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Abstract. Analysis of risk measures associated with price series data
movements and its predictions are of strategic importance in the finan-
cial markets as well as to policy makers in particular for short- and long-
term planning for setting up economic growth targets. For example, oil-
price risk-management focuses primarily on when and how an organization
can best prevent the costly exposure to price risk. Value-at-Risk (VaR)
is the commonly practised instrument to measure risk and is evaluated by
analysing the negative/positive tail of the probability distributions of the
returns (profit or loss). In modelling applications, least-squares estimation
(LSE)-based linear regression models are often employed for modeling and
analyzing correlated data. These linear models are optimal and perform
relatively well under conditions such as errors following normal or approxi-
mately normal distributions, being free of large size outliers and satisfying
the Gauss-Markov assumptions. However, often in practical situations, the
LSE-based linear regression models fail to provide optimal results, for in-
stance, in non-Gaussian situations especially when the errors follow distri-
butions with fat tails and error terms possess a finite variance. This is the
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situation in case of risk analysis which involves analyzing tail distributions.
Thus, applications of the LSE-based regression models may be questioned
for appropriateness and may have limited applicability. We have carried
out the risk analysis of Iranian crude oil price data based on the Lp-norm
regression models and have noted that the LSE-based models do not always
perform the best. We discuss results from the L1, L2 and L∞-norm based
linear regression models.

1. Introduction. The most popular measure of risk in financial markets
is volatility, which is calculated in terms of the probability. Risk measurement
for regulating the financial markets has been a key issue since the systematic
developments in present financial history. Portfolio theory ([7], [8], [9]) placed
financial risk measurement in practice which assumes that all risk could be parti-
tioned into systematic, market risk and the residual, company-specific risk. The
Capital Asset Pricing (CAP) model which emerged practically as an easy risk
measure model hypothesized that since market risk is relevant for securities pric-
ing, only the market risk measurement β (beta) is necessary. The CAP model
provided a readily measurable risk estimate that could be applied practically in
real time market conditions. However, the problem was that β metrics have only
a tenuous connection to the actual security returns, thus raising questions on the
appropriateness of βs as the true risk measure ([2], [7], [14]).

With doubts on the appropriateness of βs as the correct risk measure,
practitioners searched for alternative risk measures which were both accurate
and relatively inexpensive to estimate. While many other risk measures and
models have been considered, Value-at-Risk (VaR) has been widely adopted. Since
accurate risk measurement is essential to the financial institutions for proper risk
management, many such internal models were developed in-house by financial
institutions.

Value-at-Risk is a statistical measure of possible portfolio losses and is a
measure of losses due to normal market movements. Losses greater than the value
at risk occur with only a specified small probability. Subject to the simplifying
assumptions, value at risk aggregates all risks in a portfolio into a single number
suitable for practical uses like reporting to regulators or disclosure in annual
reports. The concept of value-at-Risk is to understand and describe the magnitude
of the likely losses on the portfolio.

The VaR model is complementary to many other internal risk measures
such as RAROC developed by Bankers Trust in the 1970s [18]. However, market
forces during the late 1990s led to the evolution of VaR as a dominant risk mea-
surement tool for financial firms. The primary reason for the widespread adoption
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of VaR was JP Morgan’s decision to develop an open architecture methodology
known as RiskMetricsTM ([15], [19]). RiskMetricsTM was supported by a publicly
available database containing the critical inputs required to estimate the model.
Another reason for the adoption and popularity of VaR was the introduction in
1998, by the Bank for International Settlements (BIS), of international bank capi-
tal requirements that allowed relatively sophisticated banks to calculate their cap-
ital requirements based on their own internal modes such as VaR. RiskMetricsTM

quickly became the industry benchmark in risk measurement. Bank regulators
worldwide allowed commercial banks to measure their market risk exposures using
internal models that were often VaR-based. The market risk amendments to the
Basel accord made in-house risk measurement models a mainstay in the financial
sector ([20], [21]).

In data analysis, the least-squares estimation (LSE)-based linear regres-
sion models are often employed especially for modeling and analyzing time-series
and cross-sectional data. These linear models are optimal and perform relatively
well under conditions such as errors following normal or approximately normal
distributions, being free of large size outliers and satisfying the Gauss-Markov as-
sumptions. However, often in practical situations, the LSE-based linear regression
models fail to provide optimal results, for instance, in non-Gaussian situations es-
pecially when the errors follow distributions with fat tails and error terms possess
a finite variance. This is the situation in case of risk analysis which involves an-
alyzing tail distributions. Thus, applications of the LSE-based regression models
may be questioned for appropriateness and may have limited applicability.

In section 2 we describe the Value-at-Risk as a measure of risk. In Section
3, we define Lp-norm linear regression models. In section 4, measures for checking
the adequacy of the model are given. The exploratory data analysis of Iran’s crude
oil prices and export is described in section 5. In section 6, we present the Lp-
norm based results of the risk analysis from the data on Iran’s crude oil prices.
We offer concluding remarks in Section 7.

2. Value-at-Risk (VaR). Value-at-Risk (VaR) is defined as a statisti-
cal risk measure to answer a basic question in financial markets: “How much can
we lose with α% probability on a trading portfolio over a pre-set horizon?” VaR
measures the worst expected loss under normal market conditions over a specific
time period at a given confidence level (quantile). In statistical terms, a bad day
is defined so that there is only an α% probability that daily losses will exceed
this amount for a given distribution of all possible daily returns over some recent
past period. Thus, a bad day is defined so that there is only an α% probability



258 Pranesh Kumar, Faramarz Kashanchi

of an even worse day. The 1% VaR denoted as VaR1% indicates a daily loss that
will be equalled or exceeded only 1 percent of the time. Alternatively, VaR1%
means that there is a 99% chance that tomorrow’s daily portfolio value will exceed
today’s value less VaR1% [19].

Setting X as the portfolio value over the d-period horizon and f(x) its
probability density function, then for a confidence level α%,

(2.1) α = Pr (V alue > 100 − V aR) =

∞
∫

100−V aR

f (x) dx.

or, if g(x) is the probability density function of losses, then for a confidence level
α%,

(2.2) α = Pr (Loss > −V aR) =

∞
∫

−V aR

g (x) dx.

The time period (d) and confidence level (α) are two main parameters to
be selected appropriately for the risk measure.

In mathematical terms, Value-at-Risk (VaR) is the (1 − α)th quantile of
the distribution of the d-period return value of a given portfolio P . Thus,

(2.3) V aRα,d (P ) = −F−1

P d (1− α)× PV (P ) ,

where α is the confidence level, P d is the change in value of the portfolio P

over time period (d), i.e., the d-period return, FP d is the cumulative probability
distribution of P d and PV (P ) is the present worth of the portfolio.

3. Lp-norm Linear Regression Models. The least-squares esti-
mation (LSE ) technique was first published by Legendre [12]. LSE is used for
estimating linear regression models (LRMs). LRMs based on LSE perform well
provided the errors follow a normal or approximately normal distribution, do not
possess large size outliers and follow Gauss-Markov assumptions. Under these
conditions, the LSEs are optimal and provide the best linear unbiased estima-
tors of the model parameters. Alternatives to the LSE which are more robust to
departures from the usual least squares assumptions have been investigated by
several researchers; cf. interesting work by Boscovich [1], Legendre [13], Gauss
[5], [6], Laplace [11], Stigler [17], Farebrother [4].
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We consider a linear regression model for a single response variable y given
k independent variables:

(3.1) y = Xβ + ε,

where y is the vector of n responses, X is the n × k matrix of values of k inde-
pendent variables, β is the vector of k + 1 model parameters and ε is the vector
of n residual values. Errors ε’s are assumed to follow a multivariate normal dis-
tribution.

Definition. The Lp-norm of the residual vector ε

(3.2) ‖ε‖p =

{

(Σ|ε|p)1/p, for p ∈ [1;∞),
max |ε|, for p → ∞.

An estimator minimizing a Lp-norm of the residual vector ε is called an Lp-

norm estimator. Measuring the size of ε using the Lp-norm, we arrive at the

Lp-regression problem.

In regression analysis, the goal is to find β that attains the minimum Lp-
norm for the difference between y and Xβ. Thus, the Lp-regression problem is to
determine β such that

(3.3) min ‖Xβ − y‖p.

Setting p = 1 in (3.3), the L1-norm regression problem becomes
min ‖Xβ − y‖1, which is written as the linear programming (LP) problem

(3.4) minΣti : −ti ≤ xTi β − yi ≤ ti, i = 1, . . . , n.

A methodology to estimate unknown parameters in L1-norm regression
model was first introduced by Boscovich [1].

Setting p = 2 in (3.3), the L2-norm regression problem becomes
min ‖Xβ − y‖2. This is equivalent to minimizing with respect to β:

(3.5) Σ(yi − Σxijβj)
2.

The solution of β for L2-norm regression problem is commonly known as the least
square estimators (LSE). It may be noted from the works of Legendre [13] and
Gauss [5] that they proposed to minimize the sum of the squares of the measure-
ment errors and, thereafter, the method of least squares became the most popular
estimating technique. The main reasons for the LSE’s popularity are presumably
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easy computations and due the fact that when the residuals are independent and
identically normally distributed, the least squares estimators regression model is
also the best linear unbiased estimator as well as equivalent to the maximum like-
lihood estimator, implying that the inference is easily performed (Nyquist [16]).
However, it has been noted that the least squares estimates are sensitive to de-
partures from the assumptions, for example, normally distributed errors.

Setting p = ∞ in (3.3), the L∞-norm regression problem becomes
min ‖Xβ − y‖∞ which can be written as the linear programming (LP) problem

(3.6) min t : −t ≤ xTi β − yi ≤ t, i = 1, . . . , n.

This minimization problem is often referred to as the Chebyshev approx-
imation. Laplace [11] and Edgeworth [3] have shown that the Lp-norm estimator
is preferable to least squares when estimating a simple linear regression model
with fat-tailed distributed residuals. Nyquist [16] has investigated the Lp-norm
estimators of linear regression models. In particular, he discussed results on the
existence, uniqueness and asymptotic distributions of Lp-norm estimators and
gave geometrical interpretations of Lp-norm estimation.

4. Checking Model Adequacy. For assessing model adequacy,
one commonly used measure based on estimated residuals is the coefficient of
determination R2 which is defined as the proportion of the total response variance
that is explained by the model

(4.1) R2 = 100

[

1−
Σε2

Σ(y − ȳ)2

]

Another measure [Kumar and Kashanchi] denoted by ‖R2‖1 based on the
estimated residuals for checking model accuracy is

(4.2) ‖R2‖1 = 100

[

1−
Σ|ε|

Σ|y − ȳ|

]

Either measure compares how well model fits. A higher value of ‖R2|1 or
R2 indicates a better fit.

5. Descriptive Data Analysis of Iran’s Crude Oil Prices and
Export. Iran is one of the largest crude oil exporting counties and a risk analysis
of this product may affect major economic policy decisions. Iran is a member of
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the Organization of the Petroleum Exporting Countries (OPEC) which sets crude
oil prices in the world and is a reliable data source. The Central Bank of Iran is
another reliable data source which provides economical and statistical data and
reports about Iran. We referred to OPEC and the Central Bank of Iran and
compiled the following data: (i) Monthly prices for a barrel of crude oil from
OPEC and Iran’s light and heavy crude oil (in US dollar) from January 1997
to December 2008 [22] and Number of barrels of crude oil exported by Iran per
month from January 1997 to December 2008 [23]. Note that these data on export
were presented in the Iranian calendar and we have converted it to the Western
calendar.

In Figure 5.1 we can see the time series plots of the data (there are 144
observations in all). The left-hand side of Figure 5.1 shows the oil prices of OPEC
and Iran light and heavy crude oil prices which are strongly positively correlated
in the period of twelve years (January 1997–December 2008). The right-hand side
of Figure 5.1 shows the number of barrels of crude oil (in 1000) exported by Iran
and we can see significant fluctuations in the years 2001 and 2002.

Fig. 5.1. Time series plots of the crude oil prices and export per month data,
January 1997–December 2008

In Figure 5.2, the graphical summaries of the above data are presented.
The distribution of crude oil prices are skewed to the right. During April 2008
and August 2008 the prices are above 97 US Dollars per barrel. We also noted
suspected outliers in Figure 5.2 left box plots. The right side graph of Figure 5.2
shows the distribution of Iran’s crude oil export that is almost symmetric with
few suspected outliers at both ends. May 2001 and April 2002 with 1192 and 608
thousand barrels per day respectively were the maximum and minimum of Iran’s
crude oil export.

The numerical description of the data is provided in Table 5.1. Some
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Fig. 5.2. Left is the box plots of the crude oil prices and right is the boxplot of the
crude oil export per month, January 1997–December 2008

interesting observations:

1. Crude oil prices: skewed to the right, suspected outliers, Righ variability.

2. Crude oil export: almost symmetric, few suspected outliers at both ends,
very high variability.

3. Linear correlation between crude oil prices and export: 0.149.

Table 5.1. Descriptive statistics

N = 144
Minimum Maximum Mean Standard Deviation
Statistic Statistic Statistic Std. Error Statistic

Iran-Light ($) 9.80 128.19 38.14 2.167 26.008
Iran-Heavy ($) 9.51 126.75 36.83 2.097 25.163
OPEC-Ref ($) 9.69 131.22 38.54 2.146 25.756
Export (000) 608 1192 820.25 6.999 83.985

6. VaR Calculations. In this section we will discuss the results of
the risk analysis for the data and copula simulated data of the Iran’s heavy and
light crude oil prices. Here the Value-at-Risk (VaR) is calculated in terms of
the relative change of the monthly crude oil prices. We are defining risk as the
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unexpected rare event of observing either a very low relative change (drop in oil
price) or a very high relative change (high oil price).

We carry out the calculation steps:
(i) Fit L1, L2 and L∞-norm regression models.

(6.1) y1 = 0.4020X + 797.9541

(6.2) y2 = 0.4715X + 802.8855

(6.3) y∞ = 1.8726X + 789.0337

(ii) Check model adequacy

Table 6.1. Model accuracy measures

Model adequacy measure L1 L2 L∞

R2 1.2 2.0 0.8

‖R2‖1 92.9 92.8 90.9

(iii) Predict export and predicted relative errors for lower and upper per-
centiles of crude oil prices.

Fig. 6.1. Predicted crude oil export (000 Barrels) from L1, L2 and L∞-norms
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Table 6.2. Predicted crude oil export (000 Barrels) from L1, L2 and L∞-norms

Probability
Price

($/Barrel)
Export
(000)

Export
L1 (000)

Export
L2 (000)

Export
L∞ (000)

0.001 9.5143 798 801.7788 807.3715 806.8502
0.005 9.5315 736 801.7857 807.3796 806.8823
0.010 9.7249 776 801.8635 807.4708 807.2445
0.150 10.0773 815 802.0052 807.6369 807.9045
0.200 10.6064 825 802.2179 807.8864 808.8952
0.250 10.8595 766 802.3196 808.0058 809.3692
0.300 11.0280 764 802.3874 808.0852 809.6847
0.350 11.1703 762 802.4446 808.1523 809.9512
0.400 11.2132 778 802.4618 808.1725 810.0315
0.450 11.2909 771 802.4930 808.2092 810.1770
0.050 11.4135 764 802.5423 808.2670 810.4066
0.050 88.3090 833 833.4543 844.5232 954.4011
0.450 91.0695 828 834.5640 845.8247 959.5704
0.400 94.0592 831 835.7659 847.2344 965.1690
0.350 96.6618 857 836.8121 848.4615 970.0426
0.300 100.6205 843 838.4035 850.3281 977.4556
0.250 104.7248 820 840.0534 852.2632 985.1413
0.200 109.2718 861 841.8814 854.4072 993.6561
0.150 115.2564 804 844.2872 857.2289 1004.8627
0.010 121.1383 802 846.6517 860.0022 1015.8773
0.005 125.2557 797 848.3069 861.9435 1023.5874
0.001 126.4511 861 848.7875 862.5072 1025.8261

From Table 6.2 (Figure 6.1) and Table 6.3 (Figure 6.2), we have the fol-
lowing indicative conclusions:

• Models in order of goodness of fit (First is the best): L1, L2, L∞-norm
regression models.

• Model adequacy: R2 values are very small for all models because of lower
degree of linear association and assumptions of optimality of linear models
not met.

Values of‖R2‖1 measure are high (> 90%) for all three models.

• Predicted export for lower and upper percentiles of crude oil prices: Pre-
dicted values are close enough. However, absolute errors are minimum for
the L1-regression model. The L2 (or usual least square) regression model is
not optimal, particularly for predicting end-tail values.
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Table 6.3. Predicted relative errors (%) from L1, L2 and L∞-norms

Probability |Relative Error| |Relative Error| |Relative Error|

0.001 0.4735 1.1744 1.1090

0.005 0.4744 1.1754 1.1131

0.010 0.4841 1.1868 1.1585

0.150 0.5019 1.2076 1.2412

0.200 0.5286 1.2389 1.3653

0.250 0.5413 1.2539 1.4247

0.300 0.5498 1.2638 1.4643

0.350 0.5570 1.2722 1.4976

0.400 0.5591 1.2748 1.5077

0.450 0.5630 1.2793 1.5259

0.050 0.5692 1.2866 1.5547

0.050 4.4429 5.8300 19.5991

0.450 4.5820 5.9931 20.2469

0.400 4.7326 6.1697 20.9485

0.350 4.8637 6.3235 21.5592

0.300 5.0631 6.5574 22.4882

0.250 5.2699 6.7999 23.4513

0.200 5.4989 7.0686 24.5183

0.150 5.8004 7.4222 25.9226

0.010 6.0967 7.7697 27.3029

0.005 6.3041 8.0130 28.2691

0.001 6.3643 8.0836 28.5496

Sum (Lower) 5.8020 13.6137 14.9620

Sum (Upper) 59.0185 76.0306 262.8558

Average (Lower) 0.5275 1.2376 1.3602

Average (Upper) 5.3653 6.9119 23.8960

• For considered crude oil price and export data series, the L1-regression
model is recommended over the L2 (or least square) regression model and
the L∞-regression model.
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Fig. 6.2. Predicted relative errors (%) from L1, L2 and L∞-norms

7. Concluding Remarks. Although the least squares estimation
(LSE) is simple and algebraically highly developed, studies have shown that LSE-
based linear regression may not be the optimal model when one or more of its
assumptions fail. In our analysis, we have estimated L1, L2, L∞-norm regression
models to calculate VaR for Iranian crude oil price and export data. Our findings
are in agreement with those in some earlier studies about the Lp-norm based
linear regression models.

Our results also indicate a need for further investigations like: (i) distri-
butional properties of the Lp-norm based linear regression estimated models, (ii)
effects of deviating from the assumptions of LSE on the Lp-norm linear regression
models, (iii) statistical inference issues such as interval estimation, hypothesis
testing and prediction bands, etc., for the Lp-norm models, and (iv) for given
applications, how to determine optimal choice of the Lp-norm.
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