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Abstract. A class of priority systems with non-zero switching times, re-

ferred as generalized priority systems, is considered. Analytical results re-

garding the distribution of busy periods, queue lengths and various auxiliary

characteristics are presented. These results can be viewed as generalizations

of the Kendall functional equation and the Pollaczek-Khintchin transform

equation, respectively. Numerical algorithms for systems’ busy periods and

traffic coefficients are developed.

1. Introduction. Concepts of Generalized Priority Systems.

Models of Queueing Systems play an important role in the analysis and modeling
of various modern networks [1],[2]. Below we will present and discuss some re-
sults regarding a class of priority queueing systems with non-zero switching time,
referred to as generalized priority systems [3]. This class of systems appeared as a
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result of mathematical formalization and consideration of the switchover times be-
tween priority classes and strategies in the free states. The assumption of nonzero
switching of the service process allows one to take into consideration the various
time losses existing in real time systems. Its consideration and analysis is very
important from the applied point of view. From the theoretical point of view
the study of the generalized priority systems correspond to the intrinsic logic of
the development of Queueing Systems Theory. The results regarding generalized
models are, naturally, more general and contain as particular cases many of the
results already obtained in classical Queueing Theory. In what follows we present
some examples.

Let’s consider a queueing system Mr|Gr|1 with r priority classes of mes-
sages (requests). The priority classes are numbered in decreasing number of prior-
ities, namely, it is assumed that i-messages have a higher priority than j-messages
if i < j. It is also assumed that the server needs some time for switching the ser-
vice process from the queue ito queue j. The length of i, j-switching is considered
a random variable with distribution function Cij(x), 1 ≤ i, j ≤ n, i 6= j. More
details regarding the classification and nomenclature of such models are presented
in [3], [5]. In what follows consider the preemptive priority discipline: the incom-
ing message of the higher priority interrupt both the servicing and the switching.
Regarding the future evolution of the interrupted servicing and switching only
one preemptive scheme will be considered: P12 “resume”, “repeat again” (the in-
terrupted message will be served again). Also suppose that the switching Cij

depends only on index j, Cij = Cj , and the strategy in the free state is “reset”
[3].

2. System’s Busy Period. Denote by Πk(x) the distribution function
(d.f.) of the busy period with the messages of priority no less than k, σk =
λ1 + · · ·+ λk; βi(s), cj(s), π(s), . . . , πk(s) are the Laplace-Stieltjes transforms of
the distribution functions of Bi(x), Cj(x), Π(x), . . . , Πk(x), respectively.

Statement 1. The Laplace-Stieltjes transform π(s) = πr(s) of the d.f. of
the busy period is determined (at k = r) from the system of recurrent functional
equations:

(1) σkπk(s) = σk−1πk−1(s+ λk) + σk−1{πk−1(s+ λk[1− πk(s)])−

− πk−1(s+ λk)}νk(s+ λk[1− πk(s)]) + λkπkk(s),

(2) πkk(s) = νk(s+ λk[1− πk(s)])πk(s),
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(3) πk(s) = hk(s + λk[1− πk(s)]),

where

(4) νk(s) = ck(s+ σk−1[1− πk−1(s)]),

(5) hk(s) = βk(s + σk−1)

{

1−
σk−1

s+ σk−1
[1− βk(s+ σk−1)]πk−1(s)νk(s)

}−1

Remark 1. The functions νk(s), hk(s) and πkk(s) can be viewed as
auxiliary functions yet they all have a clear informative meaning. Thus, νk(s)
and hk(s) are Laplace-Stieltjes transforms of the complete switching to priority
class k and complete service time of k message, respectively.

Remark 2. Gnedenko system’s busy period.

If Cj= 0, j = 1, . . . , r, r >1 from (1)–(5) follow the result published by
Gnedenko et al. in [4]

σkπk(s) = σk−1πk−1(s+ λk(1− πkk(s))) + λkπkk(s)

πkk(s) = hk(s+ λk(1− πkk(s)))

hk(s) = βk(s+ σk−1)

{

1−
σk−1

s+ σk−1
[1− βk(s+ σk−1)]πk−1(s)

}−1

Remark 3. Kendall–Takacs equation.

If Cj = 0, r = 1 the system (1)–(5) represents a single equation

π11(s) = h1(s+ λ1(1− π11(s))).

But if r = 1 results that h1(s) = β1(s) and π11(s) = π(s). Considering
λ1 = λ and β1 = β the following equation holds: (known as Kendall–Takacs
(1953) functional equation for the busy period for M |G|1):

π(s) = β(s + λ− λπ(s))

Thus, system (1)–(5) can be considered as an n-dimensional analog (in
the sense of priority classes) of Kendall-Takacs equation.
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3. Steady State Condition and Traffic Coefficients.

Statement 2. Let ρk =

k
∑

i=1

λibi, where

b1 =
β11 + c11
1 + λ1c11

bk = Φ1 . . .Φk−1βk1(1 + σi−1ci1)

Φ1 = 1,Φ1 = 1 + (σi − σi−1πi−1(λi))ci1, i = 2, . . . , k

If

(6) ρk < 1

then

(7) σkπk1 =
Φ2 . . .Φk + ρk − 1

1− ρk
, π̄k1 =

bk
1− ρk

(8) hk1 =
bk

1− ρk−1
, νk1 =

Φ2 . . .Φk−1

1− ρk−1
ck1

4. Probabilities of the System’s State.

4.1. Probabilities of the → j state. Let →Pj(t) denote the probability
that at instant t the server is busy with orientation for servicing of a request of

the j (j = 1, . . . , r) priority class and →pj(s) =

∫ ∞

0
e−st→Pj(t)dt—the Laplace

transform of the →Pj(t).

Statement 3.

→pj(s) =
σ→j π(s)

s+ σ − σπ(s)

where

σ→kjπk(s) =

{

ψj(s)γj−1(s) +
Gj(s)σj−1πj−1(s)ψj(s)Qj(s)

1− hj(s)

}

×
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×
k
∏

i=j+1

{

1 + ψi(s)γi−1(s) +
[1 + σi−1πi−1(s)ψi(s)]Gi(s)Qi(s)

1− hi(s)

}

σ→kkπk(s) = ψk(s)γk−1(s) +
Gk(s)σk−1πk−1(s)ψk(s)Qk(s)

1− hk(s)
, for j = k

where

Qj(s) = γj−1(s)νj(s) + σj−1πj−1(s) + λj)− σjπj(s)

γi−1(s) = σi−1 [πi−1(s)− πi−1(s + λi)]+λi, ψj(s) =
1− cj(s + σj−1 [1− πj−1(s)])

s+ σj−1 [1− πj−1(s)]

Gj(s) =
1− βj(s + σj−1)

s+ σj−1 [1− βj(s)(s+ σj−1)]πj−1(s)νj(s)

4.2. Probabilities of the ∗j state. Let ∗Pj(t) denote the probability
that at instant t the server is busy with servicing the requests of the class j
(j = 1, . . . , r).

Statement 4.

∗pj(s) =
σ∗jπ(s)

s+ σ − σπ(s)

where

σ∗kjπk(s) =
Gj(s)ψj(s)Qj(s)

1− hj(s)
×

×

k
∏

i=j+1

{

1 + ψi(s)γi−1(s) +
Gi(s)

[

1 + σi−1π(i− 1)(s)ψi(s)
]

Qi(s)

1− hi(s)

}

, for j < k

σ∗kkπk(s) =
Gk(s)ψk(s)Qk(s)

1− hk(s)
, for j = k.

Functions Qj(s), . . . , Gj(s) have been determined above.
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4.3. Steady State Probabilities. Let ∗
Pj and →

Pj be the stationary
probabilities of the ∗j and →j state. If condition (6) is satisfied then

→
Pj +

σ→j π(0)

1 + σπ1
∗
Pj =

σ∗jπ(0)

1 + σπ1

where π1 = πr1.
Remark 4. Danielean formula (1969) and free state probability P0.
If Cj = 0, r > 1, preemptive priority discipline.

∗
Pj = Pj = ρj − ρj−1,

where

ρj =
1

σi−1

[

1

βi(σi−1)
− 1

]

P0 = 1−

r
∑

i−1

Pi = 1− ρr.

5. Distribution of the Queue Length. Let Pm(t) be the prob-
ability that at instant t there are m = (m1, . . . ,mr) requests in the system,
where mi is the number of requests of the i (i = 1, . . . , r) class. Denote by

P (z, t) =
∑

m≥1

Pm(t)zm, where zm = zm1

1 . . . zmr

r , z = (z1, . . . , zr), 0 ≤ zi ≤ 1;

ρ(z, s) =

∫ ∞

0
e−stP (z, t)dt; []k = λk(1− zk) + . . .+ λr(1− zr).

Statement 5. p(z, s) = (1 + σπ(z, s))/(s + σ − σπ(s)), σπ(z, s) =
σrπr(z, s) – is determined from the recurrent relation:

σkπk(z, s) = σk−1πk−1(z, s) + γk−1(s, z)νk(z, s) +
hk(z, s)

zk − hk(s+ []k)
×

× {γk−1(s, z)νk(s+ []k) + σk−1πk−1(s+ λk)− σkπk(s)}

where

γk−1(s, z) = σk−1 {πk−1(s+ []k)− πk−1(s+ λk)− σkπk(s)}
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hk(z, s) = {zk [1− βk(s+ []k + σk−1)]×

× [1 + σk−1 [πk−1(z, s) + πk−1(s+ []k)νk(z, s)]]}×

× {s+ []k + σk−1 − σk−1 [1− βk(s+ []k + σk−1)] πk−1(s + []k)νk(s+ []k)}
−1

νk(z, s) =
1− ck(s + []k + σk−1 [1− πk−1(s+ []k)])

s+ []k + σk−1 [1− πk−1(s+ []k)]
[1 + σk−1πk−1(z, s)]

Functions νk(·), hk(·), πk(·), π(·), are determined from (1)–(5).
Remark 5. Steady state queue length distribution.

Let P (z) be the generating function of the queue length distribution in
stationary state. If condition (6) is satisfied, then

P (z) = lim
s↑0

sp(z, s)

and

(9) P (z) =
1 + σπ̂(z)

1 + σπ1

where σπ̂(s) = σrπr(z, 0) and π1 = πr1.

Remark 6. Pollaczek-Khinchin formula.

If Cj= 0 and r = 1, from (8) follows:

P (z) =
β(λ− zλ)(z − 1)(1− λβ1)

z − β(λ− zλ)

known as Pollaczek–Khinchin formula.

6. Numerical Algorithms.

6.1. Algorithm P12 for Busy Period. In what follows we present the
algorithm for numerical solution of the k-busy periods πk(s) as well as the k-cycle
of switching νk(s), the k-cycle of service hk(s) and kk-periods πkk(s).

Input: r, s∗, ε > 0, {λk}
r
k=1, {βk(s)}

r
k=1, {ck(s)}

r
k=1;

Output: πk(s
∗);

Description:

IF (k==0) THEN π0(s
∗) := 0; RETURN
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k := 1; q := 1; Λ0 := 0;

Repeat inc(q);

Λq := Λq−1 + Λq;

Until q == r;

Repeat νk(s) := ck(s
∗ + Λk−1)[1− πk−1(s

∗)]);

hk(s
∗) := βk(s +Λk−1)+

+

{

1−
Λk−1

s∗ + Λk−1
[1− βk(s

∗ + Λk−1)] · πk−1(s
∗)νk(s

∗)

}−1

;

π
(0)
kk (s

∗) := 0; n := 1;

Repeat π
(n)
kk (s∗) := hk(s

∗ + λk − λkπ
(n−1)
kk (s∗)); inc(n);

Until
∣

∣

∣
π
(n)
kk (s

∗)− π
(n)
kk (s∗)

∣

∣

∣
< ε;

πk(s
∗) :=

Λk−1πk−1(s
∗ + λk)

Λk

+
Λk−1

Λk

(πk−1(s
∗ + λk − λkπkk(s

∗))−

−πk−1(s
∗ + λk))νk(s

∗ + λk[1− πkk(s
∗)]) +

λk
Λk

ν(s∗ + λk − λkπkk(s
∗))πkk(s

∗);

inc(k);

Until k == r;

End of Algorithm P12.

6.2. Algorithm Tr P12 for Traffic Evaluating. The following algo-
rithm gives the numerical solution of the traffic coefficient ρk.

Input: r, s∗, ε > 0, {ak}
r
k=1, {βk(s)}

r
k=1, {ck(s)}

r
k=1;

Output: πk(s
∗), νk(s

∗), hk(s
∗), ρ;

Description:

IF (k==0) THEN π0(s
∗) := 0; RETURN

k := 1; q := 1; σ0 := 0; ρ := 1;

f1 := 1; p := 1;

b1 := (β11 + c11)/(1 + a1c11);

ρ := a1b1;

Repeat inc(q); σq := σq−1 + aq;

Until q == r;

Repeat
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νk(s
∗) := ck(s+ σk−1[1− πk−1(s)]);

hk(s
∗) := βk(s

∗ + σk−1)

{

1−
σk−1

s∗ + σk−1
[1− βk(s

∗ + σk−1)] · πk−1(s
∗)νk(s

∗)

}−1

;

n := 1; π
(n)
kk (0) := 0; π

(n)
kk (0) := 1;

Repeat

π
(n)
kk (s

∗) := hk(s
∗ + ak − akπ

(n−1)
kk (s∗));

inc(n);

Until
π
(n)
kk

(s∗)− π
(n)
kk

(s∗)

2
< ε;

πkk(s
∗) :=

π
(n)
kk (s

∗) + π
(n)
kk (s

∗)

2
;

πk(s
∗) :=

σk−1πk−1(s
∗ + ak)

σk
+
σk−1

σk
(πk−1(s

∗) + ak−

−akπkk(s
∗))− πk−1(s

∗ + ak)νk(s
∗ + ak[1− πkk(s

∗)])+

+
ak
σk
ν(s∗ + ak − akπkk(s

∗))πkk(s
∗);

bk := p ·
1 + σk−1ck1

σk−1

(

1

βk(σk−1)
− 1

)

;

ρ := ρ+ akbk;

fk := 1 + (σk − σk−1πk−1(ak))ck1;

p := fkp;

inc(k);

Until k == r;

End of Algorithm Tr P12.
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