6
matrix:









a b c d 0 0
0 3a 2b c 0 0
0 a b c d 0
0 0 3a 2b c 0









.

Then, the reduced coefficients are:

f̃ =

∣

∣

∣

∣

∣

∣

∣

∣

a b c d
0 3a 2b c
0 a b c
0 0 3a 2b

∣

∣

∣

∣

∣

∣

∣

∣

/a,

4It can be found in the link: http://inf-server.inf.uth.gr/~akritas/publications/

sylvester2
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and, after we swap the 4th and 5th columns,

g̃ =

∣

∣

∣

∣

∣

∣

∣

∣

a b c 0
0 3a 2b 0
0 a b d
0 0 3a c

∣

∣

∣

∣

∣

∣

∣

∣

/a.

The reader is asked to use the Xcas functions subMat and colSwap and
compute the modified subresultant prs of the polynomial p (x) = x6 + x5 − x4 −
x3+x2−x+1 and its derivative. It turns out that using the sylvester2 matrix,
the modified subresultant prs is:

x6 + x5 − x4 − x3 + x2 − x+ 1,

6x5 + 5x4 − 4x3 − 3x2 + 2x− 1,

17x4 + 14x3 − 27x2 + 32x− 37,

−44x3 + 114x2 − 120x + 7,(5)

−516x2 + 828x + 186,

9108x − 3114,

−127359.

Comparing sequences (2), (3) and (5) we see that:

• sequences (2) and (5) differ, which implies that the signs of the modified
subresultant prs may differ from those of the proper one, and

• sequences (3) and (5) are identical (as Sylvester realized in 1853 and as
is proven by equation (9) in Section 3.1), which implies that, for complete
prs’s, the modified subresultant prs, computed with sylvester2, is identical
to the Sturm sequence — provided the second polynomial is the derivative
of the first.

For complete Sturm sequences in Z [x], Van Vleck presented in 1900 a
theorem and a computational method for computing the polynomial remainders
of Sturm’s sequences by triangularizing the sylvester2 matrix of p (x) and p′ (x).
In his method VanVleck cleverly takes advantage of the special form of this matrix
and only triangularizes matrices of 3 rows, thus making his method extremely fast
and suitable even for manual computations [16], [6].

However, Van Vleck’s method computes the correct sign of the coefficients
only for complete Sturm sequences, when no pivot occurs in the triangularization
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process. In all other cases the sign of the coefficients may not be correct. This was
observed by Pell5 and Gordon ([13], p. 193) and — using the sylvester2 matrix
— they presented a theorem, Theorem 1 in this paper, to correctly compute, in
all cases, the coefficients of the polynomial remainders of Sturm prs’s in Q [x],
that is without pseudo-divisions. Theorem 1 was also used by us to construct
modified subresultant prs’s in Z [x] without pseudo-divisions; this was achieved
by multiplying each remainder in Q [x] by a certain factor.

To compute the Sturm prs in Q [x] for the polynomial p(x) = x3 + 3x2 −
7x+ 7 we use the function sturm of Sympy as follows:

Python] import sympy

Python] x = sympy.var(’x’)

Python] sympy.sturm(x**3+3*x**2-7*x+7)

[x**3 + 3*x**2 - 7*x + 7, 3*x**2 + 6*x - 7, 20*x/3 - 28/3, -182/25]

To our knowledge, the Pell-Gordon paper was completely forgotten and
has not been cited in the literature before us.6 However, this paper is of great
importance because, as it turns out, Pell and Gordon anticipated by 30 and 50
years, respectively, the main results by Habicht (1948) [12] and Brown-Collins
(1966-1971) [7], [8], [10], [11].

The rest of the paper is organised as follows:

In Section 2 we state the Pell-Gordon Theorem ([13], pp. 190, 193) for two
polynomials A,B and present a modification of it along with an example of its use.
The modification concerns: (a) the leading coefficient of A, (b) the degree differ-
ence between the polynomial remainders in case of incomplete Sturm sequences,
and (c) the number of leading zero coefficients in the second polynomial.

In Section 3 we first compute Sturm sequences in Z [x] using polynomial
divisions in Q [x] and the formula (7) of the Pell-Gordon Theorem without tak-
ing into consideration the signs involved. Once this is accomplished, we use the
signs involved in formula (7) to compute modified subresultant prs’s in Z [x] corre-
sponding to sylvester2, Sylvester’s matrix of 1853. Codes in Sympy are provided
for both cases.

Finally, in Section 4 we state our conclusions.

5See the link http://en.wikipedia.org/wiki/Anna_Johnson_Pell_Wheeler for a biography
of Anna Johnson Pell Wheeler.

6Panagiotis S. Vigklas discovered it while reviewing scientific data bases.
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2. The Pell-Gordon Theorem for Polynomials in Q [x]. As
mentioned in the Introduction, Anna Johnson Pell Wheeler and R. L. Gordon
realized the flaw in Van Vleck’s theorem when the Sturm sequence is incomplete.
Using sylvester2, the same form of Sylvester’s matrix as Van Vleck, they stated
and proved the following [13]:

Theorem 1. Let

A = a0x
n + a1x

n−1 + · · ·+ an

and

B = b0x
n + b1x

n−1 + · · ·+ bn

be two polynomials of the n-th degree. Modify the process of finding the highest

common factor of A and B by taking at each stage the negative of the remainder.

Let the i-th modified remainder be

R(i) = r
(i)
0 xmi + r

(i)
1 xmi−1 + · · ·+ r(i)mi

where (mi+1) is the degree of the preceeding remainder, and where the first (pi−1)

coefficients of R(i) are zero, and the pith coefficient ̺i = r
(i)
pi−1 is different from

zero. Then for k = 0, 1, . . . ,mi the coefficients r
(i)
k are given by7

(6) r
(i)
k

=
(−1)ui−1 (−1)ui−2 · · · (−1)u1 (−1)vi−1

̺
pi−1+1
i−1 ̺

pi−2+pi−1

i−2 · · · ̺p1+p2
1 ̺p10

· Det (i, k) ,

where ui−1 = 1 + 2 + · · ·+ pi−1, vi−1 = p1 + p2 + · · ·+ pi−1 and

Det (i, k) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a0 a1 a2 · · · · · · · · a2vi−1
a2vi−1+1+k

b0 b1 b2 · · · · · · · · b2vi−1
b2vi−1+1+k

0 a0 a1 · · · · · · · · a2vi−1−1 a2vi−1+k

0 b0 b1 · · · · · · · · b2vi−1−1 b2vi−1+k

· · · · · · · · · · · · ·

0 0 0 · · · a0 a1 · · · avi−1
avi−1+1+k

0 0 0 · · · b0 b1 · · · bvi−1
bvi−1+1+k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

P r o o f. The proof by induction of this theorem depends on two Lemmas
and can be found in the original paper of Pell and Gordon.

As demonstrated in Example 1 that follows below,8 we use a modification
of formula (6) to compute the coefficients of the Sturm sequence. In our case

7It is understood in (6) that ̺0 = b0, p0 = 0, and that ai = bi = 0 for i > n.
8Since there are no examples in [13] we believe our Example 1 is quite useful.
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p0 = deg (A) − deg (B) = 1, since B is the derivative of A and, hence, the
modified formula is shown below with the changes appearing in bold:

(7) r
(i)
k =

(−1)ui−1 (−1)ui−2 · · · (−1)u1 (−1)u0 (−1)vi−1

̺
pi−1+pi−degDiffer

i−1 ̺
pi−2+pi−1

i−2 · · · ̺p1+p2
1 ̺p0+p1

0

·
Det (i, k)

̺
−1

,

where degDiffer is the difference between the expected degree mi and the actual
degree of the remainder and ̺−1 = a0, the leading coefficient of A.

It should be noted that in the general case p0 = deg (A)−deg (B) and that

the division
Det (i, k)

̺−1
is possible if the leading coefficient of A is the only element

in the first column of Sylvester’s matrix. Moreover, if the leading coefficient of A
is negative we work with the polynomial negated and at the end we reverse the
signs of all polys in the sequence. �

Example 1. Take A = 4x5 − 3x4 + 7 and B = 20x4 − 12x3 and form
their sylvester2 matrix:

> A:=4*x^5-3*x^4+7

4 · x5 − 3 · x4 + 7

> B:=simplify(diff(4*x^5-3*x^4+7,x))

20 · x4 − 12 · x3

> S:=sylvester2(A,B,x)
































4 −3 0 0 0 7 0 0 0 0
0 20 −12 0 0 0 0 0 0 0
0 4 −3 0 0 0 7 0 0 0
0 0 20 −12 0 0 0 0 0 0
0 0 4 −3 0 0 0 7 0 0
0 0 0 20 −12 0 0 0 0 0
0 0 0 4 −3 0 0 0 7 0
0 0 0 0 20 −12 0 0 0 0
0 0 0 0 4 −3 0 0 0 7
0 0 0 0 0 20 −12 0 0 0

































All operations will be done in Q [x]. For i = 1, the first remainder negated is of
degree 3:

> R_1:=-rem(A,B,x)

−
−9

25
· x3 − 7
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In the terminology of Theorem 1, here we have p1 − 1 = 0 — from which we

deduce p1 = 1 — and ̺1 = r
(1)
p1−1 = r

(1)
0 =

9

25
.

The above information can be obtained from formula (7) if we set ̺−1 = 4,
the leading coefficient of A, ̺0 = 20, the leading coefficient of B, and p0 = 1, since
B is the derivative of A. Consequently, we have u0 = 1+2+ · · ·+p0 = p0 = 1 and
v0 = p1 + p2 + · · · + p0 = p0 = 1, from which we compute the leading coefficient
of the remainder as :

r
(1)
0 =

9

25
=

(−1)u0 (−1)v0

̺
p
0
+p1−degDiffer

0

·
det (1, 0)

̺−1
=

1

202
·
det (1, 0)

4
,

where degDiffer = 3 − 3 = 0 and det (1, 0) is a submatrix of S . (degDiffer = 0
because we expected a remainder of degree 3 and it turns out that the remainder
is indeed of degree 3.)

Since v0 = 1, to compute det (1, 0) we form the 4 × 4 submatrix M of S

defined below:

> M:=subMat(S,0,0,3,3)








4 −3 0 0
0 20 −12 0
0 4 −3 0
0 0 20 −12









and r
(1)
0 ie equal to

> (1/(20^2))*det(M)/4
9

25

The other three coefficients r
(1)
1 , r

(1)
2 , r

(1)
3 of the remainder are computed below

and agree with those computed above with division. For their computation as
determinants we have to successively swap in S the fourth column with the fifth,
sixth and seventh columns, respectively.

For r
(1)
1 we have:

> M:=subMat(colSwap(S,3,4),0,0,3,3)








4 −3 0 0
0 20 −12 0
0 4 −3 0
0 0 20 0









> (1/(20^2))*det(M)/4
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0

For r
(1)
2 we have:

> M:=subMat(colSwap(S,3,5),0,0,3,3)








4 −3 0 7
0 20 −12 0
0 4 −3 0
0 0 20 0









> (1/(20^2))*det(M)/4

0

For r
(1)
3 we have:

> M:=subMat(colSwap(S,3,6),0,0,3,3)








4 −3 0 0
0 20 −12 0
0 4 −3 7
0 0 20 0









> (1/(20^2))*det(M)/4

−7

For i = 2 the second remainder negated is of degree 1:

> R_2:=-rem(B,R_1,x)

−
3500

9
· x−

−700

3

In the terminology of Theorem 1, here we have p2 − 2 = 0 — from which we

deduce p2 = 2 — and ̺2 = r
(2)
p2−1 = r

(2)
1 = −

3500

9
. Clearly, r

(2)
0 = 0.

The above information can be also obtained from formula (7) if we consider
that we now have u1 = 1 + 2 + · · · + p1 = p1 = 1 and v1 = p0 + p1 + · · · + p1 =
p0 + p1 = 2 from which we compute the leading coefficient of the remainder as:

r
(2)
1 = −

3500

9
=

(−1)u1 (−1)u0 (−1)v1

̺p1+p2−degDiffer
1 ̺

p
0
+p1

0

·
det (2, 1)

̺−1
=

1
(

9
25

)2
202

·
det (2, 1)

4
,

where degDiffer = 2 − 1 = 1 and det (2, 1) is a submatrix of S . (degDiffer = 1
because we expected a remainder of degree 2 and it turns out that the remainder

is of degree 1.) Notice that
9

25
is now raised to the power 2 instead of to the

power 3.
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Since v1 = 2, we compute det (2, 1) from a 6 × 6 submatrix M of S .

Notice, however, that since the first coefficient is r
(2)
0 = 0 the determinant of the

submatrix M below is 0.

> M:=subMat(S,0,0,5,5)
















4 −3 0 0 0 7
0 20 −12 0 0 0
0 4 −3 0 0 0
0 0 20 −12 0 0
0 0 4 −3 0 0
0 0 0 20 −12 0

















> det(M)

0

Subsequently, for r
(2)
1 and r

(2)
2 we swap in S column 5 with columns 6 and 7,

respectively.

For r
(2)
1 we have:

> M:=subMat(colSwap(S,5,6),0,0,5,5)
















4 −3 0 0 0 0
0 20 −12 0 0 0
0 4 −3 0 0 7
0 0 20 −12 0 0
0 0 4 −3 0 0
0 0 0 20 −12 0

















> (1/((9/25)^2*20^2))*det(M)/4

−3500

9

For r
(2)
2 we have:

> M:=subMat(colSwap(S,5,7),0,0,5,5)
















4 −3 0 0 0 0
0 20 −12 0 0 0
0 4 −3 0 0 0
0 0 20 −12 0 0
0 0 4 −3 0 7
0 0 0 20 −12 0

















> (1/((9/25)^2*20^2))*det(M)/4
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700

3

For i = 3 the third remainder negated is of degree 0:

> R_3:=-rem(R_1,R_2,x)
21632

3125

In the terminology of Theorem 1, here we have p3 − 1 = 0 — from which we

deduce p3 = 1 — and ̺3 = r
(3)
p3−1 = r

(3)
0 =

21632

3125
.

The above information can be also obtained from formula (7) if we consider
that we now have u2 = 1+2+· · ·+p2 = 1+p2 = 3 and v2 = p0+p1+p2+· · ·+p2 =
p0 + p1 + p2 = 4, from which we compute

r
(3)
0 =

(−1)u2 (−1)u1 (−1)u0 (−1)v2

̺p2+p3−degDiffer
2 ̺p1+p2

1 ̺
p
1
+p0

0

·
det (3, 0)

̺−1
=

−1
(

−3500
9

)3 ( 9
25

)3
202

·
det (3, 0)

4
,

where degDiffer = 0−0 = 0 and det (3, 0) is a submatrix of S . (degDiffer =
0 because we expected a remainder of degree 0 and it turns out that the remainder
is indeed of degree 0.)

Since v2 = 4, to compute det (3, 0) we take the whole 10 × 10 matrix S

and have:

> (-1/((-3500/9)^3*(9/25)^3*20^2))*det(S)/4
21632

3125

3. Sturm Sequences in Z [x] and Modified Subresultant

PRS’s Using Polynomial Divisions in Q [x]. The goal of this section is
to use equation (7) of the Pell-Gordon Theorem in order to develop an algorithm
for computing modified subresultant prs’s in Z [x] by doing polynomial divisions
in Q [x]. This will be achieved in two steps:

• Using the absolute value of the denominator of the first fraction in the
modified Pell-Gordon equation (7), we first develop an algorithm to compute
Sturm sequences in Z [x] doing divisions in Q [x]. If the Sturm sequence is
complete, then we have computed the modified subresultant prs as well.

• For the general case, using the exact value of the fraction in the modified
Pell-Gordon equation (7), we develop an algorithm to compute modified
subresultant prs’s.
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3.1. Sturm Sequences in Z [x] Using the Pell-Gordon Theorem.

In this case we are given two polynomials A,B in Z [x], where B is the derivative
of A and want to compute in Z [x] the Sturm sequence of A using Theorem 1
— that is, performing divisions in Q [x]. Our goal is achieved by multiplying, at
each step, the remainder R(i) ∈ Q [x] times the absolute value of the denominator
of the first fraction in (7).

To wit, if we take the absolute value of the first fraction in (7) and multiply
both sides of the equation by the denominator we obtain the following equation:

(8)
∣

∣

∣
̺
pi−1+pi−degDiffer

i−1 ̺
pi−2+pi−1

i−2 · · · ̺p1+p2
1 ̺p0+p1

0

∣

∣

∣
· r

(i)
k

=
Det (i, k)

̺
−1

.

In equation (8) recall that r
(i)
k

is the k-th coefficient of the remainder

R(i) ∈ Q [x]; in addition, note that the expression
Det (i, k)

̺
−1

is an integer because

the division is exact.9 Moreover, we can easily infer from equation (8) that

(9) sgn
(

r
(i)
k

)

= sgn

(

Det (i, k)

̺
−1

)

.

Therefore, we conclude that

(10)
∣

∣

∣̺
pi−1+pi−degDiffer

i−1 ̺
pi−2+pi−1

i−2 · · · ̺p1+p2
1 ̺p0+p1

0

∣

∣

∣ ·R(i) ∈ Z [x] ,

that is, after we multiply the ith remainder R(i) by the absolute value of the
denominator of the first fraction in (7), the result will be in Z [x], and becomes
part of the Sturm sequence over the integers. Moreover, because of (9), the Sturm
sequence is identical to the modified subresultant prs.

The above procedure is easily programmed. The only critical point is to
effectively compute the absolute value in (10). This value is not computed anew
for each remainder R(i); instead, a multiplication factor, mulFac, is being updated
as new leading coefficients are included in (10). So, if the current multiplication
factor is

mulFaci =
∣

∣

∣̺
pi−1+pi−degDifferi
i−1 ̺

pi−2+pi−1

i−2 · · · ̺p1+p2
1 ̺p0+p1

0

∣

∣

∣ ,

then the updated factor for the next remainder R(i+1) is

mulFaci+1 =
∣

∣

∣̺
pi+pi+1−degDifferi+1

i ̺
degDifferi
i−1 ·mulFaci

∣

∣

∣ ,

9Since deg (B) < deg (A) the leading coefficient of A is the only element in the first column
of the sylvester2 matrix of A,B.
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which means that

mulFaci+1 =
∣

∣

∣
̺
pi+pi+1−degDifferi+1

i ̺
pi−1+pi
i−1 · · · ̺p1+p2

1 ̺p0+p1
0

∣

∣

∣
.

Our own code for Sympy can be found in the link http://inf-server.

inf.uth.gr/~akritas/publications/sturm_PG.py

3.2. Modified Subresultant PRS’s Using the Pell-Gordon Theo-

rem. As mentioned above, when the Sturm sequence is incomplete it does not
necessarily match the modified subresultant prs, because as Pell and Gordon ob-
served:10

sgn
(

r
(i)
k

)

6= sgn (Det (i, k)) .

Therefore, to form the modified subresultant prs in the general case we
have to additionally compute the sign of the determinant Det (i, k). This is ac-
complished again with the help of Theorem 1 if, instead of equation (8), we now
use:

(11)
∣

∣

∣̺
pi−1+pi−degDiffer

i−1 ̺
pi−2+pi−1

i−2 · · · ̺p1+p2
1 ̺p0+p1

0

∣

∣

∣ · r
(i)
k = fraction · Det (i, k) ,

where

fraction =

=
(−1)ui−1 (−1)ui−2 · · · (−1)u1 (−1)u0 (−1)vi−1

sgn
(

̺
pi−1+pi−degDiffer

i−1

)

sgn
(

̺
pi−2+pi−1

i−2

)

· · · sgn
(

̺p1+p2
1

)

sgn
(

̺p0+p1
0

) .

Obviously, from equation (11) it follows that

(12) sgn
(

r
(i)
k

)

= sgn (fraction) · sgn (Det (i, k)) ,

and from equation (12) we obtain

(13) sgn (Det (i, k)) =







sgn
(

r
(i)
k

)

if sgn (fraction) > 0,

− sgn
(

r
(i)
k

)

if sgn (fraction) < 0.

In this subsection we use the full power of Theorem 1 and, therefore, the
computer implementation is a bit more complicated.

10Notice than in the general case we cannot exactly divide by ̺
−1.
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Our own code for Sympy can be found in the link http://inf-server.

inf.uth.gr/~akritas/publications/sturm_Subresultants_PG.py

4. Conclusions. We have used a forgotten theorem of 1917, by Pell and
Gordon, and sylvester2, a rarely used form of Sylvester’s matrix to compute a
“new” subresultant polynomial remainder sequence of the polynomials p(x) and
q(x) — differing from the “old” one just in the signs of the polynomials.

In the case of complete polynomial remainder sequences, and provided
q(x) = p′(x), this “new” subresultant prs is identical to the Sturm sequence of
p(x), just as the “old” subresultant prs — based on sylvester1, the widely used
form of Sylvester’s matrix — is identical to the Euclidean prs.
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